
µSystems Research Group

School of Engineering

Hardware Synthesis from High-level
Scenario Specifications

Alessandro de Gennaro

Technical Report Series

NCL-EEE-MICRO-TR-2019-214

July 2019

Contact: a.de-gennaro@ncl.ac.uk, alex10.dege@gmail.com

Supported by the EPSRC grants EP/L025507/1 and EP/N031768/1.

NCL-EEE-MICRO-TR-2019-214

Copyright c© 2019 Newcastle University

µSystems Research Group

School of Engineering

Merz Court

Newcastle University

Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Abstract

The behaviour of many systems can be partitioned into scenarios. These facilitate

engineers’ understanding of the specifications, and can be composed into efficient

implementations via a form of high-level synthesis. In this work, we focus on highly

concurrent systems, whose scenarios are typically described using concurrency models

such as partial orders, Petri nets and data-flow structures.

In this thesis, we study different aspects of hardware synthesis from high-level

scenario specifications. We propose new formal models to simplify the specification

of concurrent systems, and algorithms for hardware synthesis and verification of the

scenario-based models of such systems. We also propose solutions for mapping scenario-

based systems on silicon and evaluate their efficiency.

Our experiments show that the proposed approaches improve the design of con-

current systems. The new formalisms can break down complex specifications into

significantly simpler scenarios automatically, and can be used to fully model the data-

flow of operations of reconfigurable event-driven systems. The proposed heuristics for

mapping the scenarios of a system to a digital circuit supports encoding constraints,

unlike existing methods, and can cope with specifications comprising hundreds of

scenarios at the cost of only 5% of area overhead compared to exact algorithms.

These experiments are driven by three case studies: (1) hardware synthesis of control

architectures, e.g. microprocessor control units; (2) acceleration of the ordinal pattern

encoding, i.e. an algorithm for detecting repetitive patterns within data streams; (3) and

acceleration of computational drug discovery, i.e. computation of shortest paths in large

protein-interaction networks.

Our findings are employed to design two prototypes, which have a practical value for

the considered case studies. The ordinal pattern encoding accelerator is asynchronous,

highly resilient to unstable voltage supply, and designed to perform a range of compu-

tations via runtime reconfiguration. The drug discovery accelerator is synchronous, and

up to three orders of magnitude faster than conventional software implementations.

i

Acknowledgements

First and foremost, I would like to thank my first PhD supervisor Andrey Mokhov.

He introduced me to the world of academic research with inspiring discussions and

countless ideas. His infectious passion inspired me to improve and be attentive to

detail. For all of this, I will be always grateful. I also would like to thank my second

PhD supervisor Alex Yakovlev for his valuable guidance. His incredible dedication and

excitement for his work is admirable and has been a source of inspiration for the whole

time of my PhD studies.

I am also thankful to all people in my research team (the µSystems Research Group)

that supported my work. In particular, a great acknowledgement goes to Ghaith

Tarawneh, Reza Ramezani, Jonathan Beaumont and Sergey Mileiko. A special mention is

for Danil Sokolov, who has always been supportive and ready to help when I was

overwhelmed by doubts. He has been very important in my growth as researcher, and

I would never be thankful enough for this. Another mention is for Paulius Stankaitis,

my dear friend and colleague who shared with me exciting and frustrating research

moments at Newcastle University.

Last but not least, part of my acknowledgements goes to those who have been close

to me emotionally, and helped sustain the encountered difficulties: my family and friends.

A special acknowledgement is dedicated to my partner Elisa Passaretti, who supported

me emotionally and practically by making my dissertation more pleasant to read.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Publications vi

List of Public Presentations & Demos viii

List of Figures ix

List of Tables xiv

1 Introduction 1

1.1 New design challenges . 3

1.2 Scenario-based design . 7

1.3 Research contributions . 9

1.4 Organisation and collaboration . 11

2 Motivation 13

2.1 Processor instruction sets . 13

2.2 Reconfigurable architectures . 15

2.3 Understanding complex systems . 17

2.4 Network analysis . 18

iii

Contents

2.5 Summary . 20

3 Background 21

3.1 Partial orders . 22

3.2 Conditional partial order graphs . 23

3.3 Petri nets . 25

3.3.1 Signal transition graphs . 29

3.4 Static dataflow structures . 31

3.5 Labelled transition systems . 36

4 Scenario composition 38

4.1 Efficient composition of scenarios . 38

4.1.1 Background . 39

4.1.2 Related work . 45

4.1.3 The new scenario composition algorithm 45

4.1.4 Design automation . 59

4.1.5 Summary . 62

4.2 Composition of dataflow structures . 62

4.2.1 Motivation . 63

4.2.2 The Dataflow Structures model . 66

4.2.3 Composition of scenarios . 72

4.2.4 Execution semantics expressed with Petri nets 74

4.2.5 Design automation . 77

4.2.6 Related work . 78

4.2.7 Summary . 81

4.3 Decomposition of system specifications . 82

4.3.1 The idea with an example . 83

4.3.2 The Process Windows model . 87

4.3.3 Extracting windows from system specifications 89

4.3.4 Deriving window conditions . 92

4.3.5 Applications of the model . 95

4.3.6 Related work and summary . 98

iv

Contents

5 Case studies 100

5.1 Control synthesis . 100

5.1.1 Related work . 101

5.1.2 Configuration and notation for benchmarking 104

5.1.3 Ad-hoc controllers . 105

5.1.4 Processor instruction sets . 107

5.1.5 Software output logs . 112

5.1.6 Conclusion . 114

5.2 Reconfigurable asynchronous pipelines . 115

5.2.1 Introduction to ordinal pattern encoding 116

5.2.2 Modelling reconfigurable asynchronous pipelines 119

5.2.3 Implementing reconfigurable asynchronous pipelines 124

5.2.4 Evaluation of the fabricated prototype 128

5.2.5 Related work and conclusion . 135

5.3 FPGA accelerator for drug discovery . 136

5.3.1 Introduction to computational drug discovery 137

5.3.2 The presented accelerator . 139

5.3.3 The scenario-based model of drug discovery 142

5.3.4 Experimental results . 147

5.3.5 Related work and conclusion . 151

6 Conclusions 153

6.1 Summary of the contributions . 153

6.2 Future work . 156

A The scenario-based specification of the ARM Cortex M0+ processor 157

Bibliography 160

v

List of Publications

Journal Article

1. A. de Gennaro, P. Stankaitis, A. Mokhov. “Efficient Composition of Scenario-based

Hardware Specifications”. In IET Computers & Digital Techniques, vol. 13, no. 2,

pp. 57-69, 2019.

Book Chapters

1. A. Mokhov, A. de Gennaro, G. Tarawneh, G. Lukyanov, S. Mileiko, J. Scott, A.

Yakovlev, A. Brown. “Language and Hardware Acceleration Backend for Graph

Processing”. In Languages, Design Methods, and Tools for Electronic System Design -

Selected Contributions from FDL 2017, Springer, 2018, in Press.

2. A. Brown, D. Thomas, J. Reeve, G. Tarawneh, A. de Gennaro, A. Mokhov, M. Nay-

lor, T. Kazmierski. “Distributed Event-based Computing”. In Parallel Computing is

Everywhere, IOS press, 2018, pp. 583-592.

Conference Papers

1. D. Sokolov, A. de Gennaro, A. Mokhov. “Reconfigurable Asynchronous Pipelines:

from Formal Models to Silicon”. In Design, Automation and Test in Europe (DATE),

March 2018, Dresden, Germany.

2. A. Mokhov, J. Cortadella and A. de Gennaro. “Process Windows”. In International

Conference on Application of Concurrency to System Design, 2017, Zaragoza, Spain.

IEEE.

vi

List of Publications

3. A. Mokhov, A. de Gennaro, G. Tarawneh, G. Lukyanov, S. Mileiko, J. Scott, A.

Yakovlev and A. Brown. “Language and Hardware Acceleration Backend for

Graph Processing”. In Forum on specification & Design Languages, 2017, Verona, Italy.

4. G. Lukyanov, A. de Gennaro, A. Mokhov, P. Stankaitis, M. Rykunov. “Prototyping

Resilient Processing Cores in Workcraft”. In 2nd International Workshop on Resiliency

in Embedded Electronic Systems, 2017, Lausanne, Switzerland. IEEE.

5. A. de Gennaro, P. Stankaitis and A. Mokhov. “A Heuristic Algorithm for Deriving

Compact Models of Processor Instruction Sets”. In 15th International Conference on

Application of Concurrency to System Design, 2015, Brussels, Belgium. IEEE.

vii

List of Public Presentations

1. FANTASI: FAst NeTwork Analysis in SIlicon. Winning project of the Xilinx Open

Hardware competition 2018. Xilinx, Dublin (Ireland).

2. Prototyping Resilient Processing Cores in Workcraft. 2nd International Workshop on

Resiliency in Embedded Electronic Systems. 2017, Lausanne (Switzerland).

3. Adopting a Systematic Approach to the Design of Processor Instruction Sets. ARM

Research Summit, 2016, Cambridge (UK).

4. Modelling Concurrency in Processor Instruction Sets. 12th LASER Summer School on

Software Engineering - Concurrency: the next frontiers. 2015, Elba Island (Italy).

5. A Heuristic Algorithm for Deriving Compact Models of Processor Instruction Sets.

15th International Conference on Application of Concurrency to System Design, 2015,

Brussels (Belgium).

Technical Demos

1. FPGA-based Hardware Accelerator for Drug Discovery. Design Automation & Test

in Europe (DATE) 2018, University Booth. Dresden (Germany).

2. Reconfigurable Self-timed Dataflow Accelerator. Design Automation & Test in Europe

(DATE) 2017, University Booth. Lausanne (Switzerland).

viii

List of Figures

1.1 Different forms of hardware composition. 7

1.2 The methodologies that we study in this dissertation. 8

1.3 The topics of the thesis, their dependencies and the sections where they

are presented. 10

2.1 Two scenarios representing the store and load general instructions. 14

2.2 The system specification (on top), in the form of a Conditional Partial

Order Graphs, generated by the scenario specification in Figure 2.1.

It selectively activates the two processor instructions (at the bottom)

according to the value of the Boolean variable b, produced by the scenario

composition process. As an example: if b = 0, the Store instruction will be

executed. 15

2.3 Energy-Quality tradeoff of the implementations scenarios of our prototype. 16

2.4 System specification of a concurrent system. 17

2.5 Scenario specification of the concurrent systems in Figure 2.4. 18

2.6 A biological system (PPI network) represented as an undirected graph (on

top), and its activation scenarios (at the bottom) that identify the areas of

interest (proteins/vertices and bonds/arcs) of the PPI. 19

3.1 Two instructions represented as Partial Order graphs. 22

3.2 Example of CPOG with 2 projections: H|b=0 on the left side models

the functionality of the arithmetic instruction scenario, H|b=1 on the right

models the unconditional branch scenario. 24

ix

List of Figures

3.3 Example of a Petri Net. 26

3.4 Representation of the Petri Net behaviour, namely token game. The initial

marking of the Petri Net is m0, while the last marking is m4. 27

3.5 The reachability graph of the Petri net in Figure 3.3. The dotted arcs in

yellow shows the trace of events shown in Figure 3.4. 28

3.6 Petri net in Figure 3.3 with the additional read-arc on the left-hand side, its

corresponding Reachability graph on the right. 29

3.7 Two scenarios of a buck controller represented as waveforms (top) and

signal transition graphs (bottom). 30

3.8 Examples of STG properties. 31

3.9 Static dataflow structures nodes. 32

3.10 An example of static dataflow structure. 33

3.11 A possible simulation trace using the spread token behavioural semantics. 35

3.12 Two labelled transition systems. 37

4.1 The design methodology based on the CPOGs. 40

4.2 A scenario specification comprising two processor instructions. 41

4.3 From the CPOG to its constituent POs. 42

4.4 Hardware controller derived by the CPOG on top of Figure 4.3. Red

signals are the inputs, while blue signals are the outputs. 44

4.5 The presented cost function is studied over two benchmarks. 54

4.6 Methodology based on the CPOG shown within WORKCRAFT. 60

4.7 The interface between controller and datapath. The controller interfaces

to asynchronous components via req/ack interface, and to synchronous

ones via matched delays. The decouple and merge modules release a

datapath component after the end of its execution. Merge is used when

a component is accessed multiple times within within a scenario. 62

4.8 Conditional application of a function. 63

4.9 Static and dynamic nodes included in the Dataflow Structures model. . . . 64

4.10 Selection of a noise filter for audio processing. 65

4.11 Conditions for determining if a dynamic node is false- or true-controlled. 67

4.12 Logic nodes. 68

x

List of Figures

4.13 Static register nodes. 68

4.14 Push and pop registers. 69

4.15 Control registers. 69

4.16 Examples of the four Boolean functions implemented in the DFS. 70

4.17 A possible simulation trace of the DFS model of the reconfigurable noise

filter. 71

4.18 DFS generic structure for the execution of 4 scenarios. 73

4.19 Petri Net models of the Dataflow Structures nodes. 75

4.20 Petri net description of the DFS Filter in Figure 4.8c. 76

4.21 Screenshot of WORKCRAFT while handling the DFS digital camera model. 77

4.22 DFS models of a demultiplexer and multiplexer. 79

4.23 Nodes of the MoC conceived by Dennis. 80

4.24 Control-flow nodes the BDF MoC. 80

4.25 BDF description of the DFS model in Figure 4.10. 80

4.26 The motivating example. 84

4.27 Simulation of the motivating example. 85

4.28 To clarify Definitions 4.19 and 4.20, we show an LTS and describe its

properties. Transitions a and b are forward persistent (see blue shadow),

but are not backward persistent (see green shadow). The transitions c

and e are not forward persistent, but are in forward free choice (see red

shadow). Lastly, the transitions c and z are neither forward persistent, nor

in forward free choice (see yellow shadow). 89

4.29 STG specifications of a buck controller. 96

4.30 STG specification of a buck controller derived by the PW methodology. . . 97

4.31 Log of traces and Labelled Transition System. 98

4.32 Petri net of the program log synthesised automatically by Petrify. 98

4.33 The program log represented via the methodology based on Process

Windows. 99

5.1 A CPOG-based processor specification comprising two instructions. . . . 101

5.2 STGs of the processor specification in Figure 5.1. Two types of encoding

are used as interface to run the internal scenarios. 102

xi

List of Figures

5.3 FSM (with binary encoding) of the processor specification in Figure 4.2b. . 104

5.4 Scenario-based specification of a power management controller of a buck

converted. 105

5.5 Two scenarios of the ARM Cortex M0+ specification. 108

5.6 Two scenarios of the Texas Instruments MSP430 specification. 108

5.7 ARM Cortex M0+ system specifications in the form of CPOG. 111

5.8 The N-stage pipeline for computing the OPE. The data stream is prop-

agated through the input registers, whose values are compared by the

comparators to the latest incoming value hold in the in register. The adders

sum the comparator results with the results of the preceding pipeline

stages stored in the Lehmer registers, whose values are compressed into

the final code. 118

5.9 Pipeline with local and global stage interfaces. 120

5.10 The DFS model of the reconfigurable OPE pipeline, from 1 to N stages

that corresponds to the OPE window size. The model has been de-

rived by the efficient composition of static and reconfigurable pipeline

stages (described in Fig. 5.9). The first stage s1 is static as it is always

present, while the remaining stages can be disabled by the corresponding

control registers. Notice that the second stage s2 has been optimised,

and the local ctrl control registers have been removed as the preceding

stage s1 is always active. The grey-shaded control registers are needed to

coordinate the behaviour of the pipeline in the model, but are substituted

by a combinational control unit (described in Section 5.1.3) in the final

hardware implementation. In Section 5.2.3, we show that the DFS

model can be mapped to a digital circuit using a library of asynchronous

components, and describe a few examples on the key parts of the pipeline,

e.g. reconfigurable fanout. 122

5.11 The scenarios of the OPE-pipeline, and two approaches to their composition.123

5.12 Implementation of an asynchronous dual-rail N-bit half-adder, with NCL-

D gates. 124

5.13 Asynchronous reconfigurable fanout implementations. 125

xii

List of Figures

5.14 Static and dynamic register implementations. 126

5.15 Ordinal pattern encoding chip. 128

5.16 Testbench setup. 129

5.17 Experimental results for ordinal pattern encoding chip. 130

5.18 Computation time at varying voltages and pipeline depths. 132

5.19 Power consumption at varying voltages and pipeline depths. 133

5.20 Energy statistics at varying voltages and pipeline depths. 134

5.21 Time, power, and energy per computation at different pipeline depths at

the nominal supply voltage 1.2V. 135

5.22 A PPI network, its possible drugs, and networks resulting from drug

injection. 137

5.23 Overview of the hardware-software infrastructure for accelerating drug

discovery. 140

5.24 Mapping a graph to a digital circuit for implementing on an FPGA. 141

5.25 A PPI network (on top), and all its possible drugs in the form of activation

scenarios. 143

5.26 The reconfiguration structure of the random-based drug discovery as

CPOGs. 144

5.27 A PPI network (on top), and a set of activations scenarios: the networks that

can be induced by a list of realistic drug candidates. 145

5.28 The reconfiguration structure of the library-based drug discovery as CPOGs.146

5.29 Execution time of a analysis run on the network n4 at varying number of

edges. 150

A.1 The scenario specification of the ARMV6-M instruction set architecture. . 158

xiii

List of Tables

4.1 Symmetric encodings derivable from e1, e.g. e2 is symmetric to e1, as it can

be obtained by negating the Boolean variable b1 in all the codes in e1. . . . 46

4.2 States and net markings in Fig. 4.27. 86

5.1 Comparison of CPOG scenario encoding algorithms over the ad-hoc

controller benchmarks. Units of measure: Area (|B|) = [µm2] (number of

bits). 106

5.2 The proposed algorithm is compared with existing CPOG composition

techniques, and with the FSM and STG synthesis approaches over 26

processor instruction set benchmarks. Bold results are the smallest

controllers for each model. Units of measure: Area (|B|) = [µm2] (number of

bits), Runtime (RT) = [s]. 110

5.3 Three configurations of the proposed algorithm are compared with trivial

CPOG composition techniques on 11 software output logs divided in

(S)mall, (M)edium and (L)arge sizes. Bold results are the smallest con-

trollers for each model. Units of measure: Area (|B|) = [µm2] (number of

bits), Runtime (RT) = [s]. 113

5.4 Features of the CPOGs compositional algorithms. Max |S|: maximum

number of scenarios supported. CPOG-scenarios: support of scenarios in

the form of CPOG. Constraints: support of composition constraints. . . . 115

5.5 Data points of the 0.5V line in Figure 5.19. 133

xiv

List of Tables

5.6 Resource Utilisation and Performance Comparison for Six Protein to

Protein Interaction Network Benchmarks on the Altera DE4 board (FPGA:

Stratix IV EP4SGX230). The Resource Utilisation of the Network entries

show the resources used by the hardware representation (HW) of the

considered PPI network only. Our biggest benchmark n5 cannot be syn-

thesised into the FPGA, thus some of the table entries are missing (see −)

and others were estimated (see values followed by ∗). The Resource

Utilisation of the Prototype shows the amount of resources used by the

entire drug discovery prototype. The volume of logic utilization added

by the extra control circuitry and the NIOS II software processor is not

negligible, but it is not the cause of the network n5 synthesis failure. In

fact, the Altera tool QUARTUS also fails in the attempt of synthesizing

only n5. The Operating Parameters show the power consumption of

the prototype in the FPGA as estimated by the Altera tool PowerPlay

Power Analyser. It also shows the maximum working frequency at which

each network can be clocked (calculated without the extra accelerator

logic), and the frequency that we fixed for the prototype. The prototype

frequency and processing cycles (i.e. number of cycles needed to calculate θ)

are used to determine prototype performance. Finally, the Performance

part of the table shows the obtained acceleration figures relative to a

software implementation in C++. See Section 5.3.4 for further details on

the experimental results. 148

xv

Chapter 1

Introduction

Electronic Design Automation (EDA) has acquired increasingly more importance in the

fields of computing science and electronic engineering since the 70s, when Gordon

Moore predicted the steady growth of the number of transistors per square inch in

integrated circuits (IC) [1]. EDA has contributed to the expansion of the Very Large

Scale Integration (VLSI) industry by allowing designers to use automated and verified

approaches in response to the growth of IC complexity. Its knowledge has also been

applied to solve problems in the fields of chemistry, biology and physics [2].

In the context of microelectronics, EDA encloses the set of mathematical models,

algorithms and software tools used for the design, synthesis and fabrication of integrated

circuits. It encompasses methodologies to abstract the complexity of electronic systems,

and refines their high-level description to a more accurate and physical low-level

implementation. It also covers the verification of such systems at all levels of abstraction,

from model-checking of mathematical representations, to formal verification and test of

physical systems.

Before EDA, integrated circuits were designed by hand. In the 70s, designers started

to rely on geometry software for the generation of tapes, used by photoplotters for the

production of ICs. Calma, a known company of those years, introduced the Graphic Data

System (GDS) format in 1971, still used nowadays in its second version (GDSII) released in

1978 (see its sixth documentation release [3]). In the 80s, Mead and Conway, authors of

1

Chapter 1. Introduction

the book “Introduction to VLSI systems” [4], introduced the first programming languages

synthesisable to silicon, allowing designers to produce more sophisticated and complex

electronic devices faster. In the following years, the need for a higher production

efficiency led to the birth of the business methodology of outsourcing the fabrication of

electronic devices to specialised companies, known as “Fabless Semiconductor Industry”

and pioneered by TSMC (Taiwan Semiconductor Manufacturing Company). This

allowed EDA to become an independent field, whose most relevant companies are now

Cadence, Synopsys and Mentor Graphics.

Research in the EDA field has been very intense since its birth. In the report “The

Tides of EDA” [5], published for the 40th edition of the Design Automation Conference1,

Sangiovanni Vincentelli highlights the most relevant discoveries in the field, such as the

ones in the context of circuit simulation, hardware description languages and high-level

design. The report also shows the steady growth of the number of papers published by

academia, industry and vendors from 1964 to 2003, which marks the relevance of the

field.

In this work, we deal with digital design techniques based on high-level behavioural

modelling. Raising the level of abstraction is crucial when dealing with complex systems

for multiple reasons:

• Abstraction: it separates the physical from theoretical complexity of a problem. As

an example, a digital hardware component is easier to describe with the usage of

logic gates rather than with transistors and voltage/current levels.

• Verification: a system implementation has to be checked against its initial specifica-

tion to make sure that the former meets the latter at all times. The verification phase

is instrumental to obtain a “bug-free” system, and it needs to be carefully planned

as its duration affects the cost of a final product. Engineers have different options

to verify a system. One could, for example, check that the system gives the right

answer (outputs) for any possible questions (inputs) – this approach is unfeasible

for large systems. Another approach would be to describe the system relying on a

set of mathematical rules that enables one to prove that errors cannot happen under

certain conditions – this approach is named formal verification. Formal verification
1The Design Automation Conference (DAC) is one of the most relevant conferences in the field of design automation.

2

Chapter 1. Introduction

is a powerful tool that is used for avoiding subtle design mistakes, e.g. see the flaw

affecting the Floating-Point Unit of the Intel Pentium microprocessor in 1994 [6].

• Behavioural description: it is arguably easier to describe the behaviour of a system

rather than its hardware structure. From the former, it is possible to derive efficient

implementations.

• Portability & Reusability: an abstract description of a system can be implemented

by using different implementation libraries. This enables companies to reuse

previously designed components into newer devices, and to commercialise them

as intellectual properties (IP).

The above reasons lead to an increased design productivity [5].

Motivated by the above, we focus on a narrow research area within the field of high-

level behavioural modelling: the design methodologies based on behavioural scenarios. This

chapter is divided as follows. Section 1.1 discusses the new challenges of modern

digital design. Section 1.2 introduces the idea of scenario-based design and describes

the methodologies that we discuss in the thesis. Finally, Sections 1.3 and 1.4 outline the

thesis contributions and organisation.

1.1 New design challenges

Design complexity

Hardware systems become more complex every year. Processors, for instance, are

requested to handle diverse types of applications: ranging from video and audio

processing to management of high-speed connections. They support new features and

application-specific instructions [7], and integrate a growing number of processing cores

and IP components following the need for IP reuse [8].

Since the 70s, Intel has been one of the leading manufacturers of general purpose

microprocessors. Its products represent an example of how integrated circuits and

processor architectures evolved since the birth of EDA [9].

• In 1971, the company’s first microprocessor was the four-bit 4004, which was meant

3

Chapter 1. Introduction

to work in conjunction with three other chips: the 4001 (Read Only Memory), 4002

(Random Access Memory) and the 4003 (Shift register).

• In 1978, Intel released the 8086, the first microprocessor based on the x86 Instruction

Set 16-bit Architecture. This processor was followed by the 80186 in 1982, which

was one of the first processors to have a built-in clock-generator and interrupt

controllers.

• In 1985, Intel’s first 32-bit RISC processor was released.

• In 1989, the newly released 80486 integrated a Floating-Point Unit and was the first

processor to benefit from a cache memory.

• In the 90s, processors hit increasingly higher clock frequencies and performance

by relying on smaller transistors and clever architectures for the execution of

instructions.

• In 2005, Intel’s first multi-core processor was the PENTIUM D, followed by the

families of CORE 2 DUO and CORE 2 QUAD processors.

• The most recent families of microprocessors released by the company are the I3, i5,

I7 and I9, which integrate an internal Graphics Processing Unit (GPU), from 2 to

18 internal cores depending on the model, three levels of cache memory, and the

possibility to work at difference frequencies depending on the workload.

Such progresses have been made possible by the improvements of the design

techniques led by EDA, which is continuously challenged by growingly better and more

complex circuits.

Growing usage of asynchronous devices

Asynchronous architectures are slowly emerging in the semiconductor industry, which

has always been mostly dominated by synchronous design. There are two solid reasons

behind this growth. First, the wide growth of the Internet of Things (IoT) market.

IoTs are indeed event-driven either at the node level [10], and at the global level due

to distributed-nature of their communication protocol. The IoT market is pushing a

4

Chapter 1. Introduction

growing number of companies to invest and focus on this typology of design. Second,

self-timed circuits have very different properties than synchronous circuits that allow

them to be preferred in a number of applications. We shortly summarise few of the most

relevant below.

• The lack of timing constraints enable asynchronous devices to be bounded by the

average case performance rather than the worst case performance, as in the case

of synchronous devices. This allows some architectures to be faster than their

synchronous counterparts – e.g. see the Speedster FPGA by Achronix Semiconductor,

which is claimed to be one of the fastest available in the market [11].

• Also, the absence of timing assumptions enables self-timed devices to operate reliably

at a wide range of speeds (voltages). This is a great advantage for those devices that are

placed in critical environmental conditions, such as those in the area of biomedicine,

which can thus function regardless of voltage supply variations or available energy

(e.g. battery). A number of developed prototypes confirm this point, e.g. see

the asynchronous ASIC prototype of the Intel 8051 [12], and the reconfigurable

processor that we present in Chapter 5.

• Lower latency and energy consumption. The first because no time is wasted on

waiting for next edge of the clock – data can propagate trough a circuit with

virtually zero delay. The second because no energy is wasted when there is

no data to process – the circuit goes to sleep automatically. Concrete examples

showing these capabilities can be also found in the market: the UltraSPARC IIIi

processor by Sun Microsystems with its asynchronous memory controller [13], and

the asynchronous controller for a power buck converter [14] produced by the

partnership of Newcastle University (µSystems Group) and Dialog Semiconductor.

In the light of the above, it is likely that asynchronous devices will cut a consistent

portion of the semiconductor market in the next decades. This type of circuits, thus,

needs to be understood and handled well by nowadays and future engineers. This work

goes towards this direction, providing formal models and EDA tools for facilitating the

design of asynchronous devices at different phases of the flow.

5

Chapter 1. Introduction

System concurrency

Last but not least, the need of performance driven by several applications (e.g. en-

tertainment, real-time and big-data) has led to the development of a diverse type of

architectural solutions for running software concurrently. As an example: (1) Multi-

core architectures, consisting of a few highly-sophisticated processors communicating

via shared resources (e.g. cache memories). (2) Many-core architectures, constituted by

a large number of simple processors that communicate via network-based protocols

(e.g. message passing), see [15]. (3) In-memory processing architectures, where the data

is stored in RAM or flash memories, and it is processed in loco for avoiding data transfer

delays imposed by the memory bandwidth, see [16].

Dealing with concurrency is known to be hard for humans. Thus, techniques for

abstracting away the complexity derived by concurrency, or for minimising the human

efforts and avoiding design mistakes are increasingly popular.

Which tools do designers have to tackle these challenges?

In response to the above challenges, designers can rely on an increased level of

abstraction for hardware description. In the last decades, many languages have

been extended with new statements and constructs for enhancing their expressive

capabilities [17]. We report below some examples.

• Verilog and VHDL, with the possibility to describe a hardware component by its

behaviour. They also embody generate statements, which provide the means for

complex structural description. The latter allows engineers to use programming

language constructs (e.g. if-then-else, for-loop) for describing hardware. This is

important both for deriving compact and more readable hardware description, and

for improving code reusability, i.e. a register made of n number of flip-flops can be

described as a generic entity, which allows one to instantiate registers of any length.

• SystemC, which benefits from the high expressiveness of the C++ language, and

represents an established approach for the high-level hardware description [18].

• Bluespec SystemVerilog and Cλash, which are two functional hardware description

6

Chapter 1. Introduction

operation3

operation1 operation2
in out

scenario1

(a) Structural composition.

select

outin

1

2

3

2

3

1scenario1

scenario2

scenario3

(b) Inefficient scenario composition.

in out

select

common functionality

scenario1

scenario2

scenario3

(c) Efficient scenario composition.

Figure 1.1: Different forms of hardware composition.

languages with their own syntax and parser [19].

• Domain-specific languages hosted by functional programming languages, e.g.

Chisel hosted by Scala, HardCaml by OCaml, Lava and Concepts [20] by Haskell.

These languages benefit from ad hoc functions for easier hardware description [19].

These languages approach the design of complex systems hierarchically, relying

on the concept of composition. The latter allows engineers to specify a system by

describing its constituent internal components separately, and then composing them

to synthesise the final hardware implementation. In the next section, we expand this

concept with the idea of behavioural scenario composition, and introduce the scenario-

based methodologies that we deal with in this work.

1.2 Scenario-based design

Hardware composition is inherently structural. Transistors, logic gates, hardware

modules, or more abstract operations can be interconnected to each other according to

their input/output interfaces and causality dependencies, as shown in Figure 1.1a2.
2Figure 1.1 has been inspired by [21].

7

Chapter 1. Introduction

S
ce

n
a
ri

o
 s

p
e
ci
fi
ca

ti
o
n
s

S
y
st

e
m

 s
p

e
ci
fi
ca

ti
o
n
sPartial

orders

Static
Dataflow

Structures

Process
Windows

Scenario
composition

Conditional
Partial order

Graph

Dataflow
Structure

Transition
system

Scenario
decomposition

{ {
Figure 1.2: The methodologies that we study in this dissertation.

A different type of composition occurs when a system is described by the set of

its constituent behaviours, which we denote as scenarios. Each scenario describes a

possible trace of the system as a sequence of operations and their dependencies. Such

scenarios can be composed using the following two approaches. (1) An inefficient

approach to composition consists of synthesising every scenario in isolation, and using

(de)multiplexors to run the right scenario, see Figure 1.1b. (2) On the other hand, a more

efficient approach consists of deriving an implementation where common resources and

functionalities are shared between scenarios, see Figure 1.1c. Here, we refer to efficiency

as measure of model compactness – in the next chapters we show empirically that from

more efficient models one can derive more optimised (e.g. in terms of area, power)

hardware implementations.

In this work, we study three scenario-based methodologies that use different formal

models as underlying structure. Throughout their description, we use the following

naming convention. A set of scenarios that characterises all constituent behaviours of a

system is denoted as scenario specification. A set of scenarios is composed into a system

specification, which models the behaviour of a system, and comprises its scenarios and

the interface for their selection, see select in Figures 1.1b and 1.1c.

Figure 1.2 shows the formal models of the considered scenario-based methodologies.

In the following paragraphs, we briefly describe the reasons that led their investigation.

Methodology based on Conditional Partial Order Graphs - Partial Orders (PO) [22] are

8

Chapter 1. Introduction

used as formal model for scenario specifications, and are composed into a Conditional

Partial Order Graph (CPOG) using efficient scenario composition approaches [23]. This

methodology, originally conceived for the design of processor instruction sets (ISA), is

important as it is supported by automated hardware synthesis flow, and by algorithms

for deriving efficient implementations [24]. However, previously published algorithms

do not scale to a high number of scenarios, nor support composition constraints, which

allow to restrict certain aspects of the composition and reuse legacy IP blocks. In this

work, we present a new scenario composition algorithm to overcome the above issues,

and validate it on different case studies.

Methodology based on Dataflow Structures - Static Dataflow Structures (SDFS) [25]

is a known model used for describing the data flow of operations of asynchronous

circuits. However, according to its formal definition [26], SDFS cannot model dynamic

reconfigurability, where one or more data paths are executed conditionally. To bridge this

gap, we present the Dataflow Structures (DFS) formalism, which is the composition of a

set of SDFSs and enables to fully model the behaviour of reconfigurable asynchronous

circuits. We validate this methodology by prototyping a self-timed circuit on ASIC.

Methodology based on Process Windows - a system specification, described as a Labelled

Transition system (LTS), is decomposed into a set of scenarios in the form of the new

Process Windows (PW). The decomposition is performed to simplify the understanding of

the system specification, as scenarios characterise its constituent (and simpler) parts.

1.3 Research contributions

Figure 1.3 describes the organisation of the core content of the thesis: the topics explored,

their dependencies, and the sections where they are presented. In Chapter 3, we describe

the existing behavioural models that we use in this work (see blue shadow). In Chapter 4,

we present our contributions to the area of high-level scenario-based design (see green

shadow). In Chapter 5, we describe the case study considered as validation of the

contributions, (see red shadow). The contributions are also summarised below.

• Efficient composition of scenarios [27,28]. We present a new scenario composition

algorithm and apply it to the CPOG methodology. Unlike existing methods, it

9

Chapter 1. Introduction

Background

(Behavioural

models)

Scenario

composition

Case studies

Labelled Transition
Systems

Section 3.5

Section 4.3

Section 5.1

Control synthesis

Section 4.1

Efficient composition

of scenarios

Section 3.1

Partial Orders

Conditional Partial
Order Graphs (CPOG)

Section 3.2

Section 5.3

Reconfigurable
async. pipelines

Section 5.2

Section 4.2

Section 3.3

Petri nets and STGs

Section 3.4

Static Dataflow
Structures

FPGA accelerator
for drug discovery

Decomposition of

System specifications

Composition of

dataflow structures

Figure 1.3: The topics of the thesis, their dependencies and the sections where they are presented.

scales to systems comprising hundreds of scenarios and supports composition

constraints, which are important in real-life systems that heavily reuse IP blocks.

• Composition of dataflow structures [29, 30]. We present the Dataflow Structures

formalism, whose models are derived by composing sets of Static Dataflow Struc-

tures. The new formalism enables to formally capture the behaviour of dynamically

reconfigurable systems, thereby expanding the classes of problems that can be

solved in the area of asynchronous formal modelling.

• Decomposition of system specifications [31]. We present the new Process Win-

dows formalism, which allows to extract sets of scenarios from concurrent system

specifications. In this area, I focused on elaborating an approach to synthesise the

Boolean equations needed to orchestrate the behaviour of extracted scenarios. This

feature has been automated in an open-source EDA tool [32].

• Design automation of the open-source WORKCRAFT toolkit [33]. The above

10

Chapter 1. Introduction

novel methodologies and design automation tools have been integrated into

WORKCRAFT, which is an open-source [34] EDA tool for modelling, design,

simulation and formal verification of many types of (microelectronic) systems. The

developed design automation is described in the sections of the Scenario composition

chapter.

• Control synthesis [28]. The new scenario composition algorithm is evaluated on

a set of benchmarks that include various control hardware architectures. It is also

compared to existing approaches for scenario composition, and to methodologies

that use behavioural synthesis features to derive control architectures.

• Reconfigurable asynchronous pipelines [29, 30]. We describe a methodology

based on the Dataflow Structures for designing and implementing reconfigurable

asynchronous pipelines. The methodology is validated by designing, fabricating

and testing an ASIC prototype that implements a reconfigurable asynchronous ac-

celerator for the Ordinal Pattern Encoding [35]. We also compare our reconfigurable

accelerator to a static implementation on silicon for characterising area, speed and

power overhead of asynchronous dynamic reconfigurability.

• FPGA accelerator for drug discovery [36–38]. We use scenarios to design a

synchronous accelerator for processing large scale protein-interaction networks [39],

and prototype it on FPGA. In our approach, networks are not stored in memories,

but are hardware components that can be simulated for collecting data. The

accelerator is designed to compute shortest paths between proteins, and is up to

three orders of magnitude faster than conventional software implementations.

1.4 Organisation and collaboration

The rest of the thesis is divided as follows. Chapter 2 presents the application areas and

ideas that motivated our work. We discuss that scenarios are beneficial for designing

complex control units such as those driving microprocessors, and for designing highly

resilient architectures with tight speed or power constraints. We also present our ideas of

using scenarios to facilitate engineers’ understanding of complex system specifications,

11

Chapter 1. Introduction

and to process scenarios of very large networks.

Chapter 3 reviews the formal models used across the dissertation – it provides the

basic knowledge for understanding the presented results.

Chapters 4 and 5 are the core of our research (see Section 1.3), and include results that

have been published previously. The work on the new scenario composition approach,

and its application to the area of control synthesis is the result of a collaboration with

my colleague P. Stankaitis and my advisor A. Mokhov. We published the initial idea

and preliminary results at the Application of Concurrency to System Design conference in

2014 [27], and the algorithm and final results in the IET Computers & Design Techniques

journal [28] recently. The work on the Dataflow Structures formalism, and its application

to the ordinal pattern encoding case study is the result of a collaboration with D. Sokolov

and my advisor. This work was published at the Design Automation and Test in Europe

conference in 2018 [29], and will be extended for a journal [30]. The work on the

Process Windows formalism has been led by A. Mokhov and J. Cortadella, and was

published in 2017 at the Application of Concurrency to System Design conference [31].

Finally, the work on the FPGA accelerator for computational drug discovery originates

from a collaboration of our research team and e-Therapeutics, which is the company that

pioneered this experimental approach. We published our idea and hardware prototype

to accelerate drug discovery at the Forum on specification & Design Languages conference

in 2017 [36]. This conference paper was selected for being included as chapter of a book

published by Springer [37], and part of our results was also included in a chapter of the

recently published book entitled Parallel Computing is Everywhere [38].

Chapter 6, finally, summarises the findings of the research, highlights its limitations,

and suggests a number of directions for future research.

12

Chapter 2

Motivation

In the first chapter, we introduced the idea of scenario-based design and the three

methodologies that we discuss in this dissertation, which are based on Conditional

Partial Order Graphs, Dataflow Structures, and Process Windows.

This chapter motivates the research by questioning: “Why are scenario-based method-

ologies worth to be studied?”. To answer this question, we will present some examples

where scenarios and the idea of scenario composition (and decomposition) are already

or would be useful.

2.1 Processor instruction sets

Our first motivating example comes from the domain of microprocessor design. In [24],

the high-level methodology based on the Conditional Partial Order Graphs formalism

has been applied to the design of such systems. The main idea was to represent

instructions of a processor as behavioural scenarios for an easier analysis of the system

from a higher level perspective, and for the synthesis of efficient processor control units.

The importance of this application is also highlighted in [12], where this scenario-based

methodology has been used to design the control unit of an asynchronous version of the

Intel 8051 processor.

In this domain, behavioural scenarios describe the functionality and data flow of each

13

Chapter 2. Motivation

Store instruction

Load instruction

Figure 2.1: Two scenarios representing the store and load general instructions.

instruction. As an example, Figure 2.1 shows the scenario specification, in the form of

partial orders, of the load and store instructions. Graphically, vertices represent datapath

operations and arcs represent data dependencies between operations:

• the Store instruction scenario fetches (fetch operation) and decodes (decode)

an instruction from the program memory, loads a data item D and a memory

address A concurrently (loadData ‖ loadAddress), and finally stores D into the

memory via the storeMem operation, i.e. MEM(A)← D.

• the Load instruction scenario, on the other hand, fetches (fetch operation) and

decodes (decode) an instruction from the program memory, loads a memory

address A and uses it to load a data item D from the memory, i.e. D ← MEM(A).

Such a formal specification is supported by automated hardware synthesis flow [23],

and by algorithms for generating efficient hardware implementations [40]. As an

example, the scenario composition process of the CPOG methodology takes as input

the scenario specification in Figure 2.1, and generates the system specification on top of

Figure 2.2, which is in the form of a CPOG. The CPOG models the processor control unit,

which orchestrates the datapath modules and executes each instruction relying on the

Boolean variable b (i.e. the opcode). As an example, if b = 0, the processor runs the store

instruction by disabling the operation loadMEM, see the bottom-left scenario in Figure 2.2

where this operation is dashed.

Research has thus shown that CPOGs are effective for designing microprocessor

control units. However, in this work, we show that the state-of-the-art algorithms for

scenario composition [23, 40] do not support systems composed of hundreds of scenarios, and

lack of a mechanism for specifying composition constraints, which are instrumental in this

application where IP blocks are heavily employed. This is what motivates our work

14

Chapter 2. Motivation

Load
Instruction
(if b = 1)

Store
instruction
(if b = 0)

Figure 2.2: The system specification (on top), in the form of a Conditional Partial Order Graphs,
generated by the scenario specification in Figure 2.1. It selectively activates the two processor
instructions (at the bottom) according to the value of the Boolean variable b, produced by the
scenario composition process. As an example: if b = 0, the Store instruction will be executed.

on the development of a novel composition algorithm for the CPOG methodology,

presented in Chapter 4.

2.2 Reconfigurable architectures

Previously, we introduced specification scenarios, which describe a set of functionally

different tasks that a system might need to perform, e.g. instructions of a processor.

In this section, on the other hand, we introduce implementation scenarios, which describe

a set of different approaches for achieving a functionally unique task. Having a set of

approaches to perform a single task might be important for at least two reasons:

• Fault tolerance - fault tolerant systems must continue functioning regardless of

hardware failures [41]. For such systems, it is important to have backup approaches

to rely on in case of malfunction to the primary computation system.

• Energy-quality (EQ) scalability - it is a recent design direction [42] in which the

approaches for achieving a task are ranked in terms of their energy consumption

and result quality. EQ systems are designed to consume the least amount of energy

for obtaining a desired result, e.g. approximate computing [43].

15

Chapter 2. Motivation

M
o
re

 a
cc

u
ra

cy

s1

Le
ss

 e
n
e
rg

y

s2

s13

Figure 2.3: Energy-Quality tradeoff of the implementations scenarios of our prototype.

Our idea is to use implementation scenarios to design dynamically reconfigurable hardware

circuits, which are heavily employed in the above areas [44–46]. Thus, we develop

a scenario-based methodology that targets reconfigurable asynchronous circuits, and

we validate it by designing an asynchronous EQ scalable accelerator for computing

the Ordinal Pattern Encoding (OPE) [35]. Our implementation is said dynamically

reconfigurable because the pipeline depth of the accelerator can be reconfigured at

runtime. We focus on the asynchronous domain for taking advantage of the higher

resilience to process and voltage variation.

Here, we show and describe the specification of the controller of our research

prototype to give the reader an idea of the expressive capabilities of scenarios. The

implementation scenarios of the OPE pipeline represent the operating modes of the

prototype, which are selected depending on the desired EQ level. Figure 2.3 shows 3 of

the 13 implementation scenarios in the form of partial orders. Each stage takes as input

the result of the previous one and produces a more accurate result. The first scenario (s1)

is the least accurate and the most energy efficient, while the latest scenario (s13) is the

most accurate and the least energy efficient operating mode.

The shown specification can be used to derive the control unit of the accelerator, but

a further approach is needed to derive the datapath. To fill in this gap, in Chapter 4, we

propose the Dataflow Structures formalism for modelling the datapath of reconfigurable

asynchronous circuits. In Chapter 5, we describe a methodology for designing and

implementing reconfigurable asynchronous pipelines that relies on scenarios.

16

Chapter 2. Motivation

(b) Petri net.

(a) Transition system.

Figure 2.4: System specification of a concurrent system.

2.3 Understanding complex systems

In the previous sections, we discussed the usage of scenarios for designing processor

control units and reconfigurable architectures. In this section, we show that scenarios

are also important at a different phase of the process: when engineers need to fully

understand the specification of a system.

It is difficult to fully understand highly concurrent system specifications that incor-

porate many internal behaviours. A possible solution for fostering an easier understanding

is to decompose such systems into their scenario formulation [47]. Transition systems and

Petri nets are two widely-used formalisms for the representation of concurrent systems,

which would benefit from an automated approach to their simplification through scenario

decomposition.

As an example, consider the Transition system in Figure 2.4a and its corresponding

Petri net in Figure 2.4b. Arguably, the behaviour of the represented system is difficult to

understand, as it is made of a mix of concurrency and of non-deterministic choices (i.e. the

behaviour the system cannot be predicted statically, e.g. see the transitions c and d that

are enabled and can fire at the same time) that are clearly visible in the Petri net.

The transition system can be decomposed into its constituent scenarios shown in

Figure 2.5a, which are simpler to understand as they do not contain non-deterministic

choices. The two scenarios, whose corresponding Petri nets are shown in Figure 2.5b,

17

Chapter 2. Motivation

(a) Decomposed Transition system.

Wake-up condition: p5∧p8

Wake-up marking:
p0 = p7
p2 = p6
p3 = 1

Wake-up condition: p1∧p3

Wake-up marking:
p6 = p2
p7 = p0
p8 = 1

(b) Windows w1 (left) and w2 (right).

Figure 2.5: Scenario specification of the concurrent systems in Figure 2.4.

are denoted as windows in the formalism that we present in this work, and reproduce

the functionality of the system by their alternate execution. The states s0 and s4 are

both covered by the two windows, and represent the “bridges” between their execution.

The Boolean conditions generated during scenario decomposition process, namely Wake-

up and Wake-up marking conditions, orchestrate the activation and deactivation of the

windows for modelling the complete system functionality.

In Chapter 4, we present the novel Process windows formalism, which aims to simplify

the understanding of complex concurrent systems by partitioning the specification into

its constituent simpler scenarios.

2.4 Network analysis

Specification and implementation scenarios are of interest both for the design of various

types of architectures, and as a way to simplify the understanding of concurrent systems.

As last motivating example, we introduce the idea of activation scenarios, which are

important for identifying and activating “key areas” of a system. This work falls into

the domain of network science, i.e. an area of research where graphs are the main actors.

Network science grows steadily, as the usage of graph as underlying representation

is expanding across a large class of applications, e.g. telecommunication, social media,

biology [48]. In addition to the representation of complex data structures, graphs can

18

Chapter 2. Motivation

Activation scenarios

PPI network

Drug 1

Drug 2

Drug 3

Drug 4
Drug 5

Drug 6

A B

C

D

E

C

D

E

EB

D

E

Figure 2.6: A biological system (PPI network) represented as an undirected graph (on top), and
its activation scenarios (at the bottom) that identify the areas of interest (proteins/vertices and
bonds/arcs) of the PPI.

be used to unveil unapparent system properties. In the domain of computational drug

discovery [39], for example, complex biological systems are modelled through protein-

protein interaction networks (PPI) [49], and their analysis aims at developing new drugs.

In this work, protein-protein interaction networks are modelled by undirected

graphs, i.e. vertices represent proteins that interact to each other due to their bonds

represented as arcs. Drugs, when injected into such biological systems, disable some of

their proteins and inhibit their properties. This process is emulated via a computer-based

model: software algorithms use large libraries of drugs to inhibit the data-structures

representing the PPI networks, and collecting statistics necessary to catalogue the most

promising drug candidates, i.e. which have a high chance to be effective biologically.

The latter are finally analysed in pharmacological laboratories for further verifying their

suitability against certain diseases. This experimental approach has been pioneered by

e-Therapeutics [50], which has collaborated with us throughout this research providing

real-life PPI data-sets.

Activation scenarios are important in this application for their ability to identify

19

Chapter 2. Motivation

subsets of the biological system induced by drug perturbation. As an example,

Figure 2.6 (on top) shows a biological system represented as an undirected graph, where

A, B, C, D and E are its proteins. The graphs at the bottom of the Figure are the activation

scenarios induced by some drugs under test. Such scenarios represent the proteins and

bonds that are not disabled by the injection of a particular drug – e.g. the scenario

containing the proteins B and E is derived by injecting the drug 5, which disables the

proteins A, C and D and corresponding bonds, leaving the remaining proteins B and E

unconnected. Activation scenarios can be used to derive a model (i.e. based on CPOGs)

of the PPI network, where internal key areas can be activated and analysed in isolation

from the rest of the system.

However, the number of scenarios explodes exponentially when the size of a protein-

interaction network increases. Practically, scenarios can neither be specified exhaustively nor

used to synthesise optimal implementations, yet an approach for analysing them is needed. To

bridge this gap, in Chapter 5, we present our prototyped FPGA accelerator for com-

putational drug discovery, developed during the EPSRC programme grant POETS [51]

in partnership with e-Therapeutics. The accelerator is much faster than conventional

software implementations, and can potentially process any scenarios of a given protein-

interaction network.

2.5 Summary

We used the described motivating examples to identify three different types of scenarios.

(1) Specification scenarios describe sets of functionally different tasks of a system.

(2) Implementation scenarios denote sets of possible approaches (implementations) to

achieve a unique task. (3) Activation scenarios denote subsets of a system that need to be

activated and handled in isolation from the whole system.

Motivated by the above discussion, in the Scenario composition chapter, we present

our contributions to the field of high-level scenario-based hardware design. In the Case

studies chapter, subsequently, we validate the presented discoveries by presenting our

real-life case studies.

20

Chapter 3

Background

This Chapter reviews the existing behavioural models that we employ in our research

(see boxes in the blue shadow in Figure 1.3). Before proceeding with their description,

we provide an overview of the existing behavioural models that are described in this

chapter, and whose names are highlighted in italics below.

Partial Orders (PO) constitute the internal scenarios of the Conditional Partial Order

Graphs (CPOG) formalism. The latter is important as it is supported by automated

scenario composition and hardware synthesis features. In this work, we present a new

scenario composition algorithm.

Signal Transition Graphs (STG) are labelled Petri nets (PN), where labels are associated

to signal state changes. These two models are well-known to the asynchronous

community, and are supported by a number of back-end tools that provide several

design automation features (e.g. hardware synthesis, verification). To make our new

Dataflow Structures formalism attractive, we present an automated approach to convert

DFS into PN for reusing the existing tool-set. DFS models are obtained by composing

sets of Static Dataflow Structures (SDFS).

Lastly, Labelled Transition Systems (LTS) is a well-known model that is used for

representing distributed systems. In our work, we propose an automated technique to

decompose LTSs into Process Windows.

21

Chapter 3. Background

Unconditional branch

Arithmetic instruction

Figure 3.1: Two instructions represented as Partial Order graphs.

3.1 Partial orders

Partial Orders (POs) represent ordered sets of operations (or events) [22]. Typically,

they are used for representing the behaviour of highly concurrent systems, where

the causality dependencies between operations are more relevant than other types of

relations (e.g. temporal). In this work, for example, we employ POs for describing the

data flow of operations in processor instructions, where the functional dependencies

between internal modules are the primary concern. In the context of scenario-based

methodologies, POs are important as they constitute the internal scenarios of Condi-

tional Partial Order Graphs, reviewed in the next section. Formally, a Partial order is

defined below.

Definition 3.1. (Strict partial order) - A strict partial order P(O,≺) is a binary precedence

relation ≺, describing dependencies between a set of operations (or events)O, which satisfies two

properties:

• Irreflexivity: ∀a ∈ O,¬(a ≺ a)

• Transitivity: ∀a, b, c ∈ O, (a ≺ b) ∧ (b ≺ c)⇒ (a ≺ c)

This work uses strict partial orders only, hence we further omit “strict” for brevity.

The Hasse diagram [22] of a partial order is a directed acyclic graph (DAG) [52] that

is obtained by removing all transitive dependencies from the PO. Hasse diagrams

preserve all immediate dependencies, and contain the minimum number of them, and

are therefore a convenient and widely-used notation for specifying POs.

As an example, Fig. 3.1 shows Hasse diagrams of two Partial Orders. The two

POs describe the order of operations of two instructions of a general processor: the

22

Chapter 3. Background

arithmetic and the unconditional branch instructions. The unconditional branch PO

is a simple sequence of events, and the order in which they occur is fully determined

by the dependencies. The arithmetic instruction PO, on the other hand, contains

concurrency. For example, operations loadA and loadB are not connected by any arc,

therefore the specification allows them to occur either in sequence (i.e. loadA → loadB

or loadB→ loadA), or concurrently (i.e. loadA ‖ loadB). The two scenarios, in the form

of partial orders, are functionally described below:

• the Arithmetic instruction scenario fetches (fetch operation) and decodes (decode)

an instruction from the program memory, loads two operands {A,B} concurrently

(loadA ‖ loadB), and uses them to perform an arithmetic operation (ALU). Subse-

quently, the result is saved into the memory via the saveMEM operation.

• the Unconditional branch scenario fetches (fetch operation) and decodes (decode)

an instruction from the program memory, loads one operand (A) and adds

it to the program counter register (PC) to compute the branch address (ALU).

Finally, the result is saved into program counter register (savePC) for the branch,

i.e. PC = PC +A.

3.2 Conditional partial order graphs

The Conditional Partial Order Graphs (CPOG) formalism was introduced by Mokhov in

his PhD dissertation [23]. This behavioural model, originally conceived to support the

design of processor instruction sets (see Motivation chapter), is important in the context of

scenario-based methodologies as it is supported by automated behavioural composition,

and as it allows to synthesise hardware implementations automatically. Intuitively, it is

a collection of scenarios in the form of Partial orders. Formally, it is defined below.

Definition 3.2. (Conditional partial order graph) - a conditional partial order graph [53] is

a tuple H = (V, E, B, φ)1:

• V is a set of vertices which correspond to operations (or events) in a modelled system.

• E ⊆ V ×V is a set of arcs representing dependencies between the operations.
1A CPOG is H = (V, E, B, φ, ρ) in [53], ρ is not described here as it is not used.

23

Chapter 3. Background

0 0

10

1 1

Unconditional branch
(if b = 1)

Arithmetic instruction
(if b = 0)

Figure 3.2: Example of CPOG with 2 projections: H|b=0 on the left side models the functionality
of the arithmetic instruction scenario, H|b=1 on the right models the unconditional branch scenario.

• B is a set of Boolean variables {b1, b2, ..., b|B|}. A code is an assignment c : B→ {0, 1} of

these variables, e.g. B = {b1, b2}, c(b1) = 0 and c(b2) = 1 that will be further denoted as

c = 01 for brevity. A code selects a particular PO from those contained in the CPOG.

• Function φ : (V ∪ E) → F(B), with F(B) being the set of all Boolean functions over

variables in B, assigns a Boolean condition φ(z) ∈ F(B) to every vertex and arc z ∈ V ∪ E.

Graphically, CPOG vertices are depicted as circles ©, and arcs are depicted as

arrows →. Vertices and arcs z ∈ V ∪ E are labelled with conditions φ(z), which are

formed by the Boolean variables B and have the purpose to switch vertices and arcs

on (off) when the conditions on them are (not) satisfied.

As an example, Figure 3.2 (on top) shows the CPOG derived by composing the

two scenarios in Figure 3.1. The CPOG manages to represent the two initial partial

order graphs compactly by overlaying the common elements of the two graphs. The

functionality of constituent scenarios is preserved, as the functions φ = {b, b} are in

charge of reproducing the functionality of the internal scenarios:

• when b = 0, the savePC vertex is off and the CPOG reproduces the behaviour of the

Arithmetic instruction;

• when b = 1, the vertices loadB and saveMEM are off, and the functionality of the

Unconditional branch is reproduced.

The variable b, in this case, represents the opcode of the two instructions.

24

Chapter 3. Background

The example in Fig. 3.2 shows that a CPOG can be used to compactly represent

multiple behavioural scenarios by overlaying their common parts. In practice CPOGs

remain compact and easy to understand even when the number of scenarios increases,

making the formalism suitable for representing a large class of hardware systems.

3.3 Petri nets

Petri nets (PN) or PT nets (from Place/Transition nets) is a well-known formalism for the

description of concurrent behaviours, such as those of asynchronous circuits, distributed

and multi-core processing systems. In this section, we recall the basics of this formalism,

which is important as it is supported by extensive hardware synthesis and verification

features, and by a number of established EDA tools, e.g. Petrify [54,55]. For more details

about this formalism, we refer the reader to [56, 57].

Definition 3.3. (Net) - A net is a triple N = (P, T, F), where:

• P is a finite set of places, which are denoted graphically as©.

• T is a finite set of transitions (T ∩ P = ∅), which are denoted graphically as �.

• F : (P× T) ∪ (T × P)→N is a set of arcs, which are denoted graphically as→.

A net describes the possible flow of actions of a system by specifying its internal

events and causality dependencies. Since the initial conditions are not specified by a

net, the system is modelled under all possible initial conditions. The latter are instead

specified in the Petri nets, defined below.

Definition 3.4. (Petri net) - A Petri net is a pair P = (N, m0), where:

• N is a net as defined in Definition 3.3.

• m0 : P→N is the marking of the net, i.e. the initial conditions of a system. Formally, it is

a mapping function of the places P over a finite number of data tokens, which represents the

state of a system.

As an example, Figure 3.3 shows a Petri net that is composed of 6 places P =

{p0, p1, p2, p3, p4, p5, p6}, and 4 transitions T = {t0, t1, t2, t3}. The initial marking m0

of the Petri net is {p0 = 1, p1 = 1, p2 = 0, p3 = 0, p4 = 0, p5 = 0, p6 = 0} (the places can

25

Chapter 3. Background

Figure 3.3: Example of a Petri Net.

be omitted for brevity: m0 = {1, 1, 0, 0, 0, 0, 0}), which identifies the places that contain

a token and are filled with a • in the graphical representation, e.g. p0 and p1 contain a

token, while p2 · · · p6 do not. Intuitively, transitions represent the events that might arise

in a system (e.g. the change of a state of a digital signal in a circuit, or the assignment of a

data-query to one of the core in a GPU), while places represent the resources/conditions

needed for the transitions to happen (e.g. the availability of one of the core in a GPU).

A marking represents the global state of the represented system. In this work, we only

focus on safe Petri nets, i.e. the internal places contain one token at most. Hence we

further omit the word “safe” for brevity.

The behaviour of a Petri Net is named token-game. It governs the evolution of the

markings, and is ruled by the enabling and firing conditions described in Definition 3.6.

The latter is formalised by means of the below definition of places preset and postset.

Definition 3.5. (Preset and postset) - The preset of a place p is denoted as •p, and is composed

of the set of transitions T′ such that F(T′, p) > 0. The postset of a place p is denoted as p•, and is

composed of the set of transitions T′ such that F(p, T′) > 0. Similarly, the preset of a transition

t is denoted as •t, and is composed of the set of places P′ such that F(P′, t) > 0. The postset of a

transition t is denoted as t•, and is composed of the set of places P′ such that F(t, P′) > 0.

As an example, let us consider the Petri Net in Figure 3.3. The preset of the place p4 is

composed of the transition t1, its postset of the transition t3. The place p1 has an empty

preset, as it is not preceded by any transition. The preset of the transition t2 is composed

of the places {p2, p3}, and its postset of the place p5.

Definition 3.6. (Enabling and firing) - A transition t ∈ T is enabled if all its resources are

available, i.e. any place in its preset contains a token. When an enabling transition t ∈ T fires,

26

Chapter 3. Background

(a) (b)

(c) (d)

Figure 3.4: Representation of the Petri Net behaviour, namely token game. The initial marking of
the Petri Net is m0, while the last marking is m4.

it modifies the current marking on the Petri net by moving the tokens from the preset places (•t)
into the postset places (t•).

As an example, Figure 3.4 shows one of the possible traces of the Petri net in Figure 3.3

according to the enabling and firing rules previously defined. The marking changes of

the PN are also described below.

(a) - The initial marking m0 of the Petri net is shown: the places p0 and p1 contains a

token, and the transitions t0 and t1 are enabled (see the green transitions).

(b) - The transition t1 fires (see the yellow transition), and the token in the preset of t1

(p1) moves to the places in its postset ({p3, p4}). In the current PN marking, the

transition t3 becomes enabled. Notice that the transition t2 is still not enabled, as

not all the places in •t2 contain a token, see p2.

(c) - t0 fires and enables the transition t2.

(d) - Transitions t2 and t3 fire concurrently, and the Petri net terminates, as there are no

left enabled transitions.

At every firing of one or more transitions, the Petri net reaches a new marking where

new transitions are enabled. Hence, the behaviour of a Petri net can be denoted by

27

Chapter 3. Background

t1

{t0,t1}

t1t0

t0

m0

t3 t0

t3

{t0,t3}

t2 t3

t2

{t2,t3}

Figure 3.5: The reachability graph of the Petri net in Figure 3.3. The dotted arcs in yellow shows
the trace of events shown in Figure 3.4.

its sequence of markings, which are represented in the reachability graph (RG), whose

definition is in 3.7.

Definition 3.7. (Reachability graph) - It represents all the possible behaviours of a Petri net.

Formally, it is a transition system where the nodes (•) are the global states of the Petri net and

represent the markings that are reachable from m0; the arcs connect such nodes and are labelled

with the transitions that need to be fired for the markings to be reached.

Figure 3.5 depicts the reachability graph of the Petri net in Figure 3.3, where m0 is the

initial state of the transition system, and the dotted arcs in yellow depict the behaviour

shown in Figure 3.4. Notice that the transitions might have fired differently, leading to

different markings and paths in the reachability graph.

In this work, Petri nets are used with the read-arcs extension [58]. A read-arc is a

special arc that only affects the enabling rules of the PN without affecting the firing.

Consider the PN in Figure 3.6 (left), for example, where the place p5 is connected to the

transition t3 via a read-arc, leading to •t3 = {p4, p5}. The transition t3 is enabled if and

only if any of the places in •t3 contains a token. The firing of t3 moves the token from

p4 to p6, and does not affect the position of the token in p5. Figure 3.6 (right) shows the

corresponding RG further to the read-arc addition. Notice that the transition t3 can now

only fire after the firing of t2.

28

Chapter 3. Background

t1

{t0,t1}

t1t0

t0

m0

t3 t0

t3

{t0,t3}

t2 t3

t2

{t2,t3}

read-arc

removed

transitions

& markings

Figure 3.6: Petri net in Figure 3.3 with the additional read-arc on the left-hand side, its
corresponding Reachability graph on the right.

3.3.1 Signal transition graphs

Signal Transition Graphs (STG) [58] is a type of labelled Petri net where transitions

between states are paired with changes in the values of binary variables. In the context

of our work, such variables represent input, output, or internal signals of digital circuits,

which can assume the values either of a logic 0 or 1. The states of an STG, therefore,

represent the values that the signals of the modelled circuit can assume. The formal

definition of an STG is reported in 3.8:

Definition 3.8. (Signal Transition Graphs) - A signal transition graph is a tuple G =

(N, m0, X, λ), where:

• (N, m0) is a Petri net, where N = (P, T, F).

• X is a set of binary values, which generates a finite alphabet SX = X × {+, -} of signal

transitions. The transition in the state of a signal s ∈ S from 0 to 1 is denoted by s+, and

the one from 1 to 0 by s-. Every signal s can be either an input, output or internal signal of

the digital circuit represented. Graphically, in our work, these are highlighted in red, blue

and green, respectively.

• λ : T → SX is a labelling function that pairs the transition of the net N with the changes

of the binary values. The labelling function does not need to be 1-to-1 with respect to |T|.

Graphically, we represent STGs as Petri nets where the transitions� are substituted with

changes in the binary variables SX. For compactness, places can be omitted and the

presence of tokens • can be overlaid with the arcs that connect transitions.

As an example, we refer to the formal STG specification of the asynchronous

power-management controller presented in [14]. Figure 3.7(top) shows the waveforms

29

Chapter 3. Background

Zero-crossing followed by under-voltageOver-current

Figure 3.7: Two scenarios of a buck controller represented as waveforms (top) and signal
transition graphs (bottom).

corresponding to two behavioural scenarios of a buck converter. The system controls

the power regulating PMOS (gp) and NMOS (gn) transistors in response to three signals

coming from sensors within the power regulator: over-current (oc), under-voltage (uv)

and zero-crossing (zc). Below, we describe these two scenarios (note that the two

transistors must never be on at the same time to avoid a short circuit):

• Over-current scenario: when the oc condition is detected (input event oc+), the

PMOS transistor must be switched off (output event gp-). Afterwards, the NMOS

transistor must be switched on (output event gn+).

• Zero-crossing followed by under-voltage scenario: If zc is detected before uv, the

NMOS transistor must be switched off (output event gn-). The two transistors must

stay off until the arrival of the uv condition. Afterwards, the PMOS transistor must

be switched on (output event gp+).

As shown in Figure 3.7(bottom), STGs can be used for describing the evolution of

input/output values of the signals of the buck converter. Additionally, they can be

used for modelling the behaviour of such systems due to the inheritance of the Petri

net semantics (enabling and firing rules of the token game).

In this research, we model part of our case studies via STGs, and use these to

30

Chapter 3. Background

(a) Non-consistent STG. (b) Non-persistent STG.

Figure 3.8: Examples of STG properties.

synthesise hardware implementations via the established EDA flow [55]. We, then,

compare the resulting implementations with the ones that are derived with the EDA

tools that we present alongside our findings.

Here, we provide the background that is necessary to understand STGs targeting the

synthesis of speed-independent digital circuits [55]. An STG has to satisfy the following

three conditions to be synthesised into a functional circuit: it has to be consistent, persistent

and it has to satisfy the Complete State Coding condition. The first two conditions are

described below, as they are important for the specification of an STG model. The

third condition is not described here, as it is part of the STG synthesis process and is

not necessary to understand the presented contributions. We refer, however, the reader

to [55, 59] for more information about the Complete State Coding condition.

An STG is said to be consistent if for any signal s in X the change of the value s+(s-)

can never occur twice consecutively starting from the initial marking. An STG is said

to be persistent if an enabled transition can never be disabled by the firing of another

enabled transition in the same marking. Figure 3.8 shows a non-consistent (left-hand

side) and a non-persistent (on the right) STG. In the former, the out signal changes its

value from 0 to 1 twice consecutively, which cannot happen in a circuit. In the latter, the

in- and out+ transitions disable each other in the shown marking, i.e. the firing of in-

disables out+ and vice versa.

3.4 Static dataflow structures

The Static Dataflow Structure (SDFS) is a high-level model for asynchronous digital

circuits that has been first introduced in [25]. Similarly to the Register Transfer

Level (RTL) for synchronous circuits, SDFSs model asynchronous behaviours at system-

level by abstracting away the low-level implementation details of corresponding digital

31

Chapter 3. Background

Register Combinational logic

Figure 3.9: Static dataflow structures nodes.

circuits. In this work we employ SDFSs to model static asynchronous circuit scenarios,

and show how these can be composed using the novel Dataflow Structure model.

In [26], D. Sokolov et al. formalise and compare three different behavioural semantics

for this model, namely atomic token, spread token and counterflow. These dictate the way

through which the nodes that constitute the model communicate. Here, we review the

spread token behavioural semantics, which is the one that we use in our work.

Static dataflow structures are constituted by two basic nodes: register and com-

binational logic. In this work, these are denoted with their conventional graphical

representation that was introduced in [25], see Figure 3.9.

• Registers model the behaviour of sequential circuit elements, which can store a

data item (or token) coming from their inputs, and provide it to their outputs. These

nodes implement the handshaking protocol for modelling asynchronous circuit

behaviours.

• Combinational logic nodes model the behaviour of the combinatorial logic of

the circuit. They are “transparent” to the handshaking mechanism implemented,

as they can only propagate an input token to the output through combinatorial

functions.

Formally, a Static Dataflow Structure is defined below:

Definition 3.9. (Static Dataflow Structures) A static dataflow structure is a directed graph

G = (V, E, D, m0):

• V = R ∪ L is a set of nodes that are either registers (R) or combinational logic (L), i.e. if

v ∈ V, then v ∈ R or v ∈ L, with R ∩ L = ∅.

• E ⊆ V ×V is a set of arcs that determine the flow relation among the internal nodes of the

graph, an edge between v1 and v2 is denoted as (v1, v2).

• D is a set of data values that are modelled by the data tokens flowing into the graph.

Graphically, these are denoted as •.

32

Chapter 3. Background

Figure 3.10: An example of static dataflow structure.

• m0 is the initial marking of the graph, i.e. the initial conditions of the system. Formally, it

maps the tokens D to the registers of the graph R.

Figure 3.10 shows an example of a static dataflow structure composed of the five

registers {r0, · · · , r4}, and by the two combinational logic nodes {l0, l1}. The initial

marking m0 of the SDFS maps a data token to the registers r0 and r3, while the remaining

registers do not to store any token. The presence of a token inside a register represents

the storage of a meaningful data value for the circuit behaviour.

For formalising the behavioural semantics of the SDFS formalism, we provide the

below definitions.

Definition 3.10. (Preset and postset) - The preset of a node v ∈ V is denoted as •v, and

identifies the nodes that directly precede v in the flow relation, i.e. •v = {v′ : (v′, v) ∈ E}. The

postset of a node v ∈ V is denoted as v•, and identifies the nodes that directly follow v in the flow

relation, i.e. v• = {v′ : (v, v′) ∈ E}.

Definition 3.11. (L-Path) - An L-path is a non-empty sequence of arcs between a source

node (vs) and a destination node (vd), where the nodes in between vs and vd are combinational

logic nodes, i.e. δ(vs, vd) = {(vi−1, vi) ∈ E : (i ∈ [1 · · · n]) ∧ (v0 = vs ∧ vn = vd) ∧
(vi ∈ L for all 0 < i < n)}.

Definition 3.12. (R-preset and R-postset) - The R-preset of a node v ∈ V is denoted as ?v,

and identifies the registers that precedes v in the flow relation, i.e. ?v = {r ∈ V : ∃δ(r, v)}. The

R-postset of a node v ∈ V is denoted as v?, and identifies the registers that follows v in the flow

relation, i.e. v? = {r ∈ V : ∃δ(v, r)}.

For an easier understanding of the above definition, we apply them to a few nodes of

the SDFS shown in Figure 3.10:

•r2 = {l0, r4} - The preset of the node r2 is composed of the combinational logic node

l0 and of the register r4.

33

Chapter 3. Background

r3• = {r2} - the postset of the node r3 is r2.

?r2 = {r1, r3} - the R-preset of the node r2 is composed of the two registersr1 and r3.

The register r0 does not belong to the R-preset of r2, as the register r1 is contained

in the nodes of the L-path δ(r0, r2).

r1? = l0? = r3? = {r2} - the R-postset of the nodes r1, l0 and r3 is the same and equal

to r2.

In the light of the above definitions, we can describe the rules that orchestrate the

SDFS communication. A logic node l can be evaluated (C↑) when its preset logic nodes

have been evaluated, and its preset registers are marked (i.e. contain a valid data item,

or token). Symmetrically, a logic node l can be reset (C↓) when its preset logic nodes are

reset and its preset registers are unmarked (i.e. contain no token). Intuitively, a logic

node can be evaluated when all its inputs contain a valid data value, and it can be reset

when its inputs contain a spacer (i.e. absence of a valid data). These nodes are passive to

the handshake mechanism of a circuit. The state of a logic node can be checked by the

function C(l). See below equations from [26].

C(l) = C↑ (l) ∨ C↓(l) ∧ C(l)

C↑(l) =
∧

k∈•l∩L

C(k) ∧
∧

r∈•l∩R

M(r)

C↓(l) =
∧

k∈•l∩L

C(k) ∧
∧

r∈•l∩R

M(r)

(3.1)

In turn, a register r can be marked (M↑) (and store a token) when its input logic nodes

are evaluated, its R-preset are marked, and its R-postset are reset. Symmetrically, a

register r can be reset (M↓) when its preset logic nodes are reset, its R-preset are reset,

and its R-postset are marked. Intuitively, a register can store a new token when all its

inputs are valid and when the output registers do not contain a token. It can release the

token when it has been propagated through its output registers and released by its input

registers. The communication works with the condition that two different tokens are

separated by a spacer, as it happens in the 4-phase handshake protocol [25] for asynchronous

34

Chapter 3. Background

M

(a) (b)

M C

(c) (d)

(e) (f)

Reset register Marked registerReset logic Evaluated logic

M C

M

M

M

C

M

Figure 3.11: A possible simulation trace using the spread token behavioural semantics.

circuits. See below equations from [26].

M(r) = M↑(r) ∨ M↓(r) ∧ M(r)

M↑(r) =
∧

l∈•r∩L

C(l) ∧
∧

q∈?r
M(q) ∧

∧
q∈r?

M(q)

M↓(r) =
∧

l∈•r∩L

C(l) ∧
∧

q∈?r
M(q) ∧

∧
q∈r?

M(q)

(3.2)

Figure 3.11 shows a possible simulation trace of the SDFS in Figure 3.10. (a) In the

initial marking of the SDFS, the register r1 is ready to be marked and to receive the token

from r0. (b) The token is stored by r1, and can be propagated to l0, while r0 can be reset.

(c) The nodes l0 and r3 are ready to propagate their tokens, thus r2 is ready to be marked.

(d) Registers r1 and r3 can be reset as their data token is now safely stored by r2. The

logic node l1 can now be evaluated. (e) The values of registers r1 and r3 become invalid,

and l0 can be reset. Register r4 can be marked, and can store the token hold by r2 and

processed by l1. (f) The register r4 stores the token, and r2 can be reset.

35

Chapter 3. Background

3.5 Labelled transition systems

Labelled Transition Systems (LTS) are used to model discrete systems, i.e. which can be

described by a finite number of states and their dependencies. Here, we provide a brief

definition of LTSs, but we refer the reader to [60] for a more complete description. The

formal definition of an LTS is below.

Definition 3.13. (Labelled Transition Systems) - a labelled transition system is a tuple

(S, T, L, s0), where:

• S is a set of states;

• L is a dictionary of labels for the transitions T;

• T is a set of labelled transitions between pairs of states: T ⊆ S× L× S;

• s0 is the initial state.

We represent LTSs graphically as directed graphs, where states are denoted with filled

circles (•) and arcs with arrows (→). A transition from a state s1 to another state s2 via

the a labelled transition is denoted as (s0, a, s2), or s0
a→ s2. The dictionary of labels

depends on the application. For example, labels can be used to highlight the effect of

transitions over an input/output of a circuit (as for STGs), or represent mathematical

conditions that need to be satisfied for enabling some change in a state of a system (as

for CPOGs).

In this work, we present the Process Windows formalism and an algorithm for

extracting sets of scenarios from labelled transition systems. The below definition will

be used for describing this contribution.

Definition 3.14. (Enabling and Backward Enabling Sets) - Let t ∈ T be a transition

of a labelled transition system. The Enabling Set (ES) of t is the set of states where the

transition t is enabled, i.e. ES(t) = {s ∈ S such that : ∃s′ ∈ S : s t→ s′}. Symmetrically, the

Backward Enabling Set (BES) of t is the set of states that are enabled by the transition t,

i.e. BES(t) = {s ∈ S such that ∃s′ ∈ S : s′ t→ s}.

To conclude the description of the LTS formalism, we give an example of two labelled

transition systems (in Figure 3.12) and describe them below.

36

Chapter 3. Background

(a)

s0 s1 s2 s3
a b c

d

(b)s0
s1 s2

s3 s4 s5

a b

c d

e f

g

Figure 3.12: Two labelled transition systems.

• Figure 3.12a has as set of states {s0, s1, s2, s3}, the initial state is s0 and is denoted by

a dangling arrow. Its transitions are labelled by the dictionary of labels {a, b, c, d}.
The transition from s0 to s1, for instance, is depicted as s0

a→ s1. The Enabling Set of

the transition c is {s2}, while the Backward Enabling Set of the transition a is {s1}.

• Figure 3.12b has as set of states {s0, s1, s2, s3, s4, s5}, the initial state is s0. Its

transitions are labelled by the dictionary of labels {a, b, c, d, e, f , g}. The transition

from s5 to s0, for instance, is depicted as s5
g→ s0. The Enabling Set of the transition e

is {s3}, while the Backward Enabling Set of the transition g is {s0}.

37

Chapter 4

Scenario composition

So far, we introduced the idea of behavioural composition with high-level scenarios, and

showed that it can be useful for a number of applications. We also described the formal

behavioural models and existing theories that this research is based on.

In this chapter, we present our contributions to the field of high-level scenario-

based design. In Section 4.1, we describe a new approach for composing scenarios of

a system efficiently and deriving efficient implementations – we apply our technique to

the composition of partial orders into conditional partial order graphs. In Section 4.2,

we show how to compose static asynchronous circuit behaviours by means of Dataflow

Structures. In Section 4.3, we present an automated approach to the decomposition of

complex specifications in the form of labelled transition systems.

4.1 Efficient composition of scenarios

We described the meaning of efficient composition of scenarios in Section 1.2. In this

section, we present one possible solution to the following question:

Problem: Given a set of scenarios that describe the behaviour of a system, find the most efficient

implementation (for example in terms of area) capable of executing each of the scenarios in

response to an external set of inputs.

To answer this question, we rely on the Conditional Partial Order Graphs for-

38

Chapter 4. Scenario composition

malism (reviewed in Section 3.2), whose models are obtained by composing sets of

scenarios in the form of partial orders and can be used to derive efficient hardware

implementations via an automated flow (as will be illustrated shortly). A set of scenarios

can be composed into a CPOG in many ways, affecting both the compactness of the

model and the size of the final hardware implementation. In this section, we present

a novel approach to scenario composition that minimises the area of the resulting

implementation and supports composition constraints.

This section is divided as follows. Section 4.1.1 reviews in detail the CPOG-based

methodology. Section 4.1.2 reviews the previously published algorithms for efficient

scenario composition. Section 4.1.3 describes our proposed scenario composition

algorithm. Section 4.1.4 describes the developed tool that implements the CPOG

methodology and comprises all existing scenario composition approaches. The content

of this section has been published in [27, 28].

4.1.1 Background

This section reviews the design methodology based on the CPOGs [24], see Figure 4.1.

The scenarios of a system are formally specified by a scenario specification (in the form of

a set of partial orders). Scenarios are composed into a system specification (in the form of

a CPOG). The latter is used to synthesise a hardware controller (in the form of gate-level

description in Verilog). The presented approach supports the specification of composition

constraints (in the form of codes). The controller is then automatically interfaced to the

specified datapath modules in the final system implementation.

Below, we review the basics of the CPOG methodology, using as running example the

scenario specification in Figure 4.2b, which has been introduced in Section 3.1.

4.1.1.1 Scenario specification

A hardware system is described by a collection of scenarios, each in the form of a partial

order. Vertices and arcs constitute the basic elements of these graphs, where vertices

represent system operations (or events), and arcs represent dependencies between them.

System scenarios can be specified either graphically (see Section 4.1) or textually in

39

Chapter 4. Scenario composition

Composition constraints

(codes)

System implementation

(Verilog netlist)

Hardware controller

(Verilog netlist)

Scenario encoding

& composition

Scenario specification

(partial orders)

Hardware synthesis

System specification

(CPOG)

Datapath modules

(Verilog)
Interface synthesis

see Background
in Section 4.1.1

see The new scenario
composition algorithm

in Section 4.1.3

see Design Automation
in Section 4.1.4

see CPOGs
in Section 3.2

Figure 4.1: The design methodology based on the CPOGs.

a file using the algebra of graphs [61]. Text files containing scenarios are parsed, and

each scenario is converted into a graph. As an example, Figure 4.2 shows the scenario

specification of a processor instruction set composed of two instructions: s1 is the

arithmetic instruction scenario, and s2 is the unconditional branch scenario. The textual

description specification of such scenarios is in Fig. 4.2a, while the graphical specification

based on partial orders is in Fig. 4.2b.

The effort required by engineers to produce such scenario specifications is high, and

it is desirable to extract scenarios from higher-level descriptions. There are several

examples of high-level specification languages targeting processor architectures, e.g. see

Arm’s Architecture Specification Language [62] and Sail [63]. This aspect of automation

is outside the scope of this work; we refer the reader to [64] for a relevant example.

4.1.1.2 Scenario encoding

Scenario encoding is the process of finding an injective function between a set of

scenarios and a set of codes. Let n be the number of scenarios. The following definitions

will be used to formally state the CPOG encoding problem.

40

Chapter 4. Scenario composition

s1 = fetch→ decode→ (loadA + loadB)→ ALU → saveMEM

s2 = fetch→ decode→ loadA→ ALU→ savePC

(a) Textual specification.

s2: Unconditional branch

s1: Arithmetic instruction

(b) Graphical specification.

Figure 4.2: A scenario specification comprising two processor instructions.

• S is the set of scenarios {s1, s2, ..., sn} described as POs.

• C is the universe of codes {c1, c2..., c|C|} satisfying the following two properties:

1. |C| = 2|B|;

2. ci 6= cj for 1 ≤ i < j ≤ |C|;

e.g. given a set of Boolean variables B = {b1, b2}, the corresponding code universe

is C(B) = {00, 01, 10, 11}.

• Encoding is a set of n pairs {(s1, c1), ..., (sn, cn)}, where each scenario si is encoded

by the code ci, such that: si 6= sj ∧ ci 6= cj for all 1 ≤ i < j ≤ n;

The arithmetic instruction scenario s1 and the unconditional branch scenario s2 in

Figure 4.2b can be encoded by one Boolean variable B = {b}, with the code universe

C(B) = {0, 1}. In this example, the two scenarios have the following encoding:

{(s1, 0), (s2, 1)}.
Different encodings lead to different CPOGs, and consequently to different hardware

implementations. In our process, we aim at finding an encoding that minimises the

size of derived implementations. Reducing the size of a circuit is important as it impacts

also other characteristics, e.g. static power consumption, gate-level synthesis complexity,

latency.

41

Chapter 4. Scenario composition

0 0

10

1 1

Projection H|b=1Projection H|b=0

1

1 1

scen(H|b=0) scen(H|b=1)

s1: Arithmetic instruction s2: Unconditional branch

CPOG H

Figure 4.3: From the CPOG to its constituent POs.

4.1.1.3 Composition

Let e = {(s1, c1), .., (sn, cn)} be a scenario encoding for a CPOG H = (V, E, B, φ). The

following definitions will be used to formally state the CPOG synthesis problem, see

Figure 4.3 for an easier understanding.

• A projection H|ci applies the code ci to all Boolean conditions of H. The result is a

graph Hi, whose vertex/arc conditions are now fully evaluated to 1 or 0.

• The operation scen(Hi) removes vertices and arcs with 0 condition, and applies

the transitive closure to the resulting graph, obtaining the scenario si.

The purpose of the above definitions is to let a code ci select a scenario si from the CPOG:

∀ 1 ≤ i ≤ n, scen(H|ci)= si

The CPOG synthesis process uses the encoding e to synthesise the CPOG H. It

produces the encoding functions F(B) = { f1, f2, ..., fn}, so that the code ci ∈ e selects

42

Chapter 4. Scenario composition

the scenario si ∈ e. Following [53], we represent the CPOG H as the following linear

combination of projections:

H = f1H|c1 + ... + fnH|cn= ∑
1≤i≤n

fi Hi = ∑
1≤i≤n

fiscen−1(si)

The CPOG synthesis requirement is satisfied if the encoding functions are orthogonal

(fi f j = 0, 1 ≤ i < j ≤ n), and are not contradictions, i.e. fi 6= 0 for all 1 ≤ i ≤ n.

As an example, consider the encoding {(s1, 0), (s2, 1)} of the scenarios in Fig-

ure 4.2. The resulting CPOG should be in the form of H = f1H|c1 + f2H|c2 such

that scen(H|c1) = s1 and scen(H|c2) = s2. The CPOG is represented by the linear

combination H = bH|0 + bH|1, and the encoding functions f1 = b and f2 = b satisfy the

synthesis requirement. Figure 4.3 shows the resulting CPOG H on top, the projections

H|b=0 and H|b=1 in the centre, and the initial scenarios scen(H|b=0) and scen(H|b=1) at

the bottom.

4.1.1.4 Hardware synthesis

The hardware synthesis step of the design flow extracts a set of Boolean equations from

the synthesised CPOG, and obtains an implementation of the hardware controller. Its area,

latency and power strongly correlate with the CPOG complexity [23], which can be seen

as the number of Boolean literals of conditions φ. An operation v ∈ V can be executed if:

1. it belongs to the current projection, i.e. φ(v) = 1;

2. all preceding vertices have already been executed: ∀u ∈ V, (u ≺ v)⇒ ack(u).

This is captured in terms of Boolean equations as follows:

req(v)= φ(v) ∧ ∏
∀u∈V

[φ(u) ∧ φ((u, v))⇒ ack(u)],

where (u, v) is the arc from u to v, req(v) is the request signal which activates the

v operation, while ack(u) is the acknowledgement signal which comes from the u

operation, and indicates its completion. As an example, the hardware implementation

(in the form of Boolean equations) of the CPOG on top of Figure 4.3 is shown below:

43

Chapter 4. Scenario composition

req(f etch) = go

req(decode) = ack(f etch)
req(loadA) = ack(decode)
req(loadB) = b ∧ ack(decode)
req(ALU) = ack(loadA) ∧ (b⇒ack(loadB))
req(savePC) = b ∧ ack(ALU)

req(saveMEM) = b ∧ ack(ALU)

done = (b⇒ ack(savePC)) ∧ (b⇒ ack(saveMEM))

The signals go and done are automatically added into set of operations to delimit

the start and the end of a scenario execution. The Boolean equations above can be

used to produce a gate-level description of the hardware controller (in the form of a

Verilog file), whose corresponding digital circuit is shown in Figure 4.4. The controller

is a combinational component, and is generated automatically by mapping the derived

Boolean equations over a technology gate library introduced into the developed flow,

see Section 4.1.4.

b

Figure 4.4: Hardware controller derived by the CPOG on top of Figure 4.3. Red signals are the
inputs, while blue signals are the outputs.

The controller is in compliance with the scenario-based specification in Figure 4.2. The

operations are executed according to the specified dependencies in response to input

signals coming from the datapath units. As an example, the ALU is activated by raising

the output signal REQ ALU if:

44

Chapter 4. Scenario composition

• the arithmetic instruction is decoded (input b = 0), and the operations loadA and

loadB have both been executed (inputs ACK loadA and ACK loadB);

• the unconditional branch is decoded (input b = 1), and the loadA has been

executed (input ACK loadA).

Afterwards, the controller can be connected to a set of synchronous or asynchronous

datapath modules automatically. This part of the flow is named interface synthesis, and

will be described in Section 4.1.4.2. The final implementation, including the generated

controller, can be processed by conventional EDA tools.

4.1.2 Related work

The characteristics of the synthesised hardware controller correlate with the encoding

selected [40]. In this work, we present a metric for extracting such a correlation, and

an algorithm for approaching the efficient-behavioural composition heuristically. In this

section, we report other encoding techniques available for the efficient composition of

scenarios into a CPOG.

The Single-literal encoding [23] is based on the graph colouring algorithm [52]. It finds

and encoding under the constraint that each Boolean equation φ(z) of the synthesised

CPOG can have at most 1 literal. The number of Boolean variables |B| determines the

colours available for solving the graph colouring problem, and can be increased above

dlog2|S|e automatically.

The SAT-based encoding [40] uses SAT solvers (CLASP [65] or MINISAT [66]) for

minimising the synthesised CPOG Boolean equations. The number of Boolean variables

|B| for encoding is set by the user. In this paper, we set |B| = dlog2|S|e.
In Chapter 5, we show that the above approaches do not scale well to high number of

scenarios (|S| > 15).

4.1.3 The new scenario composition algorithm

The optimal scenario encoding problem is NP-complete [23]. Finding the encoding that

optimises a target hardware characteristic can be only achieved by synthesising and

comparing all available encodings. In practice, this exhaustive search is infeasible due

45

Chapter 4. Scenario composition

Table 4.1: Symmetric encodings derivable from e1, e.g. e2 is symmetric to e1, as it can be obtained
by negating the Boolean variable b1 in all the codes in e1.

Scenarios e1(b1b2) e2(b1b2) e3(b1b2) e4(b1b2)
s1 00 10 01 11
s2 01 11 00 10
s3 10 00 11 01
s4 11 01 10 00

to the exponential growth of number of available encodings |E | when either the number

of |S| scenarios or |C| codes increases, |E | defined in Section 4.1.3.1. This motivates the

proposed Heuristic encoding, described in this section.

4.1.3.1 Symmetric encodings

It is inefficient to inspect encodings that result in similar hardware implementations.

This is the case for symmetric encodings, which are best explained by an example. The

encoding e1 = {(s1, 00), (s2, 01), (s3, 10), (s4, 11)} has three symmetric encodings: e2, e3

and e4, see examples in Table 4.1.

A symmetric encoding can be obtained by negating one or more Boolean variables

in all the codes of an encoding. We do not consider symmetric encodings, as the corre-

sponding implementations differ only in terms of input inverters, which is insignificant.

To rule out symmetric encodings we always encode the first scenario with the first

available code. For being consistent across multiple scenario encoding runs, we encode

the first scenario by the zero code 00..0 (i.e. e = {(s1, 00..0), · · · , (s|S|, c|S|)} for all e ∈ E) if

not constrained to encode another scenario (as we will explain in the next section).

The symmetry-breaking allows to restrict the universe of allowed encodings

E = {e1, e2, ..., e|E |} to the set that satisfies the two properties below:

1. All encodings are different: ei 6= ej for 1 ≤ i < j ≤ |E|.

2. No two encodings ei and ej are symmetric.

Given |S| scenarios and |C| codes, the size of the universe of encodings is:

|E | = (|C| − 1)!
(|C| − |S|)!

46

Chapter 4. Scenario composition

Note that at least dlog2ne Boolean variables are needed to encode |S| scenarios

(|B| ≥ dlog2|S|e). In this paper, we fix the number of such variables to the minimum,

and restrict |E | using |C| = 2dlog2|S|e codes, see Section 4.1.1.2.

4.1.3.2 Composition constraints

In real-life systems, there are composition constraints that restrict the space of allowed

encodings, for example due to backward compatibility requirements. Consider the two

scenarios in Figure 4.2, and assume that the following constraints must be met:

• The code of the arithmetic instruction (s1) consists of an arbitrary 2-bit opcode, and

two 3-bit operands A and B.

• The unconditional branch (s2) consists of the fixed 00111 opcode, and a 3-bit branch

offset.

The above requirements can be expressed with the composition constraints G =

{(s1, ??XXXXXX), (s2, 00111XXX)}, which uses 8 Boolean variables B = {b1, b2, ..., b8}.

• The arithmetic instruction 2-bit opcode (b1b2) is denoted by ??, where each ? is a

don’t care bit that becomes either 0 or 1 in the encoding. Each X is a don’t use bit,

which is not used for selecting a PO from those contained in the CPOG. In fact, 6

bits are left unused for the two operands A (b3b4b5) and B (b6b7b8).

• The unconditional branch opcode (b1b2b3b4b5) is fixed to 00111, the remaining 3 bits

are left unused for the branch offset operand (b6b7b8).

As shown in the above example, a constraint g is an assignment g : B → {0, 1, ?, X}
of the set of Boolean variables B. Sets of constraints are used to express composition

constraints G = {(s1, g1), (s2, g2), ..., (s|S|, g|S|)}.
The presented algorithm handles composition constraints. As an example, the

constraints set above can be satisfied by {(s1, 10XXXXXX), (s2, 00111XXX)}. On the

other hand, {(s1, 00XXXXXX), (s2, 00111XXX)} is an incorrect encoding as the code

00111000 selects both the two instructions. We say that the codes 00XXXXXX and

00111XXX are overlapping as they are both identified by the same code (e.g. 00111000).

47

Chapter 4. Scenario composition

To detect overlapping codes, let us define the overlapping function ovp(c1, c2), which

(1) takes as input two codes c1 and c2 that can contain don’t use bits1, (2) calculates the

two sets of codes (with no don’t use bits) that identify c1 and c2, and finally (3) computes

their intersection. We say that c1 and c2 are overlapping if ovp(c1, c2) 6= ∅. For example,

the codes 011 and 00X are not overlapping, as the result of the function ovp is the empty

set ∅ (i.e. the codes cannot be identified by the same code), see below.

ovp(011, 00X) = {011} ∩ {000, 001} = ∅

On the other hand, the two codes 11X and 1X0 are said to be overlapping, as the

result of the function ovp is 110, which indeed identifies both the two codes, see below.

ovp(11X, 1X0) = {110, 111} ∩ {100, 110} = {110}

To enable the usage of don’t use bits, we use the function ovp to reformulate the

definition of encoding (in Section 4.1.1.2) as follows:

Definition 4.15. (Encoding) - Encoding is a set of |S| pairs {(s1, c1), .., (s|S|, c|S|)}, where each

scenarios si is encoded by the code ci such that: si 6= sj ∧ ovp(ci, cj) = ∅ for all 1 ≤ i < j ≤ |S|.

In addition, an encoding must also satisfy the composition constraints set by the user

in order to be applicable to real-life systems. This formally means:

Definition 4.16. An encoding e = {(s1, c1), .., (s|S|, c|S|)}, as defined in 4.15, satisfies a set

of composition constraints G = {(s1, g1), .., (s|S|, g|S|)} if it is possible to derive ci from gi for

all 1 ≤ i ≤ |S| by substituting every don’t care bit ? in gi to either 0 or 1.

For example, the encoding {(s1, 100), (s2, 110)} satisfies the composition constraints

{(s1, 1??), (s2, 1??)} as the two constraints can be used to derive the two codes:

g1
X→ c1 : g1 = {b1 = 1, b2 =?, b3 =?} b2b3=00−→ c1 = {b1 = 1, b2 = 0, b3 = 0}

g2
X→ c2 : g2 = {b1 = 1, b2 =?, b3 =?} b2b3=10−→ c2 = {b1 = 1, b2 = 1, b3 = 0}

On the other hand, the encoding {(s1, 11X), (s2, 010)} does not satisfy the composi-

tion constraints {(s1, 1?X), (s2, 1??)} as g2 cannot be used to derive c2 (see b1):
1To enable the usage of don’t use bits, a code c becomes an assignment c : B→ {0, 1, X} of the set of Boolean variables B.

48

Chapter 4. Scenario composition

g1
X→ c1 : g1 = {b1 = 1, b2 =?, b3 = X} b2=1−→ c1 = {b1 = 1, b2 = 1, b3 = X}

g2
×→ c2 : g2 = {b1 = 0, b2 =?, b3 =?} b2b3=10−→ c2 = {b1 = 1, b2 = 1, b3 = 0}

The above definitions will be used to sketch a proof of correctness of the presented

algorithm in Section 4.1.3.5. The implementation details for satisfying constraints

and finding the initial encoding, prior to the heuristic optimisation, are described in

Algorithm 1.

The function findInitialEncoding takes as input the Boolean variables B for encod-

ing and the set of composition constraints G. The latter is an array of size |S|
whose indexes represent the scenarios and whose elements represent the constraints.

As running example, we consider the constraints on 5 scenarios {(s0, ???), (s1, ??X),

(s2, ???), (s3, 110), (s4, ???), (s5, ???)} on the 3 variables B = {b1, b2, b3}, which is rep-

resented by the array G = (???, ??X, ???, 110, ???, ???).

Initially, the universe of codes C is initialised with 2|B| codes (line 2), and the encoding

enc with |S| no-code symbols (−) as the encoding is initially empty (line 3). The array

enc represents the initial encoding, its indexes represent the scenarios and its elements

represent the codes. In the example, C and enc are:

C = (000, 001, 010, 011, 100, 101, 110, 111)

enc = (−,−,−,−,−,−)

In lines 4-7, the codes paired with fully constrained scenarios (i.e. ? 6∈ G[i]) are

checked to be contained in the universe of code C (line 5) – if two or more scenarios

are encoded by the same code, an error is returned. Subsequently, these scenarios are

encoded by the provided codes (line 6). The latter are removed from C (line 7), as they

cannot be used for encoding other scenarios. C and enc become:

C = (000, 001, 010, 011, 100, 101, 111)

enc = (−,−,−, 110,−,−)

In lines 8-15, partially constrained codes (i.e. ? ∈ G[i] ∧ G[i] 6= ?|B|) are turned into

codes, i.e. the function randomAssignment(G[i]) turns their don’t care bits (? ∈ G[i]) into

binary values {0, 1} randomly (line 11). Such resulting codes (code) encode scenarios si

49

Chapter 4. Scenario composition

Algorithm 1: Algorithm for satisfying the given composition constraints and finding the
initial encoding.

1 Function findInitialEncoding(B, G);
Input : Boolean variables B, a set of |S| constraints G.
Output : Encoding enc, error, or askUser.
Parameter: MAX(= 10) number of possibile iterations.
// Find the universe of codes, it contains the available codes for encoding

2 C ← (0|B|, · · · , 1|B|);

// Initially, the encoding is empty, i.e. it contains a set of no-codes ‘−’
3 enc← (−1, · · · ,−|S|);

// Encode the scenarios that have been fully constrained by the user

4 foreach i such that ? 6∈ G[i] do

// Error if the user encodes two or more scenarios with the same code

5 if G[i] /∈ C then return error;

// Encode the ith scenario enc[i] by the code G[i]
6 enc[i]← G[i];

// Remove the used code G[i] by the universe C, as G[i] cannot be reused

7 C ← C \G[i];

// Encode the scenarios that have been partially constrained by the user

8 foreach i such that (? ∈ G[i]) ∧ (G[i] 6= ?|B|) do

// Derive the code from the constraint G[i] by substituting every ? with

either 0 or 1 randomly (?→ {0, 1}), see Definition 4.16

9 iteration← 0;
10 do
11 code← randomAssignment(G[i]);
12 while (code /∈ C ∧ iteration++ < MAX);

// If an available codes is not found, ask for user’s intervention

13 if code /∈ C then return askUser;

14 enc[i]← code;
15 C ← C \ code;

// An error is returned if there are not enough codes to encode all remaining

scenarios with the given constraints

16 if |C| < |− ∈ enc| then return error;

// Encode the first scenario by the zero code for avoiding symmetric

encodings across multiple scenario encoding runs

17 if (G[0] = ?|B|) ∧ (0|B| ∈ C) then
18 enc[0]← 0|B|;
19 C ← C \ enc[0];

// Encode remaining scenarios with available codes in C randomly

20 foreach i such that G[i] = ?|B| do
21 enc[i]← pickRandom(C);
22 C ← C \ enc[i];

23 return enc;

50

Chapter 4. Scenario composition

(line 14), and are subsequently removed from C (line 15). If a valid code cannot be found,

the parameter askUser is returned. In the latter case, the user is prompt to select one of

the following choice: (1) increasing the algorithm effort, that is increasing the value of

the MAX parameter; (2) relaxing or modifying the composition constraints set; (3) run

the Exhaustive search - which is slow but always guarantees a solution. In the example,

the constraint {??X} is turned to {01X}, and is used to remove {010, 011} from C. C and

enc become:

C = (000, 001, 100, 101, 111)

enc = (−, 01X,−, 110,−,−)

The function randomAssignment can introduce overlapping codes. In the example, the

constraint G[1] =??X cannot be turned to 11X, as the latter is already used for encoding

s3 (11X /∈ C). Lines 10-12 can be repeated up to a MAX of 10 times to increase the

probability of satisfying all constraints. If the constraint is still not satisfied, an error

is returned (line 14). Notice that finding an initial encoding that satisfies the given

constraints is a NP-hard problem that can be solved only by trying exhaustively all

possibilities, for instance with a SAT solver [65, 66]. In practice, the presented heuristic

works well and can be tuned by modifying the values of MAX in order to enable the

algorithm to try more possibilities.

In line 16, an error is returned if the number of codes left for encoding (|C|) is less than

the scenarios that need to be encoded (|− ∈ enc|). In this case, more codes and bits B are

required for encoding the given S under the constraints G.

In lines 17-19, the first scenario s0 is encoded by the zero code if it is unconstrained

(G[0] =?|B|) and if the zero code has not been used (0|B| ∈ C). This is necessary for

avoiding symmetric encodings across multiple scenario encoding runs. In the example,

C and enc become:

C = (001, 100, 101, 111)

enc = (000, 01X,−, 110,−,−)

In lines 20-22, unconstrained scenarios (G[i] =?|B|) are encoded randomly. Codes

left are extracted by C, used to encode scenarios si (line 21), and subsequently removed

from C (line 22). In the example, C and enc become:

51

Chapter 4. Scenario composition

C = (101)

enc = (000, 01X, 100, 110, 001, 111)

The output of Algorithm 1 is the encoding enc, which satisfies G and can be optimised

via the heuristics that we will describe shortly.

4.1.3.3 Heuristic cost function

The main idea of the heuristic encoding algorithm is to encode similar scenarios by

similar codes. Similarities between codes are determined using the classic Hamming

distance metric [67]. Similarities between scenarios, on the other hand, are determined

by referring to their partial order representation. Consider two scenarios in the form of

Partial orders (reviewed in Section 3.1) s1 = (O1,≺1) and s2 = (O2,≺2). The distance

between s1 and s2 is computed following the two rules below:

1. An operation o ∈ O1 counts as a difference if o /∈ O2.

2. A dependency (os ≺ ot) ∈≺1 counts as a difference if (os ≺ ot) /∈≺2, and if it

connects two operations which are both present in the operation sets of the two

scenarios: (os ∈ O1 ∧ os ∈ O2) ∧ (ot ∈ O1 ∧ ot ∈ O2).

Distances between pairs of scenarios are elements of the Scenario Distance Matrix SD.

Distances between pairs of codes are elements of the Code Distance matrix CD. Both SD
and CD have size |S| × |S|, where |S| is the size of the scenario specification. Elements

SDij and CDij represent the number of differences between the ith and jth scenarios and

codes, respectively, in an encoding e in the form of {(si, ci), (sj, cj), · · · , (s|S|, c|S|)}). These

matrices are used to evaluate encodings heuristically via the below cost function:

F (S, e) = ∑
0≤i<j≤|S|

(SDij − CDij)
2 (4.1)

Intuitively, minimising F means encoding similar scenarios with similar codes. We

evaluated the cost function F empirically, by analysing several scenario specifications.

As an example, Figure 4.5a shows the analysis of a subset of 8 scenarios of the Intel

8051 [24] scenario specification, where the universe of encoding E is fully inspected,

52

Chapter 4. Scenario composition

and 5040 controllers are synthesised with a 90 nm technology library [68]. The size of

the controllers is plotted against the heuristic value F of the corresponding encodings.

Figure 4.5b, in turn, shows the analysis of the scenario specification of the Arm Cortex

M0+ [27], composed of 11 scenarios. In the figure, 102 controllers produced by

the proposed algorithm, described in Section 4.1.3.4, are compared to 105 controllers

produced by encoding scenarios randomly.

The two figures highlight the existence of a correlation between the controller area

and F , and suggest the following two claims:

• the likelihood of synthesising efficient implementations is higher where F is lower,

see Promising candidates in Fig. 4.5a;

• the likelihood of synthesising efficient implementations is proportional to the

number of encodings inspected, due to the inaccuracy of the heuristics, see the

Variability span in Fig. 4.5b.

4.1.3.4 The heuristic encoding algorithm

The presented heuristic algorithm is based on the cost function F , and on a proposed

implementation of the simulated annealing (SA) [69]. The latter is a heuristic method

for solving optimisation problems where a function must be minimised in a large search

space. The algorithm pseudo-code is shown in the Algorithm 2.

The inputs of the function heuristicEncoding are the Boolean variables B, the scenarios

S and constraints G. We continue the running example used for the Algorithm 1, where

G = {???, ??X, ???, 110, ???, ???} were turned to enc = {000, 01X, 100, 110, 001, 111} by

the findInitialEncoding function (line 2). This encoding is initially copied into encbest

(line 3), which represents the best encoding found during the SA search.

Simulated annealing parameters were calibrated experimentally. The initial temper-

ature is t0 = 10. The cooldown factor alpha is a = 0.996, and the ending temperature is

te = 0.1. These parameters can be modified for increasing or decreasing the number of

iterations for the SA optimisation.

Line 4 initialises the universe of codes C. The code of the first scenario enc[0] is

removed for avoiding symmetric encodings.

53

Chapter 4. Scenario composition

C
on

tr
ol

le
r

ar
ea

 [
u
m

2
]

Cost function value [F]

Promising
candidates

|E| = 5040

260

300

340

380

420

460

500

540

60 80 100 120 140

Optimal
encoding

Error

(a) All controllers (E) plotted with respect to the cost function F (Intel 8051 [24], subset of 8 scenarios).
The promising candidates are the encodings that we aim to identify with the presented cost function F and
synthesise, as they are more likely to result in more efficient controllers. Notice that the optimal encoding is
not included in the promising candidates, but that the area overhead of the heuristic controller in comparison
to the optimal one (see the error span) is small and arguably acceptable.

Cost function value [F]

C
on

tr
ol

le
r

ar
ea

 [
u
m

2
]

V
ar

ia
b
ili

ty

Random search (#e = 105)

Proposed approach (#e = 102)

200

250

300

350

400

450

500

550

80 100 120 140 160 180 200 220 240

(b) 102 heuristic and 105 random controllers are compared, and plotted with respect to F (Arm Cortex
M0+ [27], 11 scenarios). Notice the high area variability of the heuristic controllers, i.e. the difference between
the biggest and smallest heuristic controllers, which suggests that it is important to inspect as many heuristic
encodings as possible to increase the likelihood of finding efficient controllers.

Figure 4.5: The presented cost function is studied over two benchmarks.

54

Chapter 4. Scenario composition

Algorithm 2: The presented Heuristic encoding algorithm.

1 Function heuristicEncoding(B, S, G);
Input : Boolean variables B, scenarios S and their constraints G.
Output : Heuristic encoding enc.
Parameters: t0 = 10, a = 0.996, te = 0.1

2 enc← findInitialEncoding(B, G);

// The initial encoding is also the best encoding

3 encbest ← enc;

// C contains all available codes for encoding. The code of the first

scenario enc[0] is removed from C for avoiding symmetric encodings

4 C ← (0|B|, · · · , 1|B|) \ enc[0];

// Our Simulated Annealing implementation: the initial temperature t0 slowly

decreases by the factor a until the temperature te is reached

5 while (t0 > te) do

// Save current encoding in encnext
6 encnext ← enc;

// Pick a random scenario and code, notice that the first scenario s0
cannot be selected for avoiding symmetric encodings

7 i← pickRandomScenario(1 ≤ i < |S|);
8 code← pickRandomCode(C);

// If code is used in encnext, then swap the codes within the encoding. We

use the symbol ∈ because the codes in encnext may contain don’t use

bits X, e.g. 001 ∈ 00X = {000, 001}, while 001 6∈ X00 = {000, 100}
9 if ∃ j such that code ∈ encnext[j] then

10 encnext[i]↔ encnext[j];
11 else
12 encnext[i]← code; // Else, swap the code of si with the extracted code

// If the new encoding encnext satisfies the given constraints G
13 if ∀ i satisfy(encnext[i], G[i]) then

// Replace encbest if its cost is higher than the cost of encnext
14 if F (S, encnext) < F (S, encbest) then
15 encbest ← encnext;

// Replace enc either if its cost is higher than the cost of encnext, or

if a randomly extracted value v is lower than a certain

threshold e−
d
t0 (an encoding with a higher cost is selected)

16 d← F (S, encnext)−F (S, enc);
17 v← pickRandomValue(0 ≤ v < 1);

18 if v < e−
d
t0 then

19 enc← encnext;

// cooling the temperature t0 by the factor a
20 t0 ← t0 × a;

21 return encbest;

55

Chapter 4. Scenario composition

Lines 5-21 minimise the initial encoding heuristic value F (S, enc) by repeatedly

swapping pairs of codes in the encoding, until the initial temperature t0 reaches the

ending temperature te (line 5). Line 6 stores the current encoding enc into the the next

encoding encnext. Lines 7-8 select a random scenarios si in enc (1 ≤ i < |S|), and a

random code cj in C, respectively. Such indexes are used for swapping codes in encnext.

In line 9, we use the symbol ∈ to check if a code extracted randomly is used for encoding

a scenario in the encoding (see code ∈ encnext[j]). This symbol is used because scenarios

might be encoded by codes having don’t use bits. In our example, s1 is encoded by 01X

and is thus identified by the set of codes {010, 011} (i.e. both these two codes ∈ 01X).

Coming back to our running example, if i = 4 and j = 7, the fourth scenario (encoded by

001) is swapped with the code 111 (which identifies s5 in enc). enc and encnext become:

enc = (000, 01X, 100, 110, 001, 111)

encnext = (000, 01X, 100, 110, 111, 001)

The next encoding encnext is considered if it satisfies the composition constraints G

(line 13). The function satisfy (see Algorithm 3) checks that the bit size of the code

matches the bit size of the constraint (line 2), and that the bits constrained by {0, 1, X}
hold these values in the final code (lines 4-6). Notice that bits constrained by ? do not

need to be checked, as both logic values {0, 1} satisfy such constraints.

Algorithm 3: Implementation of the function for checking if a code satisfies a constraint.

1 Function satisfy(c, g);
Input : A code c, and a constraint g.
Output : Boolean values True or False.

2 if |c| 6= |g| then return False; // The code and the constraints are of the same size

3 foreach 1 ≤ i ≤ |g| do
4 if (c[i] = 1) ∧ (g[i] = 0) then return False; // Bits constrained by {0, 1, X} have

5 if (c[i] = 0) ∧ (g[i] = 1) then return False; // to keep these values in the code

6 if (c[i] 6= X) ∧ (g[i] = X) then return False;

7 return True;

In lines 14-15, encnext replaces the best encoding encbest found during the SA optimisa-

tion if the former has a lower heuristic value than the latter, i.e.F (S, encnext) < F (S, encbest).

In lines 16-19, encnext also replaces enc either if the former has a lower heuristic value

than the latter (i.e. v < e−
d
t0 for all 0 ≤ v < 1 ∧ d ≤ 0), or if the extracted random value

56

Chapter 4. Scenario composition

v is lower than e−
d
t0 , with d > 0. In the second case, a worse encoding (with a higher F)

replaces enc.

The randomness allows the heuristicEncoding to return a different encbest (output) at

every execution. The solution space is connected, as all e ∈ E are reachable by a set of

swap moves.

The current implementation of the algorithm is run in a single thread of execution.

However, multiple instances of the heuristicEncoding function can be run on multiple

threads, resulting in several encodings to be produced concurrently. The parallelisation

of the presented algorithm is left as future research.

4.1.3.5 Correctness

An encoding enc, constrained by composition constraints G, is said to be correct if it meets

the definition 4.15, and if it is satisfies G (according to the definition 4.16).

Whenever Algorithm 1 terminates, a correct encoding enc is returned by construction.

I.e. the result enc is constructed by selecting the codes for encoding from the universe C,

which only contains valid codes being derived by the number of bits |B| selected for

encoding (line 2). Fully constrained scenarios are encoded by their given constraint (see

line 6), partially constrained scenarios are encoded by codes derived by replacing every ?

by either 0 or 1 as described by the definition 4.16 (see lines 9-14), and non-constrained

scenarios are encoded by codes that have not been used previously, see line 21. Thus,

the resulting enc always satisfies G. Also, the resulting enc meets the definition 4.15, as

overlapping codes cannot be introduced in the final result: a code is removed from C

every time that it is used for encoding a scenario, see lines 7, 15, 19 and 22.

On the other hand, Algorithm 1 generates an error if the constraints G cannot be met

for any of the following two reasons:

• The user introduces overlapping constraints, see line 5.

• The number of codes |C| is not enough for encoding a set of scenarios with size |G|
with the given constraints G, see line 16.

In these cases, the constraints cannot be satisfied, and the user is requested to fix the

composition constraints set.

57

Chapter 4. Scenario composition

The algorithm may also ask for the user intervention (askUser) in the case that a

partially constrained code is not turned into a code c left for encoding (c 6∈ C) in any

of the MAX iterations, see lines 9-13. In this case the user can either choose to increase

the effort of the algorithm, to relax the encoding constraints, or to run an exhaustive

search.

In regards to Algorithm 2, the function heuristicEncoding handles the output of the

previous function enc, and advances to encbest through a sequence of swap moves that

inspects many intermediate encodings encnext. The initial encoding enc returned by the

Algorithm 2 in line 2 is correct by construction, as we showed in the previous paragraph.

Each intermediate encoding derived by a swap move (see lines 7-12) always meet the

definition 4.15, as no sequences of swaps can introduce overlapping encodings: the code

of a scenario can either be swapped with a code of another scenario, or with a code which

was is not used (in C) for encoding other scenarios. Intermediate encodings replace

encbest if they satisfy the constraints G (this is checked by the Algorithm 3), thus they

also meet the definition 4.16. Consequently, encbest is also correct by construction. The

two algorithms always terminate, as there are not infinite loops.

4.1.3.6 Time complexity analysis

The function findInitialEncoding is constituted by a sequence of three loops. The first

one (lines 4-7) encodes fully constrained scenarios by moving their codes into the

encoding enc. Its complexity only depends on the number of fully constrained scenarios

introduced: O(|S|). The second loop (lines 8-15) encodes partially constrained scenarios

by looping over the bits |B| of each constraint, in order to flip every ? to {0, 1}.
Thus, its complexity is: O(|S| · |B|). The third loop (lines 20-22) makes use of the

function pickRandom (O(1)) to extract codes left in the code universe C and encode the

unconstrained scenarios. Its complexity depends on the number of scenarios: O(|S|).
Consequently, the complexity of the Algorithm 1 (A1) comes from the second loop. In

this paper, we assume that |B| = dlog2|S|e, hence the below equation:

O(A1) = O(|S|) +O(|S| · |B|) +O(|S|) = O(|S| · log |S|)

On the other hand, the function heuristicEncoding, excluding the internal findInitia-

58

Chapter 4. Scenario composition

lEncoding function in line 2, is constituted by a loop that implements an exponential

multiplicative cooling strategy of the simulated annealing algorithm (SA) [69], i.e. an

initial temperature t0 is multiplied by a constant factor a at each iteration, until an ending

temperature te is reached. This causes a fixed number of iterations n that can be tweaked

by modifying these parameters. At each iteration of the SA, the most computationally

expensive statements are in lines 13 and 22-28: where the encnext is checked against

the constraints G, and in lines 14 and 16: where the function F has to be computed. The

former has a complexity ofO(|S| · dlog2 |S|e), as the encoding has to be checked for every

bit of each constraint. The latter has a complexity of O(|S|2), see the cost function F in

Formula 4.1. Consequently, Algorithm 2 (A2) has the following complexity:

O(A2) = n ·
[
O (|S| · dlog2 |S|e) +O

(
|S|2

)]
= O

(
n · |S|2

)
The described time complexity analysis disregards the implementation details of the

further set of functions (e.g. pickRandomScenario) that the presented algorithms rely on.

However, if implemented reasonably, this further set of functions does not increase the

time complexity illustrated above.

4.1.4 Design automation

The design methodology described in Section 4.1.1 is implemented in the tool SCENCO [68]

(i.e. SCENario ENCOder), and integrated in the WORKCRAFT design environment [34].

The developed tool features the following encoding algorithms.

1. Exhaustive search fully explores the universe of encodings E .

2. SAT-based encoding and Single-literal encoding are described in Section 4.1.2.

3. Heuristic encoding is the proposed algorithm (Section 4.1.3).

4. Random search encodes scenarios randomly.

5. Sequential encoding assigns codes sequentially,

i.e. {(s1, 000), (s2, 001), (s3, 010), ...}.

59

Chapter 4. Scenario composition

Figure 4.6: Methodology based on the CPOG shown within WORKCRAFT.

SCENCO relies on Espresso [70] for Boolean minimisation, and Abc [71] for technology

mapping, whose library is specified in the GenLib format [72]. Abc is also used for

producing Verilog files. SCENCO also uses Clasp [65] and MiniSAT [66] SAT solvers for

supporting the SAT algorithms.

This section is divided as follows. Section 4.1.4.1 describes an example of the applied

CPOG design methodology in WORKCRAFT. Section 4.1.4.2 describes how to synthesise

the interface between a controller (derived by a CPOG) and the controlled datapath

modules.

4.1.4.1 Design methodology in Workcraft

SCENCO and the CPOG design methodology are integrated in WORKCRAFT [33] [34].

The latter is a design environment that supports many formal models that have graphs

as their underlying structure. WORKCRAFT supports features such as visual editing,

simulation, synthesis and analysis.

As an example, Figure 4.6 guides the reader through the specification, synthesis and

simulation of a microcontroller in WORKCRAFT, starting from the three simple scenarios

(LOAD, ADD and PUSH).

60

Chapter 4. Scenario composition

1. Scenario-based specification: the three scenarios are introduced textually (Tools

controls window), and are parsed and converted into partial orders (Instruction set

generated [CPOG] window). Scenarios can be also entered or edited graphically.

2. Scenario encoding: scenarios are encoded using the chosen algorithm (Encoding

menu). The encoding {(LOAD, 01), (ADD, 10), (PUSH, 11)} is found in the example,

with two Boolean variables: B = {b1, b2}.

3. Composition: CPOG is synthesised automatically (Conditional partial order graph

[CPOG] window);

4. Hardware synthesis: the hardware microcontroller is synthesised from the CPOG

(Synthesised microcontroller [circuit] window). Available gates are specified in

the form of a GenLib [72] technology library. The microcontroller interface is

highlighted in the window Microcontroller interface [circuit].

The hardware controller can be simulated and formally verified using other tools

available in the WORKCRAFT framework. For example, the window Simulation of the

PUSH instruction [DTD] shows a simulation of the PUSH scenario of the controller. The

sequence of executed operations and their dependencies are shown.

4.1.4.2 Interface synthesis

The synthesis of the interface between the controller and the datapath has been au-

tomated in the developed EDA tool [68], relying on the ideas elaborated in [73] and

summarised below.

The controller can be interfaced either with asynchronous datapath modules, relying

on the reqest/acknowledge handshake, and to synchronous modules using matched

delays [25], which produce acknowledgement signals after a chosen delay. In turn,

since the controller resets request signals only at the end of each scenario execution,

decouple and merge [73] are needed to release datapath modules immediately after they

acknowledge their completion. Also, merge is used when a module is executed multiple

times within a scenario, see a schematic of the interface in Figure 4.7.

The developed tool [68] takes as input the datapath modules in the form of Verilog,

61

Chapter 4. Scenario composition

async

sync

clock

datapathcontroldecouple

merge

req_a

ack_a

req_s

ack_s matched
delay

bus

req_a1

ack_a1

req_s2

req_s1

ack_s1

ack_s2

controller

Figure 4.7: The interface between controller and datapath. The controller interfaces to
asynchronous components via req/ack interface, and to synchronous ones via matched delays.
The decouple and merge modules release a datapath component after the end of its execution.
Merge is used when a component is accessed multiple times within within a scenario.

and interfaces them to the synthesised controller automatically. The produced Verilog

file contains the final system implementation, see Figure 4.1.

4.1.5 Summary

We presented a new scenario composition algorithm, and applied to the methodology

based on Conditional Partial Order Graphs. In Chapter 5, we evaluate the proposed

algorithm on an extensive set of case studies for highlighting its characteristics.

4.2 Composition of dataflow structures

In the previous section, we described a novel approach to compose behavioural scenarios

efficiently. In this section, on the other hand, we consider the following problem:

Problem: Static Dataflow Structures are a known formalism that abstracts the Petri net token-

game providing a simple mechanism to represent static event-based systems at the high level. The

available formalisation does not allow one to represent dynamic systems, where the flow of events

depends on run time conditions. Is it possible to extend the model for breaking this limitation?

To overcome this limitation, we describe the novel Dataflow Structures formalism,

which allows to compose Static Dataflow Structures and capture the behaviour of

62

Chapter 4. Scenario composition

dynamic systems, e.g. dynamically reconfigurable circuits. This section is divided as

follows. Section 4.2.1 motivates the new formalism by showing that SDFSs cannot cap-

ture asynchronous dynamic reconfigurability. Section 4.2.2 presents the new Dataflow

Structures formal model. Section 4.2.3 shows an inefficient methodology for composing

asynchronous circuit scenarios in the form of SDFS. Sections 4.2.4 and 4.2.5 describe the

design automation developed for the presented model. The related work in the field and

a final summary of the section are in Section 4.2.6. Part of the content of this section has

been/will be published in [29, 30].

4.2.1 Motivation

In Section 3.4, we introduced the Static Dataflow Structures formalism, and we said that

it is used to model the behaviour of asynchronous circuits by abstracting away low-

level implementation details. However, SDFSs cannot handle dynamic reconfigurability

according to its formulation in [26]. In this section, we describe two examples for

highlighting this issue and motiving our research.

condition

f
f(x)x

(a) High-level view.

(b) SDFS model. (c) DFS model.

Figure 4.8: Conditional application of a function.

As the first motivating example for the DFS model, consider an asynchronous

circuit that applies a computationally expensive pipelined function f (node comp) only

to those data items that satisfy an easily-checked condition (cond), e.g. computing

a square root only for non-negative numbers. This example can be specified as

in→ [cond]comp→ out using the algebra of Parameterised Graphs [61], which can be used

63

Chapter 4. Scenario composition

as high-level specification language for the DFS model. See the high-level view of this

example in Figure 4.8a.

Figure 4.8b shows a possible SDFS model of this described system. An incoming data

item (or simply token) is duplicated by the in register (1) to the cond node, whose purpose

is to check if the token satisfies a condition; and (2) to the comp node, which applies

the function f to the token and computes the result. The latter is finally filtered by the

filt node, which addresses the result to the output register out only if the condition is

satisfied. This is an inefficient model of this example, as both cond and comp must be

executed before filtering unneeded results. This limits the performance and degrades

the power consumption of the pipeline to the worst-case scenario.

dynamic extensionstatic nodes

Figure 4.9: Static and dynamic nodes included in the Dataflow Structures model.

To overcome this issue and adequately model such a dynamic behaviour, we

introduce the DFS formalism that extends the SDFS with three new types of registers:

control, push and pop. These three nodes are shown in Figure 4.9, and are used to model

circuit reconfigurability.

Figure 4.8c shows a DFS model of the above example, which applies the cond

predicate to incoming tokens, and produces a True or False token in ctrl that either

applies or bypasses the function comp. In the case of a True token, the function comp is

applied: the push and pop registers filt and out act as static registers, and the data is

propagated from in to out passing by comp. On the other hand, in the case of a False

token, the function comp is bypassed: the incoming token is stored and destroyed by filt

(i.e. the token is not propagated to comp), and an ‘empty’ token (i.e. a token that is not

paired with any valid data) is produced by out.

In the first example, we showed the conditional application of a function. As a second

motivating example, instead, we show the conditional selection of a function. Consider

a hardware module in a mobile phone that is in charge of processing the audio related

to a phone call for removing the background noise. The incoming audio data has to

64

Chapter 4. Scenario composition

high-quality
filter

low-quality
filter

battery status

M
U

X

D
E
M

U
X

(a) High-level view.

outin

(b) SDFS model.

p1

p2

p3

p4

c

outin

(c) DFS model.

Figure 4.10: Selection of a noise filter for audio processing.

be processed by a high-quality (HQ) filter when the device has high battery level, and

by a low-quality (LQ) filter when the phone is in power saving mode, see Figure 4.10a.

This can be expressed as in→ ([battery]HQ-filter + [battery]LQ-filter)→ out in the

algebraic form.

Figure 4.10b shows a possible SDFS model of the above idea. The fork node cannot

propagate an incoming audio data only to the path in charge of processing the data,

and therefore duplicates the token to both the two paths, triggering the execution of the

two filters. The select node takes as input the two results produced by the filters, and

selects the one requested according to the battery level. Its output is propagated to the

out node. This is an inefficient approach to the representation of this system, as both

the HQ and LQ filters are always executed, worsening both the performance and energy

consumption of the device. The performance is decreased because the latency of the

pipeline is always given by the filter with the maximum latency, i.e. the select node

has to wait for the two results before propagating the processed input to the output. The

energy consumption is also increased because one of the two filters is always executed

unnecessarily.

65

Chapter 4. Scenario composition

Figure 4.10c shows a possible DFS model of this reconfigurable filter. The battery

nodes check the left amount of charge and generate a True or False token in the control

register c, which selects either the high- or the low-quality filter. In the case of a

True token, for example, the push register p1 and the pop register p3 behave as static

registers and propagate the incoming token to the HQ-filter, and subsequently to the

output result. At the same time, the True token in c is inverted and propagated to

the registers p2 and p4 as a False token via the inverting arcs (denoted graphically as

). These registers are used to bypass the LQ-filter by consuming the incoming token

at p3 and producing a False (i.e. empty) token at p4. In Section 4.2.3, we will illustrate

a simulation of this example relying on the behavioural semantics of the DFS model,

which is described in the next section.

These two examples show that SDFS cannot model dynamic behaviours, i.e. scenarios

executed conditionally. This motivates the proposed Dataflow Structures.

4.2.2 The Dataflow Structures model

In this section, we introduce the DFS model, which extends the SDFS with three

additional types of registers and allows to model dynamic behaviours. These are needed

for describing circuit reconfigurability.

Figure 4.9 shows the full set of nodes of the DFS. It includes the static SDFS set

comprising logic nodes L and static registers R (renamed Rstc in the DFS); and the

three new control (Rctrl), push (Rpush) and pop (Rpop) types of dynamic registers,

Rstc ∪ Rctrl ∪ Rpush ∪ Rpop = R. The next paragraphs describe these new nodes.

Control registers Rctrl : These registers can store True or False tokens. They can

propagate the regular or inverting polarity of their hold tokens by means of regular ()

or inverting () arcs. Control registers in the inverting arc preset of a node d

(i.e. connected by inverting arcs) are denoted as •0d, while those in regular arc preset

as •1d. A dynamic node d is said to be false-controlled if the condition Mc
f is satisfied,

and is said to be true-controlled if the condition Mc
t is satisfied, see Figure 4.11. Control

registers can implement the AND, OR and PLAIN2 Boolean functions, while push and

pop registers can only implement the PLAIN Boolean function, denoted as Mc.PLAIN
t/ f .

2The PLAIN Boolean logic function is the one implemented by an asynchronous C-element [25].

66

Chapter 4. Scenario composition

preset control registers

regular preset inverting preset

Figure 4.11: Conditions for determining if a dynamic node is false- or true-controlled.

As an example, a control register that implements the OR function is true-controlled if at

least one control register in its regular arc preset store a True token (Mt), OR if at least

one of those in inverting arc preset store a False token (M f). On the other hand, it is said

to be false-controlled if all control registers in the regular arc preset store a False token,

AND all of those in inverting arc preset store a True token.

Push registers Rpush: when true-controlled, they behave as static registers. When

false-controlled, on the other hand, they store and destroy an incoming token, i.e. the

data is not propagated to the register postset. For simplifying their description, push

registers are said to handle True tokens when true-controlled (i.e. which represent real

data items, and are denoted graphically as •), and False tokens when false-controlled

(i.e. empty data items, and are denoted as ◦).
Pop registers Rpop: when true-controlled, they behave as static registers and handle

True tokens. When false-controlled, they produce a False (or empty) token that is

propagated to the postset nodes.

In the light of the above considerations, the new dynamic set of nodes refines the

SDFS behavioural semantics (reviewed in Section 3.4) as follows. Figure 4.12 describes

the behaviour of logic nodes l ∈ L. Their evaluation state C is defined using the evaluate C↑
and reset C↓ functions, similar to what happens for Set-Reset latches Q = S ∨ R ∧Q.

A logic node can be evaluated when its preset logic is evaluated, preset registers are

marked (i.e. contain valid data, see function M), and preset push are holding True

tokens (Mt). Symmetrically, a logic node can be reset when its preset logic is reset, preset

registers (except for push) are unmarked (i.e. contain no data, see function M), and preset

67

Chapter 4. Scenario composition

push do not store a True token (Mt). Intuitively, logic nodes are passive to the handshake

mechanism, and are evaluated when all their inputs are available; they are reset when

their inputs do not contain valid data.

preset logic
preset registers

but push
preset push

registers

Figure 4.12: Logic nodes.

The marking state M of static register nodes r ∈ Rstc, see Figure 4.13, is determined

using the marking M↑ and reset M↓ functions. A static register can be marked if

its preset logic is evaluated, R-preset registers are marked (with push holding True

token), R-postset registers are unmarked (pop are allowed to hold False token though).

Symmetrically, it can be unmarked (M↓) if its preset logic is reset, R-preset registers are

unmarked (push are allowed to hold False token though), and R-postset registers are

marked (with pop holding True token). In other words, a register can store a data value

when all its inputs are available and its R-postset registers contain spacers (i.e. no tokens

and False tokens in pop); and can be reset when the data stored has been propagated to

its R-postset. This semantics models the 4-phase handshake protocol as described in [25].

preset logic
R-preset registers

but push
R-preset push

registers
R-postset registers

but pop
R-postset pop

registers

Figure 4.13: Static register nodes.

In the equations in Figure 4.13, the function Mt determines if a push or pop register

p ∈ Rpush ∪ Rpop is marked with a True token (i.e. behaving as a static register), and the

function M f if it is marked with a False token. We also use these functions to determine

68

Chapter 4. Scenario composition

the marking state M(p) of push and pop registers, see Figure 4.14. The marking of push

and pop registers is defined as a non-deterministic choice between being marked with

a True or False token. A register p can be marked with a True (False) token when it

satisfies the marking function M↑ (see Figure 4.13), and when it is true- (false-) controlled

according to the PLAIN Boolean function Mc.PLAIN
t (Mc.PLAIN

f), see Figure 4.11. On the

other hand, p can be reset if it is marked (Mt or M f) and satisfies the reset function M↓.

Figure 4.14: Push and pop registers.

The behavioural semantics of control registers c ∈ Rctrl (see Figure 4.15) is analogous

to the one of push and pop registers p , with the only difference that control registers can

implement also the AND or OR Boolean functions, see Figure 4.11.

Figure 4.15: Control registers.

The DFS can implement a Boolean algebra using True/False tokens and NOT/-

PLAIN/AND/OR Boolean functions. We conclude the formal description of the

DFS formalism by showing the graphical representation of the implemented Boolean

functions on control registers, see Figure 4.16.

The NOT Boolean function is implemented by means of an inverting arc (), which

propagates the inverted polarity of a token. As an example, Figure 4.16a shows two

control registers connected by an inverting arc: the True token in a is propagated to x as

a False token.

In regards to the PLAIN function, a node is said to be true-controlled if all its control

registers in the regular arc preset hold a True token, while those in inverting arc preset

hold a False token. Symmetrically, it is said to be false-controlled if all control register

in the regular arc preset hold a False token, and those in inverting arc preset hold a True

69

Chapter 4. Scenario composition

(a) NOT.
(b) PLAIN.

(c) AND. (d) OR.

Figure 4.16: Examples of the four Boolean functions implemented in the DFS.

token. In case of a mismatch (i.e. a node sees both True and False tokens in its preset), the

node is disabled, which may lead to a deadlock. The reachability of such problematic

states needs to be formally verified (which has been automated in our design flow). In

the example in Figure 4.16b, x implements the PLAIN function and it is true-controlled

because the control registers in the regular arc preset (•1x = {a, b}) store True tokens,

and the control registers in the inverting arc preset (•0x = {c, d}) store False tokens.

On the other hand, a control register that implements the AND function is denoted

graphically with the False polarity shadowed (see Figure 4.16c), while one that imple-

ments the OR function is drawn with the True polarity shadowed (see Figure 4.16d). The

control register x in Fig. 4.16c is false-controlled as the register b stores a False token. On

the other hand, the control register x in Fig. 4.16d is true-controlled as the c register stores

a False token.

4.2.2.1 Simulation of the motivating example

In this section, we show and describe a graphical simulation of the DFS model of the

reconfigurable noise filter, introduced as second motivating example in Section 4.2.1.

The purpose of this section is to apply the just described behavioural semantics of the

formal model, and simplify the reader’s understanding.

Figure 4.17 shows a possible simulation trace of the DFS model of the reconfigurable

noise filter. The marking and evaluating functions are highlighted in green, and the reset

70

Chapter 4. Scenario composition

LQ-filter

HQ-filter

lBat

r1

r2

r3

c

p1

p2

p3

p4

Mt
Mf

C
lBat

r1

r2

r3

c

p1

p2

p3

p4

lBat

r1

r2

r3

c

p1

p2

p3

p4

M

Mt

Mf Mf

lBat

r1

r2

r3

c

p1

p2

p3

p4

lBat

r1

r2

r3

c

p1

p2

p3

p4

C

M
C

M

Mt

lBat

r1

r2

r3

c

p1

p2

p3

p4

M

M

M

lBat

r1

r2

r3

c

p1

p2

p3

p4

M

C

lBat

r1

r2

r3

c

p1

p2

p3

p4

M

Push marked with True and False Pop marked with True and False

Control register marked with True and False

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

LQ-filter

HQ-filter

LQ-filter

HQ-filter

LQ-filter

HQ-filter

LQ-filter

HQ-filter

LQ-filter

HQ-filter

LQ-filter

HQ-filter

LQ-filter

HQ-filter

Figure 4.17: A possible simulation trace of the DFS model of the reconfigurable noise filter.

71

Chapter 4. Scenario composition

functions are in red for an easier visualisation. The most relevant steps of the simulation

are described in the next paragraphs.

(a-b) The data audio stored in the register r1 is on hold to be processed by one of the two

filters. The control register c is waiting to be marked either with a True or False

token, depending on the battery level provided by the combination logic lBat. In the

simulation, we assume that the battery level is high enough (c marked with a True)

to process the incoming data with the high-quality filter.

(c-e) The control register c is marked with a True token, which selects the high-quality

filter and bypasses the low-quality filter. I.e. the push and pop registers p1 and

p3 are true-controlled as they are connected to their control register preset c with

regular arcs. Consequently, these nodes behave as static registers and propagate

the incoming token from r1 to the HQ filter, and subsequently to the output r3.

Concurrently, the push and pop registers p2 and p4 are false-controlled due to

their incoming inverting arcs from c. Thus, these registers are forced to bypass

the LQ-filter by destroying and producing a False token.

(f-h) The static register r3 can store the processed audio token, as its preset pop registers

are both marked. The high-quality filter can be reset in order to be ready to process

a new incoming token. Note that the low-quality filter has never been evaluated,

and thus does not need to be reset.

The simulation shows that the DFS model can capture the behaviour of the reconfig-

urable noise audio filter, where the two internal scenarios (high- and low-energy filters)

are selectively executed.

4.2.3 Composition of scenarios

The presented DFS formalism enables engineers to compose scenarios in the form of

SDFSs. Here, we show that this process can be easily generalised relying on the notion

of inefficient scenario composition described in the introductory chapter.

As an example, Figure 4.18 shows the DFS structure for composing four different

behavioural scenarios. The Selection interface nodes select which of the four scenarios

72

Chapter 4. Scenario composition

b1 b2

Selection interface

p1
c1

q1

p2
c2

q2

p3
c3

q3

p4
c4

q4

Figure 4.18: DFS generic structure for the execution of 4 scenarios.

have to be executed, relying on the encoding {(s1, 00), (s2, 10), (s3, 01), (s4, 11)} on two

bits modelled by the control registers {b1, b2}. At the input and output of every ith

scenario there are a push (pi) and a pop (qi) register, which are controlled by a control(ci)

register that implements the AND Boolean function. The regular and inverting arcs

going from the registers {b1, b2} to c{1,··· ,4} implement the encoding.

With the above structure, an incoming token can go from the input register in to the

output out passing by the scenario selected by the selection interface. As an example, in

the case of a False and True tokens in b1 and b2 (code 01), Scenario 3 is executed and all

the others are bypassed.

This structure can be employed in several applications. For example, rather than

having only two types of filter (as in the example in Figure 4.10), one might want to have

a finer granularity of Energy-Quality trade-offs and implement more filters. Also, this

structure reflects the behaviour of dataflow processors, which are requested to process

incoming data items via different instructions (scenarios).

As we discussed in Section 1.2, however, the above represents an inefficient approach

73

Chapter 4. Scenario composition

to scenario composition. Reusing common functionalities among scenarios is desirable

for optimising many design criteria (e.g. area, power). An efficient approach is possible

with the DFS methodology, but is currently not automated. In Chapter 5, we present

a methodology for designing and implementing asynchronous reconfigurable pipelines

that is based on the idea of efficient scenario composition.

4.2.4 Execution semantics expressed with Petri nets

The execution semantics of the novel Dataflow Structures, described in Section 4.2.2,

can be expressed via different general purpose formalisms, e.g. finite state machines,

Event-B [74], process algebra [75], Petri nets (reviewed in Section 3.3). In this section,

we show how to express the described DFS behavioural semantics using Petri nets, for

enabling designers to reuse the wide and existing tool-sets for PN that are available in

the WORKCRAFT [34] design environment, where DFS has been also integrated. All the

features provided in WORKCRAFT are summarised in Section 4.2.5. In this section, we

describe the methodology for translating the DFS models into Petri nets.

The state of static nodes (see Figure 4.9) can be expressed by one Boolean variable.

The evaluation state of a logic node l ∈ L can be represented by C l, i.e. a node is

evaluated if C l= 1, a node is reset if C l= 0. Similarly, the marking state of a static

register r ∈ Rstc can be also expressed by M r, i.e. a node is marked if M r= 1, and reset

if M r= 0. These concepts can be represented by the Petri nets in Figures 4.19a and 4.19b,

where the place C l 1 (M r 1) represents the state in which a logic (stati register) node is

evaluated (marked), while the the place C l 0 (M r 0) represents the state in which a logic

(static register) node is reset (reset). The transitions C l+ and C l- allow a logic node to

change its state, they can be fired depending on the conditions C↑ and C↓ (interconnected

with read arcs), respectively, as described in Equations 4.12. The transitions M r+ and

M r- allow a static register node to change its state, they can be fired depending on the

conditions M↑ and M↓, respectively, as described in Equations 4.13.

On the other hand, dynamic nodes (see Figures 4.19c and 4.19d) can be marked either

with True or False tokens. For such nodes, at least two Boolean variables are needed

to identify the three states of a dynamic register node: (1) node unmarked, (2) node

marked with a True token, (3) node marked with a False token. For a control register c,

74

Chapter 4. Scenario composition

(a) Logic nodes. (b) Static registers.

t
c

f
c

(c) Control registers.

p

t
c.PLAIN pp

f
c.PLAIN pp

(d) Push and pop registers.

Figure 4.19: Petri Net models of the Dataflow Structures nodes.

for example:

(1) c unmarked - The places M c 0, Mt c 0, and Mf c 0 contain a token. In this state,

the transitions Mt c+ and Mf c+ are enabled by the conditions M↑ ∧Mc
t/ f (via read

arcs). Only one of these transitions can fire, i.e. c can be marked either with a True

or a False token.

(2) c marked with a True token - The places M c 1, Mt c 1 and Mf c 0 contain a token. In

this state, the transition Mt c- is enabled, and can fire if the condition M↓ is satisfied,

leading c to be unmarked.

(3) c marked with a False token - The places M c 1, Mf c 1 and Mt c 0 contain a token.

In this state, the transition Mf c- is enabled, and can fire if the condition M↓ is

satisfied, leading c to be unmarked.

Notice that the transitions Mt c+ and Mf c+ are both enabled if •c ∩ Rctrl = ∅, i.e. a

data token that reaches a dynamic node, which is neither false- nor true-controlled, is

converted to a control token (True or False) via a non-deterministic choice.

The Petri net description of push an pop registers p is analogous to the PN description

of control registers, with the difference that the former can only implement the PLAIN

75

Chapter 4. Scenario composition

Figure 4.20: Petri net description of the DFS Filter in Figure 4.8c.

Boolean function. I.e. A register p can be marked with a True or False token if one of

the following conditions is satisfied, respectively: M↑ ∧Mc.PLAIN
t , and M↑ ∧Mc.PLAIN

f

As an example of conversion from DFS to PN, Figure 4.20 shows the Petri net

corresponding to the DFS model in Figure 4.8c. We refer the reader to [29] for a detailed

description of this example.

76

Chapter 4. Scenario composition

Figure 4.21: Screenshot of WORKCRAFT while handling the DFS digital camera model.

4.2.5 Design automation

The Dataflow Structures formalism has been implemented in the WORKCRAFT design

environment [33, 34]. The latter provides the following functions (see Figure 4.21):

Editing - Convenient editing of dataflow structures by means of the cross-platform

graphical user interface.

Performance analysis - Functional delay values can be assigned to the Dataflow

structure nodes. Such values are used to report the slowest paths of the circuits

and the bottleneck nodes. This information can be used to improve the circuit

performance. Figure 4.21 shows the performance analysis feature applied to the

DFS model of the reconfigurable noise filter, where the slowest delay has been

77

Chapter 4. Scenario composition

assigned to the HQ-filter node, whose name is highlighted in red. In the sub-

window “audio-dfs [DFS]”, the nodes that compose the slowest path of the model

are coloured in red: from the raw audio register, to the result via the HQ-filter. In

the “Tool control” windows, all the possible paths of the models are reported and

ranked by their throughput.

Encoding - Different scenarios, expressed with the presented Dataflow Structures, can

be encoded relying on the Boolean functions implemented in the control registers,

as we illustrated in Figure 4.18.

Hardware synthesis - The DFS model can be exported automatically into a Verilog

description of the corresponding asynchronous circuit, where the DFS nodes are

mapped to a library of pre-built components and are interconnected according

to the arcs described in the model. The implementation of such components

determines the characteristics of the final circuit. In Chapter 5.2, we show the

implementation style chosen for the designed asynchronous accelerator. Users can

also choose to convert DFSs into PNs, and synthesise a custom circuit using the

existing tools for PN logic synthesis, e.g. Petrify [54].

Formal verification - The DFS models are mechanically converted to Petri nets to

use the formal verification tools developed by the Petri net community. In

the sub-window “audio-PN [STG]”, the PN model of the reconfigurable audio

filter is shown, the colours of the DFS nodes match the colours of the boxes

surrounding the corresponding PN nodes. In WORKCRAFT, Petri nets can be

processed by MPSAT [76] that detects deadlocks or functional hazards. Users can

express the queries to run via MPSAT in Reach language [77]. In Figure 4.21, the

“Verification results” pop-up window informs that the DFS is deadlock-free and

output-persistent.

4.2.6 Related work

The Dataflow Structures is a Model of Computation (MoC), i.e. a set of laws that describes

the interaction of the components of a system. Interested readers can find the description

78

Chapter 4. Scenario composition

in

outtrue

ctrl outfalse

(a) Demultiplexer.

intrue

infalse

outctrl

(b) Multiplexer.

Figure 4.22: DFS models of a demultiplexer and multiplexer.

of a number of dataflow-based MoCs in [78]. In the next paragraphs, we relate the

presented Dataflow Structures formalism to similar existing MoCs available in literature.

In [25], Sparsø and Furber introduced the SDFS formal model, and showed how to

apply it to the description of asynchronous circuits at a high-level of abstraction. The

model is characterised by logic and register nodes, described in Section 3.4, and by

two further primitives meant to be passive to the handshake communication mechanism

and necessary to describe hardware reconfigurability: the demultiplexer and multiplexer.

These two nodes were not taken into consideration when the SDFS was formalised [26]

for not overcomplicating its behavioural semantics. With the dynamic extension that

we propose, demultiplexers and multiplexers can be described with the usage of

registers, see Figure 4.22 (these primitives are used in our second motivating example

in Section 4.2.1). This enables the semantics of the model to stay relatively simple as the

new nodes, being an extended types of registers, have similar behavioural equations.

The idea of using Boolean-controlled nodes for describing conditional behaviours in

data-flow graphs goes back to the 70s, when Dennis et al. described a dataflow MoC that

enables the representation of static and conditional behaviours [79]. Similarly to what we

elaborated, this model could handle both data and control types of tokens – data tokens

are used to abstract data values, while control tokens (based on Boolean conditions)

manage the topology, thereby the behaviour, of the model itself at runtime. Figure 4.23

shows the five nodes of this model as described in the original paper, • represents

data links for the propagation of data tokens, and ◦ represents control links for the

propagation of control tokens. The decider node takes two data tokens as input, tests

an internal predicate P and produces a control token (either True or False). The T-gate

and F-gate nodes behave as the shown push registers: they propagate the input data

79

Chapter 4. Scenario composition

P

(a) Decider.

T

(b) T-gate.

F

(c) F-gate.

^

^

!

(d) Boolean operator.

T F

(e) Merge.

Figure 4.23: Nodes of the MoC conceived by Dennis.

token to the output only if the input control token is satisfied (True for the T-gate, and

False for the F-gate), otherwise the input data token is consumed from the input link

and destroyed. The Boolean operator node computes Boolean operations over multiple

control tokens. Finally, the merge node behaves as a multiplexer, i.e. the input control

token selects which of the input data tokens have to be propagated to the output.

S
W
IT
C
H

in

ctrl

outtrue

outfalse

(a) Switch.
S
E
LE
C
T

out

ctrl

intrue

infalse

(b) Select.

Figure 4.24: Control-flow nodes the BDF MoC.

Another formalism based on this idea is the Boolean-controlled Dataflow (BDF) [80].

This model also handles both data and control types of tokens for managing the model

topology and describing conditional behaviours. The BDF extends the Synchronous

Dataflow (SDF) [81] formalism by introducing two primitives: switch and select, shown

in Figure 4.24, which practically behave as demultiplexers and multiplexers enabling the

description of conditional behaviours.

S
E
LE
C
T

out

S
W
IT
C
H

in

ctrl

comp

unused

cond

Figure 4.25: BDF description of the DFS model in Figure 4.10.

Unlike these MoCs, we argue that the nodes constituting the presented DFS formal-

ism are atomic, i.e. decomposing any of them would not give any advantage in terms

of representative capabilities. We already showed that the primitives representing de-

multiplexers, such as the above merge, switch and select, can be broken down into

80

Chapter 4. Scenario composition

DFS models made of registers, see Figure 4.22. This provide advantages in a number

of reconfiguration scenarios where, as an example, only one part of a system as to be

controlled (see our first motivating example in Figure 4.10). This latter case cannot be

modelled with the solely usage of a demultiplexer and multiplexer without incurring in

an unused part, see Figure 4.25.

It is also worth mentioning the Boolean Parametric Data Flow (BPDF) [82] formalism.

This is different with respect to the previously described models, as the control flow

is separated by the dataflow. Boolean conditions are paired to the model arcs stati-

cally (i.e. during the model description), and disable them if such conditions are not

satisfied – similarly to CPOGs. BPDF is supported by automated verification features

(e.g. liveness, boundedness), and efficient scheduling techniques to assign internal

operations to sequential or multi-core systems. BPDF, unlike the described DFS, is also

applied to scheduling of concurrent processes rather than to hardware design.

Push and pop registers, as shown in our motivating examples, provide data tokens

to their intermediate nodes (e.g. see comp in Figure 4.8c) only when their execution is

required, disconnecting them from the rest of the system otherwise. This idea takes

the name of operand isolation and was proposed in [83]. In this paper, the authors

propose two primitives – namely receive and send, formally described by the Three-

Valued Logic [84] – that can act as the presented push and pop registers and isolate

components of asynchronous circuits when not required for saving dynamic power.

Our work, in comparison, employs this concept at a higher level of abstraction reusing

formalisms that are well known to the asynchronous community. Also, the receive

and send primitives are only described behaviourally in [83], whereas, in Section 5.2,

we proposed a standard-cell based implementation for the push and pop registers that

can be employed out-of-the-box in asynchronous circuits functioning with the 4-phase

handshake protocol.

4.2.7 Summary

The presented DFS formalism abstracts away the implementation details of digital

circuits, providing an environment where engineers can focus on circuit functionality.

However, the described behavioural semantics can only be applied to circuits function-

81

Chapter 4. Scenario composition

ing with the 4-phase handshake protocol [25], i.e. a spacer interleaves between two valid

data values. The description of an additional semantics for circuits that make use of the

2-phase handshake protocol [25] is left for future research, see Section 6.2.

In this section, we described the new Dataflow Structures model, which extends the

Static Dataflow Structures with an additional set of nodes that we use to capture dynamic

behaviours of asynchronous circuits. Afterwards, we showed a possible simulation trace

of one of the used motivating examples. Finally, we presented the developed design

automation for converting DFS models into Petri nets and enjoying the existing back-

end tools for automated verification and hardware synthesis. In the Case studies Chapter,

we will show how to derive functional digital circuits from DFS models by mapping DFS

nodes to a gate-level library of combinational and sequential digital components. Our

final goal will be to design an asynchronous reconfigurable accelerator for the ordinal

pattern encoding.

4.3 Decomposition of system specifications

So far, we presented two novel approaches to behavioural composition of scenarios. In

the case of the CPOG, we described an algorithm for the efficient composition of partial

orders that supports real-life constraints. In the case of the DFS formalism, we extended

SDFSs with a set of nodes that enables one to compose static asynchronous scenarios

into dynamically reconfigurable asynchronous systems. In this section, we consider the

following problem:

Problem: Understanding systems that are made of concurrent processes is hard. In many

applications, it is convenient to untangle such systems into separate scenarios. Is it possible

to derive an automated procedure for decomposing complex concurrent systems into good-looking

and clear scenarios?

To answer this question, we present the Process Windows formalism, which enables

to decompose complex systems automatically via a custom set of rules. This section

is divided as follows. In Section 4.3.1, we describe the main idea behind this work by

expanding the description of our motivating example (see Section 2.3). In Section 4.3.2,

we formalise the definition of Process Windows. In Sections 4.3.3 and 4.3.4, we describe

82

Chapter 4. Scenario composition

the algorithms for decomposing a system into collections of windows, and for deriving

the conditions needed to orchestrate these windows, respectively. Applications and

examples of Process Windows are discussed in Section 4.3.5. Finally, we discuss the

related work in the field in Section 4.3.6.

This section reuses definitions, figures and tables of [31]. My main contribution in

this work is in Section 4.3.4: the automated generation of the Boolean equations for

controlling the windows, and the development of the Shutters tool [32].

4.3.1 The idea with an example

As discussed in the Motivation chapter (see Section 2.3), it is difficult to understand com-

plex system specifications constituted of many concurrent behaviours. Decomposing

such specifications into simpler scenarios would facilitate their understanding.

Our motivating example is reported in Figure 4.26 and summarised below. A

transition system (in Fig. 4.26a) and its corresponding Petri net (in Fig. 4.26b) are

decomposed into two simpler transition systems (in Fig. 4.26c) and their corresponding

Process windows w1 and w2 (in Fig. 4.26d). The latter representation includes two

Petri nets, whose behaviour is coordinated by the shown wake-up conditions and wake-

up marking equations.

The idea behind the decomposition process is that every window has to model a

part of the Transition System (TS), with the condition that the union of all the extracted

windows would recover the complete system functionality. In the motivating example,

w1 models the subset of states {s0, s1, s2, s3, s4, s5} (left-hand TS in Fig. 4.26c), while w2

models the subset of states {s0, s4, s6, s7, s8, s9} (right-hand TS in Fig. 4.26c). The union of

the two windows (i.e w1∪w2) recovers the initial TS in Fig. 4.26a {s0, · · · , s9}, while their

intersection (i.e. w1 ∩ w2) returns the overlapping states {s0, s4}, which are highlighted in

blue in Fig. 4.26c. Such states are important as they ‘bridge’ the two windows, i.e. they

enable the system to move from one window to another.

To clarify the above concepts, Figure 4.27 shows a graphical simulation of the

motivating example. Each window is transparent when it models the current state of

the TS, and it is opaque (grey) otherwise. An opaque window is not needed for modelling

the TS current state and can therefore forget its current marking. As an example, the

83

Chapter 4. Scenario composition

(d) Process windows w1 (left) and w2 (right).(c) Decomposed Transition system.

Wake-up condition: p5∧p8

Wake-up marking:
p0 = p7
p2 = p6
p3 = 1

Wake-up condition: p1∧p3

Wake-up marking:
p6 = p2
p7 = p0
p8 = 1

(b) Petri net.

(a) Transition system.

Figure 4.26: The motivating example.

two windows are both transparent when the TS is in the initial state s0 (i.e. both the two

windows model this state). From s0, the system can either move to s1 with the transition

p (s0
p→ s1) or to s6 with the transition c (s0 c→ s6). In the former case, w1 models the

state s1 and w2 becomes opaque. In the latter case, w2 covers the state s6 and w1 becomes

opaque. Every state of the TS is modelled by at least a window. The TS can move within

a window indefinitely (e.g. s0
p→ s1 x→ s2 a→ s4 b→ s0), but can only move to a different

window through an overlapping state such as s0 (e.g. s5 x→ s0 c→ s6).

4.3.1.1 Wake-up markings

Table 4.2 shows the markings of the Petri nets included in Process Windows in Fig. 4.26d

for representing every state of the TS in Fig. 4.26a. Each state of the system is covered

84

Chapter 4. Scenario composition

Figure 4.27: Simulation of the motivating example.

by at least one marking. When a window becomes opaque, the marking is forgotten (−)

as the window does not need to store the state of the TS. When a window wakes up (i.e it

becomes transparent), it recovers the TS current state from a previously active window.

Window w1, for instance, may become transparent either in the state s0 or s4, see

Fig. 4.27. When this happens, w1 observes the state of the remaining active windows (w2

in this case) to figure out its initial marking.

• w1 is initialised with {p0, p3}when it wakes up in s0 (the marking of w2 is {p7, p8}).

• w1 is initialised with {p2, p3}when it wakes up in s4 (the marking of w2 is {p6, p8}).

Via Boolean minimisation, we can derive that: (1) the place p3 needs to be always marked

when w1 wakes up (i.e. p3 = 1), (2) the place p0 needs to be marked only when w1 wakes

85

Chapter 4. Scenario composition

Table 4.2: States and net markings in Fig. 4.27.

State Marking of w1 Marking of w2

s0 {p0, p3} {p7, p8}
s1 {p1, p4} -
s2 {p1, p3} -
s3 {p2, p4} -
s4 {p2, p3} {p6, p8}
s5 {p0, p4} -
s6 - {p5, p8}
s7 - {p6, p9}
s8 - {p7, p9}
s9 - {p5, p9}

up in s0 (i.e. p0 = p7), and (3) the place p2 needs to be marked only when w1 wakes up

in s4 (i.e. p2 = p6).

Symmetrically, window w2 looks at the marking of w1 when it wakes up:

• w2 is initialised with {p7, p8}when it wakes up in s0 (the marking of w1 is {p0, p3}).

• w2 is initialised with {p6, p8}when it wakes up in s4 (the marking of w1 is {p2, p3}).

Via Boolean minimisation, we can derive that: (1) the place p8 needs to be always marked

when w2 wakes up (i.e. p8 = 1), (2) the place p7 needs to be marked only when w2 wakes

up in s0 (i.e. p7 = p0), and (3) the place p6 needs to be marked only when w2 wakes up

in s4 (i.e. p6 = p2). See these wake-up markings in Fig. 4.26d at the bottom of w2.

The above conditions (highlighted in bold in the above) are named wake-up markings,

and are shown at the bottom of the two windows in Fig. 4.26d.

4.3.1.2 Wake-up conditions

While wake-up markings initialise a window to model the current state of a TS, the wake-

up conditions evaluate to True in all the states where a window have to wake up.

Window w1 observes the marking of the other transparent window w2 to figure out

when to wake up. w1 wakes up either when w2 moves to s0 (marking {p7, p8}), or to

s4 (marking {p6, p8}), i.e.(p6∧ p8) ∨ (p6∧ p8). This can be simplified as p5∧ p8 via

Boolean minimisation.

On the other hand, window w2 observes the marking of the other transparent

window w1 to figure out when to wake up. w2 wakes up either when w1 moves to

86

Chapter 4. Scenario composition

s0 (marking {p0, p3}), or to s4 (marking {p2, p3}), i.e.(p0∧ p3) ∨ (p2∧ p3). This can be

simplified as p1∧ p3 via Boolean minimisation.

These conditions are also shown at the bottom of each window in Figure 4.26d in

our motivating example. In the next sections, we describe how to derive automatically

Process Windows, wake-up markings and wake-up conditions.

4.3.2 The Process Windows model

In this section, we formalise the description of Process Windows formalism, providing

its definition (see Definition 4.17), the rules for decomposing an LTS (see Definition 4.18),

the notation that we use for representing transitions between LTS states, and finally

the properties that one might want to enforce for having a set of “easy to understand”

windows. The provided definitions are based on the description of an LTS as reviewed

in the Background chapter of this dissertation, see Section 3.5.

Definition 4.17. (Process window) [31] - Given an LTS A = (S, T, L, s0), a process win-

dow (or simply window) of A is another LTS w = (Sw{⊥w}, Tw, Lw, s0w) such that:

• Sw ⊆ S, Lw ⊆ L and Tw ⊆ T. Lw (Sw) strictly contains the labels (states) paired to Tw.

• ⊥w /∈ S represents the inactive state.

• If s0 ∈ Sw, then s0w = s0, otherwise s0w =⊥w.

Intuitively, a window is a subset of states and transitions of an LTS. The rules for

decomposing an LTS into a set of windows are reported below:

Definition 4.18. (Window Decomposition) [31] - Given an LTS A = (S, T, L, s0), a Window

Decomposition (WD) of A is a set of LTS windows {w1, · · · , wn}, with wi = (Si ∪ {⊥i}, Ti, Li, s0i),

such that:

S =
⋃

i
Si, T =

⋃
i

Ti, L =
⋃

i
Li

Additionally, the following conditions hold for every wi:

• All ⊥i are different.

• The underlying graph induced by Ti is connected.

• Ti 6⊆ Tj for any i 6= j.

87

Chapter 4. Scenario composition

Intuitively, every state and transition of an LTS must be covered in a WD, and there

should not be any redundant windows, i.e. a window which is equal or contained by

another window.

A window decomposition W = {w1, · · · , wn} of an LTS A = (S, T, L, s0) is a set

of windows whose state (i.e. window marking) evolves depending on the transitions

that are triggered in the associated LTS. The state of a window decomposition W is

represented by a set of states ~s = (s1, · · · , sn), where si is the state of the window wi.

“There is a one-to-one correspondence between the states of W and the states of the associated

LTS. For every state sx ∈ S of an LTS, the associated state in W will be~sx = (s1, · · · , sn) such

that for every wi: si = sx if sx ∈ Si, and si =⊥i if sx 6∈ Si” [31].

As an example, the WD in Figure 4.26d, representing the transition system in

Figure 4.26a, may evolve as follows starting from the initial state~s0 = (s0, s0) (see also

simulation in Figure 4.27):

(s0, s0)
p→ (s1,⊥2)

a→ (s3,⊥2)
x→ (s4, s4)

b→ (s0, s0)
c→ (⊥1, s6) · · ·

Whenever a transition of the LTS is triggered, the WD moves to a different state where

each window is either modelling the LTS state (si) or sleeping (⊥i). When the transition p

is triggered, the WD moves to (s1,⊥2): w1 is in the state s1 and w2 is sleeping. The

window w2 wakes up when the transition x is triggered ((s3,⊥2)
x→ (s4, s4)), and its state

is initialised to s4. A WD can model its associated LTS indefinitely.

4.3.2.1 Structural properties

When a complex LTS has to be decomposed into a set of simpler windows, one might

want to derive specific classes of Petri nets that guarantee a graphically simpler scenario

specification [85], such as Marked Graphs [86] choice-free PNs [87], or free choice

PNs [88]. Following, we report three properties elaborated in [87] and [89], which we

use in our automated approach for extracting “easy-to-understand” windows.

Definition 4.19. (Forward and backward persistence) - Let t1 and t2 be two transitions ∈ T

of a given LTS. They are said to be forward persistent if the following condition holds:

∀s0 ∈ ES(t1) ∩ ES(t2), s.t. s0
t1→ s1 ∧ s0

t2→ s2 : s1 ∈ ES(t2) ∧ s2 ∈ ES(t1)

88

Chapter 4. Scenario composition

s0
a

b

b

a

s1

s3

s4

s2
x y

x

c c

e e
ix

s5

s6

s7

s8

s9 s10

s11

s12

s13

s14

s15

s16
y

c

z

s17

s18

b

a

d

y

Figure 4.28: To clarify Definitions 4.19 and 4.20, we show an LTS and describe its properties.
Transitions a and b are forward persistent (see blue shadow), but are not backward persistent (see
green shadow). The transitions c and e are not forward persistent, but are in forward free choice
(see red shadow). Lastly, the transitions c and z are neither forward persistent, nor in forward free
choice (see yellow shadow).

Symmetrically, the transitions are said to be backward persistent if the following condition holds:

∀s0 ∈ BES(t1) ∩ BES(t2), s.t. s1
t1→ s0 ∧ s2

t2→ s0 : s1 ∈ BES(t2) ∧ s2 ∈ BES(t1)

If two transitions are forward persistent, the execution of any of the two does not

disable the execution of the other one, which will be executed in the next iterations.

An LTS is said to be forward (backward) persistent, if every pair of transitions is forward

(backward) persistent.

Definition 4.20. (Free choiceness) - If two transitions t1 and t2 of an LTS are not forward

persistent, they are said to be in forward free choice if they are enabled in the same states, i.e.

ES(t1) = ES(t2). Symmetrically, if the two transitions are not backward persistent, they are said

to be in backward free choice if their execution lead to the same states, i.e. BES(t1) = BES(t2).

As an example, Figure 4.28 shows an LTS where the properties of the above

definitions are highlighted and described in the caption.

4.3.3 Extracting windows from system specifications

This section describes the algorithm for producing a window decomposition from a

given LTS. It was inspired by a technique used to extract LTS slices in the area of process

mining [85]. It is based on a SAT-formulation of the problem, which is solved by Pseudo-

Boolean Optimisation approach [90].

The SAT-formulation that we use is based on finding |T| Boolean variables, one for

each transition of a given LTS. Each window is identified by a subset of transitions t ∈ T.

89

Chapter 4. Scenario composition

The term W(T) identifies all the SAT properties Pi(T) that constitute the SAT formula,

which is used for deriving the window decomposition, see Equation 4.2.

W(T) = P1(T) ∧ P2(T) ∧ · · · ∧ Pn(T) (4.2)

The next sections describe the properties that can be enforced by inserting Boolean

constraints in the SAT formula.

4.3.3.1 Property 1: Forward and Backward Persistence

This property relies on Definition 4.19. It is important for deriving simple windows,

where there are no transitions that disable other transitions. Below, we report the Boolean

formulation of the property from [31].

“Let s, s1, s2 ∈ S and a, b ∈ L, with a 6= b, such that t1 = (s, a, s1) and

t2 = (s, b, s2). Let Ts2,a = {ti = (s2, a, si)|si ∈ S} be the set of transitions enabled

in s2 with transition a. Then the following constraints is added to the formula to

guarantee the persistence of a:

(t1 ∧ t2) =⇒ (ti1 ∨ · · · ∨ tik)

where ti1 , · · · , tik are the elements of Ts2,a. Notice that, by symmetry, this constraint

will also be applied for b’s persistence. It also works for non-deterministic LTSs in

which |Ts2,a| > 1. In case Ts2,a = ∅, the constraint is reduced to: t1 ∨ t2.”

Backward persistency-related constraint has a dual formulation that corresponds to

the forward persistency constraint when the direction of all transitions is reversed.

A forward and backward persistency constraint has to be inserted in W(T) for every

pair of transitions that are enabled in any state of the LTS.

4.3.3.2 Property 2: Determinism

To guarantee windows to be deterministic, one needs to enforce the transitions of all

non-deterministic states to move the state of an LTS to a state contained by a different

window. This can be achieved by imposing every window to contain at most one

transition of non-deterministic states.

90

Chapter 4. Scenario composition

4.3.3.3 Property 3: Connectedness

To guarantee the connectedness of every window, one needs to enforce every state to

have at least one incoming transition (tini), and at least one outgoing transition (touti).

This ensures that neither source nor deadlock states are created in a window. We report

below the formal constraint from [31]:

“Formally, for any state s ∈ S, we define Tin(s) = {tin1 , · · · , tinm} and

Tout(s) = {tout1 , · · · , toutm} as the set of incoming and outgoing transitions of s,

respectively. For any state in which Tin(s) 6= ∅ and Tout(s) 6= ∅, the following

constraint is added:

(tin1 ∨ · · · ∨ tinm)⇐⇒ (tout1 ∨ · · · ∨ toutm)

4.3.3.4 Algorithm: Window decomposition

Algorithm 4 describes the WindowDecomposition function, which takes an LTS as input

and returns a window decomposition.

Algorithm 4: Generation of a Window Decomposition.

1 Function WindowDecomposition (S, L, T, s0)

2 F ← SAT formula (4.1) ; // for property encoding

3 T′ = T ; // T′ contains the uncovered transitions
4 i← 1 ; // Window index
5 while T′ 6= ∅ do
6 Cost← ∑t∈T′ t ; // max uncovered transitions

7 Ti ← PseudoBooleanOptimization(F, Cost);
8 Ti ← LargestConnectedComponent(Ti);
9 Li ← The labels associated to Ti;

10 Si ← States from S adjacent to Ti;
11 sini ← s0 ∈ Si ? s0 : ⊥i;
12 wi = LTS(Si, Li, Ti, sini);
13 T′ ← T′\Ti;
14 i← i + 1;

15 return {w1, · · · , wn}; // The window decomposition

At the beginning of the function, the SAT formula is initialised with the properties

described in the above sections (see line 2). The set of uncovered transitions T′ contains

the transitions that are not yet covered by any of the previously extracted windows of

the derived WD. In line 3, T′ is initialised with all LTS transitions T.

91

Chapter 4. Scenario composition

In lines 5-14, a window is extracted by the set of uncovered transitions, until the

whole LTS is covered (termination is when T′ = ∅). The window extraction is guided

by the PseudoBooleanMinimisation function (see line 7), which takes as input the SAT

formula F and the variable Cost computed by the sum of all yet uncovered transitions,

and returns the transitions Ti that are selected to model the window wi. It is possible

that more than a single connected set of transitions is present in Ti. In this case, the

biggest connected component is returned by the LargestConnectedComponent function

(see line 8).

In lines 9-12, the window wi is built by considering the states and labels of the selected

transitions Ti. Also, the initial state sini is initialised to be either the initial of the LTS, or

to be in set of inactive states. If the latter is the case, the window is not needed to model

the initial state of the LTS and starts by being inactive.

Before proceeding to the next window i + 1 (see line 14), the extracted transitions are

removed from the set of uncovered transitions (see line 13). The algorithm returns the

final window decomposition (see line 15).

The decomposition of LTSs into window decompositions has been automated in the

Cats tool [91]. We used Minisat [66] as SAT solver, and the PBLib library [92] for Pseudo-

Boolean optimisation. We refer the reader to [31] for the proof of correctness of the

window decomposition algorithm.

4.3.4 Deriving window conditions

This section describes the developed technique for deriving the wake-up and wake-up

marking conditions automatically. These are needed to orchestrate the behaviour of

extracted windows of a system.

The derivation of these Boolean conditions has been automated in the developed

Shutters tool [32]. The conditions are derived by extracting truth tables that describe

the behaviour of the windows, and synthesising Boolean equations from such tables

using the tool Espresso [70]. The equations can be optionally refactored by relying on the

tool Abc [71].

92

Chapter 4. Scenario composition

4.3.4.1 Deriving wake-up conditions

Let Sw be the set of states modelled by a window w, with Sw being a subset of the

full set of states S of the LTS, i.e. Sw ⊂ S. The truth table entries of the wake-up

condition c(w, Sw) of the window w can be specified as:

• c(w, s) = 0, in all the states of the labelled transition system that are not included

in Sw, i.e. s 6∈ Sw. In these states, window w is off and does not have to wake-up.

• c(w, s) = 1, in all the states of the labelled transition system that enter the

window w, i.e. ∀s ∈ Sw : (∃s′ 6∈ Sw : s′ e→ s). In these states, window w has to

wake up and start modelling the LTS.

• c(w, s) = X, in all the other states that are contained in the window, but that cannot

be entered from the outside. In fact, we don’t care if the wake-up condition is either

True or False when a window is already on. Such values help minimise the final

wake-up conditions.

As an example, the truth table of the wake-up condition related to the windows in

Figure 4.26d are:

c(w1, Sw1) =

c(w1, s6) = 0, c(w1, s7) = 0, c(w1, s8) = 0, c(w1, s9) = 0

c(w1, s0) = 1, c(w1, s4) = 1

c(w1, s1) = X, c(w1, s2) = X, c(w1, s3) = X, c(w1, s5) = X

c(w2, Sw2) =

c(w1, s1) = 0, c(w1, s2) = 0, c(w1, s3) = 0, c(w1, s5) = 0

c(w1, s0) = 1, c(w1, s4) = 1

c(w1, s6) = X, c(w1, s7) = X, c(w1, s8) = X, c(w1, s9) = X

Since we use Petri nets to model transition systems, it is convenient to represent LTS

states with PN markings. The above truth tables can be thus represented as follows.

The above truth tables are synthesised to the conditions c(w1, Sw1) = p5∧ p8 and

c(w1, Sw1) = p1∧ p3 by using Espresso [70]. In the developed tool, we implemented the

positive mode, which generates conditions with only positive literals. It is, in fact, always

93

Chapter 4. Scenario composition

Marking (s) Boolean vector c(w1, Sw1)
{p5, p8} (s6) (1,0,0,1,0) 0
{p6, p9} (s7) (0,1,0,0,1) 0
{p7, p9} (s8) (0,0,1,0,1) 0
{p5, p9} (s9) (1,0,0,0,1) 0
{p7, p8} (s0) (0,0,1,1,0) 1
{p6, p8} (s4) (0,1,0,1,0) 1

otherwise otherwise X

Marking (s) Boolean vector c(w2, Sw2)
{p1, p4} (s1) (0,1,0,0,1) 0
{p1, p3} (s2) (0,1,0,1,0) 0
{p2, p4} (s3) (0,0,1,0,1) 0
{p0, p4} (s5) (1,0,0,0,1) 0
{p0, p3} (s0) (1,0,0,1,0) 1
{p2, p3} (s4) (0,0,1,1,0) 1

otherwise otherwise X

possible to synthesise conditions where no literals are negated, since every state of the

LTS is identified by a net marking, i.e. the final wake-up condition can be the result of the

OR-wise Boolean operation of all the states where a window has to wake-up, see below.

c(w1, Sw1)pos = s0∨ s4 = (p7∧ p8) ∨ (p6∧ p8)

c(w2, Sw2)pos = s0∨ s4 = (p0∧ p3) ∨ (p2∧ p3)

The above equations can be refactored by using Abc [71], and the following simpler

conditions can be derived: p8∧ (p7∨ p6), and p3∧ (p0∨ p2), respectively.

4.3.4.2 Deriving wake-up marking conditions

We use a similar approach to derive the wake-up marking conditions. Let m(w, p, s) be

the wake-up marking of a place p in a window w in a state s. Its truth table can be

formulated as follows:

• m(w, p, s) = 0, if we can enter the window w in the state s, and the place p is

unmarked. E.g. in Fig. 4.27, it is possible to enter w1 in the state s0, and the

places {p1, p2, p4} are unmarked.

• m(w, p, s) = 1, if we can enter the window w in the state s, and the place p

is marked. E.g. in Fig. 4.27, it is possible to enter w1 in the state s0, and the

places {p0, p3} are marked.

• m(w, p, s) = X otherwise. We are only interested in detecting whether a place p

should be marked when a window w is entered.

As an example, the truth tables related to the wake-up marking conditions of the

places {p0, p2, p3} are shown in the above tables. These can be used to synthesise the

94

Chapter 4. Scenario composition

Marking (s) Boolean v. m(w1, p0, s)
{p7, p8} (s0) (0,0,1,1,0) 1
{p6, p8} (s4) (0,1,0,1,0) 0

otherwise otherwise X

Marking (s) Boolean v. m(w1, p2, s)
{p7, p8} (s0) (0,0,1,1,0) 0
{p6, p8} (s4) (0,1,0,1,0) 1

otherwise otherwise X

Marking (s) Boolean v. m(w1, p3, s)
{p7, p8} (s0) (0,0,1,1,0) 1
{p6, p8} (s4) (0,1,0,1,0) 1

otherwise otherwise X

following wake-up marking conditions for window w1 in Figure 4.26d: p0 = p7, p2 = p6

and p3 = 1, respectively.

4.3.5 Applications of the model

Process Windows are important for simplifying the understanding of concurrent system

specifications, as discussed in the Motivation Chapter of the thesis. In this section, we

discuss a couple of applications that benefit from this presented formalism.

Asynchronous hardware design

Asynchronous circuits are a particular class of hardware systems that do not rely on

timing assumptions. Their sequential elements, rather than synchronising on a periodic

signal (commonly named CLOCK), communicate via handshake mechanisms based on

causality dependencies. Every internal component functions whenever the data is

available at the input, and produces results at the output, making the whole system truly

concurrent. This type of systems are typically represented by models that can express

concurrency, e.g. Partial Orders, Signal Transition Graphs, Petri Nets, Dataflow graphs

(all models that we introduced and dealt with previously).

However, even by using one of these models, system specifications can become

difficult to understand. Consider, for example, the STG-based system specification of

a controller for a power buck converter [14] in Figure 4.29a. This specification has been

obtained by careful analysis of the controller by the designer, who analysed its behaviour

and drew the STG specification by separating three different scenarios.

Designing the STG in Figure 4.29a is a difficult task. To prove this, we show the

STG specification derived automatically from the LTS of the controller by Petrify [54],

95

Chapter 4. Scenario composition

(a) Specification derived manually.

(b) Specification derived automatically by Petrify.

Figure 4.29: STG specifications of a buck controller.

see Figure 4.29b. From this specification, it is arguably more difficult to identify internal

system scenarios and understand the behaviour of the controller.

On the other hand, Figure 4.30 shows the scenario specification extracted automati-

cally from the controller transition system in Figure 4.29b by means of the methodology

based on Process Windows. The three scenarios identified by the presented algorithm

for window decomposition (in Section 4.3.3) match the ones identified by the designer

in Figure 4.29a. The derived wake-up marking conditions (derived by the approach in

Section 4.3.4) are the same for the three scenarios: a token is placed in the arc oc-→zc+,

which corresponds to the left-most place in Figure 4.29a where the scenarios start.

The wake-up conditions, in turn, monitor this overlapping state where the execution

of these three scenarios is triggered. In this case, the PW methodology is successful

by substantially reducing the effort required by the designer to understand a complex

specification.

In the context of hardware design, this methodology can be also useful for reducing

the effort required to synthesise circuits of complex specifications. The established

96

Chapter 4. Scenario composition

(a) ‘ZC late’ scenario.

(b) ‘ZC absent’ scenario.

(c) ‘ZC early’ scenario.

Figure 4.30: STG specification of a buck controller derived by the PW methodology.

technique for automated synthesis of asynchronous controllers based on STGs [55], in

fact, cannot handle large specifications, as we will show in the Case studies Chapter.

Whenever Petrify [54] fails, one option would be to extract internal scenarios and

synthesise them in isolation. Finally, the extracted wake-up and wake-up marking

equations can be used for switching between scenarios in the final implementation.

Process mining

We believe that the presented Process Windows can also provide significant advantages

in the area of Process Mining, e.g the discovery of process models from (software)

execution traces (or logs). In many cases, models mined by logs of complex systems are,

in turn, difficult to read and understand as they represent the systems as a whole. We

argue that these models would benefit by the presented flow for splitting event-based

systems into scenarios. Following, we describe an example for highlighting this idea.

Consider the log of a computer program in Figure 4.31(left), and the corresponding

Labelled Transition System on the right-hand side of the Figure. The LTS describes the

behaviour of the program by its output.

Figure 4.32 shows the Petri net synthesised automatically by Petrify [54] using the

theory of regions and label splitting. The PN describes all relations between the

behaviours of the system, but it is difficult to understand since such behaviours are

97

Chapter 4. Scenario composition

Traces:

adeac

acdbeacb

abceac

acbdecab

adeca

acbeca

a

aa
c

d

e

c d

d

b

bb
c e

a

a
c c

c

e
a

a
c

c
b

Figure 4.31: Log of traces and Labelled Transition System.

a

c

b

d

b

d

c

b

d

e

a

e

c

Figure 4.32: Petri net of the program log synthesised automatically by Petrify.

represented in the same structure.

Figure 4.33a shows the windows extracted via the algorithm presented in Sec-

tion 4.3.3, w1 to w3 from the left to the right. The execution traces of the program are

well defined, and easier to understand than when the log was represented via a LTS or

a Petri net. In addition, one could compose the three scenarios of the system back again

into a CPOG in order to emphasise the common events between the three scenarios.

Figure 4.33b shows the CPOG obtained by the composition of the three scenarios by

using the one hot encoding {(w1, 100), (w2, 010), (w3, 001)}. For example, by activating

the second window (code 010), the events b and c are disabled and the CPOG behaves as

the w2. The fundamentals of the CPOG methodology are in Chapter 3.

4.3.6 Related work and summary

We presented the new Process Windows formalism, and showed a couple of applications

that can benefits from the capabilities of this new formalism. To conclude, we briefly

98

Chapter 4. Scenario composition

a a

a c

e

b c

a c

e

a

d

c

d

e

a c

b

b

(a) Extracted windows.

:w2

:w2

a

c
b

d
e

a c

b:w1

:w3

(b) Window overlay with CPOG.

Figure 4.33: The program log represented via the methodology based on Process Windows.

describe the related work in the field.

Process Windows have been inspired by [85], where a technique for extracting

scenarios from software logs to derive process models is presented. However, while

in [85] each log trace is fully covered by at least one scenario, this is not the case for our

approach where a log trace can travel across multiple scenarios to be covered.

The idea of using scenarios for simplifying system understanding originates by an

investigation of how scenarios are used in different fields [47]. In the context of hardware

design, for example, there are other methodologies that are based on scenarios, such as

the ones introduced in this dissertation based on CPOGs and DFSs, or the one based on

Parameterised graphs [61]. In the area of system protocols, the Message-Sequence Charts [93]

and the Live Sequence Charts [94] are widely used scenario-based approaches. In these,

scenarios are specified via sequence of messages exchanged between functional units of

a system. These methodologies are supported by automated software synthesis features,

and can be specified by well-known programming languages such as C++. Finally, it’s

also worth mentioning Oclets [95] that use Petri nets for describing scenarios and anti-

scenario (i.e. behaviours that do not have to occur) of a system; Untanglings [96] that

represent the behaviour of a system by its acyclic partial runs. Untanglings are used for

model checking rather than for system specification. And Structured Occurrence Nets [97],

which can specify relations betweens scenarios. The scenarios of all these approaches,

however, need to be specified by hand. They are not extracted automatically as in PW.

99

Chapter 5

Case studies

In the previous Chapter, we presented our contributions in the area of scenario-

based design. We described a new approach for composing scenarios efficiently; the

Dataflow Structures formalism that enables one to compose static dataflow scenarios of

asynchronous circuits; and the Process Windows formalism that enables the automated

decomposition of complex system specification into simpler scenarios.

In this chapter, we show the importance of scenarios on three real-life case studies

that also validate some of our previous contributions. In Section 5.1, we evaluate the new

scenario composition approach by synthesising various types of control architectures. In

Section 5.2, we present a DFS-based methodology to design reconfigurable asynchronous

pipelines, and use it to design a hardware accelerator (also relying on CPOGs). In

Section 5.3, we present an FPGA accelerator for computational drug discovery, where the

scenarios of systems are too many to be specified, but yet they all need to be processed.

We refer the reader to Figure 1.3 for a diagram of the dependencies of the next sections.

5.1 Control synthesis

In Section 4.1, we described how to employ the presented scenario composition tech-

nique for composing scenarios (expressed as partial orders) into a CPOG. The latter ben-

efits from automated behavioural synthesis features to derive digital hardware controllers.

100

Chapter 5. Case studies

s2: Unconditional branch

s1: Arithmetic instruction

Figure 5.1: A CPOG-based processor specification comprising two instructions.

In this section, we compare this proposed composition technique to other existing

approaches to scenario composition (reviewed in Section 4.1.2), and to existing high-level

approaches that make use of automated behavioural synthesis techniques to produce

hardware controllers (which will be reviewed shortly in Section 5.1.1).

For this comparison, we consider a wide set of benchmarks coming from three do-

mains: ad-hoc controllers, processor instruction sets and process mining in Sections 5.1.3,

5.1.4 and 5.1.5, respectively. All these benchmarks are included in the higher level

domain of control architectures, i.e. components that have to control parts of a system. The

experimental setup and notation used for benchmarking are discussed in Section 5.1.2.

The content of this section has been published in [27, 28].

5.1.1 Related work

Behavioural synthesis is not new and several other approaches exist that allow the

designer to formally describe the behaviour of a control hardware architecture and syn-

thesise the corresponding hardware implementation. The two most relevant approaches

are: the work by Cortadella et al. [55] that is based on Signal Transition Graphs (STG)

as the formal specification model for synthesising asynchronous controllers; and the

work by De Micheli [98] that uses synchronous Finite State Machines (FSM) to derive

controllers implemented as microcode memories or hard-wired control units.

In [53], CPOGs were compared to STGs and FSMs in terms of their compactness and

ease of use when specifying asynchronous circuits. Below we highlight the main reasons

for using CPOGs in the broader context of scenario-based synthesis.

• The separation of datapath (scenarios) and control (encoding) abstraction layers

101

Chapter 5. Case studies

S1

S2

(a) Binary encoding on one bit b. The arithmetic instruction scenario s1 can be executed when there is a token
in the place b = 0, while the unconditional branch scenario s2 when there is a token in the place b = 1. The
go+ signal starts the scenarios.

S1

S2

(b) One-hot encoding on two bits {b0, b1}. The arithmetic instruction scenario s1 is executed when the signal
b0+ fires, while the unconditional branch scenario s2 when the signal b1+ fires.

Figure 5.2: STGs of the processor specification in Figure 5.1. Two types of encoding are used as
interface to run the internal scenarios.

102

Chapter 5. Case studies

enables scenarios to remain unchanged when the encoding changes.

• Underlying partial orders can efficiently represent highly concurrent systems

without incurring exponential state explosion.

• Scenario composition allows CPOGs to remain compact even when the size of the

specification grows.

• Opportunity to minimise various design criteria (e.g. area, power, latency) by

scenario encoding, which is our main goal.

In this section, we compare CPOGs, STGs and FSMs practically by synthesising real

scenario-based specifications. Our benchmarks highlight that: (1) the STG methodology

does not scale to specifications that include many scenarios, (2) the presented approach

shows better results than the FSM methodology.

As an example of specifications, Figures 5.2 and 5.3 show STGs and a FSM models of

the processor scenarios in Figure 4.2b. In these figures: red transitions are the inputs of

the designed controller, blue ones are the outputs and green ones (present only in STGs)

are dummy transitions (used only to simplify models). The prefixes ‘r ’ and ‘a ’ stand

for ‘request’ and ‘acknowledge’, respectively.

In the STGs in Figure 5.2, the two scenarios are mutually excluded via the choice

place p1, and the causality dependencies of their operations are modelled via sequences

of request/acknowledge transitions. Two types of specifications are shown: in Fig-

ure 5.2a, scenarios are encoded by the binary encoding (the same one that we used in

the CPOG in Figure 4.3); in Figure 5.2b, scenarios are encoded by the one-hot encoding

(the go signal is removed, as it is redundant for starting the scenarios). The STG with the

binary encoding is more complex due to the higher number of signals and transitions,

and cannot be handled by the corresponding tool-chain for hardware synthesis (this

will be shown shortly). Thus, we compared the experimental results produced by the

proposed algorithm to one-hot encoding STGs. STG specifications are handled by the

EDA tools Petrify [54] and MPSat [76], which synthesise asynchronous implementations

using different algorithms. Petrify uses binary decision diagrams [55], while MPSat uses

Petri net unfoldings [99].

103

Chapter 5. Case studies

b=1
r_fetch+

go+

s0

r_fetch+

go+
b=0

r_all-
go-

r_saveMEM+
a_ALU+r_loadA+

a_decode+

r_loadB+ r_ALU+

a_loadA+
a_loadB+

done+
a_saveMEM+

s1 s2 s3 s4 s5 s6

r_all-
go-

done-
a_all-

s13

S1

s11

r_decode+
a_fetch+

r_savePC+
a_ALU+

done+
a_savePC+

r_loadA+
a_decode+

r_ALU+
a_loadA+

s7 s8 s9 s10 s12

S2

r_decode+
a_fetch+

Figure 5.3: FSM (with binary encoding) of the processor specification in Figure 4.2b.

In the FSM specification in Figure 5.3, the two scenarios are selected via one bit b

observed at the rising edge of the go signal, which starts the computation. Upon the

completion of each scenario, all output requests r all are reset, and the FSM returns to the

initial state s0 when all input acknowledgements a all are also reset. In our experiments,

FSM specifications are handled by Design Compiler [100] that derives synchronous

controllers. We applied concurrency reduction [53] to some of the considered FSM

specifications not to incur state explosion. All used benchmarks are available online [68].

5.1.2 Configuration and notation for benchmarking

The experimental results that we present (see Tables 5.1, 5.2 and 5.3) have been obtained

on an Intel-i7-3610QM 2.30GHz CPU, equipped with 8 GB DDR3 1600 MHz RAM

memory. Benchmarks are:

1. Specified in the form of partial orders in WORKCRAFT [34], and synthesised

by the developed tool SCENCO [68] using the CPOG composition and synthesis

mechanism.

2. Specified as STGs in WORKCRAFT, and synthesised by Petrify [54] and MPSat [76].

3. Specified as synchronous FSMs in VHDL, and synthesised by Synopsys Design

Compiler [100].

The same 90nm gate library is used for technology mapping.

For presenting the experimental results, we use the following notation. #e denotes

the number of encodings generated and synthesised by the proposed algorithm. The

104

Chapter 5. Case studies

Over current ZC absent

Zero Crossing (ZC) early
ZC late

Figure 5.4: Scenario-based specification of a power management controller of a buck converted.

smallest controller out of these is shown as result. Area (|B|) denotes the area [µm2]

of the resulting controller, with the number of bits used for encoding in brackets. RT

denotes the tool runtime [s], which is the time that goes from parsing the specification to

obtaining the final implementation. We only consider results produced within a runtime

of 1 hour, denoted in turn as timeout TO. Finally, we use the dash character ‘−’ when

a behavioural synthesis approach cannot be applied to a benchmark due to a technical

issue, in this case we explain the reasons of the failure in the evaluation paragraphs.

Controllers derived by FSM and STG include sequential components (registers and

C-elements, respectively) for holding system states. In the results, we only consider the

combinational part of the controllers for not penalising them in the final evaluation.

5.1.3 Ad-hoc controllers

The first set of benchmarks includes an on-chip power management controller of a buck

converter [14], and an asynchronous controller for the reconfigurable pipeline of our

produced hardware accelerator, described in Section 5.2.

The power management controller is required to regulate the activation of the

PMOS (gp) and NMOS (gn) transistors in response to three signals coming from sensors

within the power regulator: over-current (oc), under-voltage (uv) and zero-crossing (zc).

The two transistors must never be on at the same time to avoid a short circuit. In

Section 3.3.1, we described part of its specification in the form of STGs. In Figure 5.4,

on the other hand, we show the four specification scenarios in the form of partial orders

105

Chapter 5. Case studies

Table 5.1: Comparison of CPOG scenario encoding algorithms over the ad-hoc controller
benchmarks. Units of measure: Area (|B|) = [µm2] (number of bits).

Model |S| Exhaustive Single-literal SAT-based Proposed
#e = 10

Buck controller 4 266 (2) 261 (3) 266 (2) 266 (2)
Processor controller 13 TO 357 (12) TO 481 (4)

that compose the controller, and describe two of these scenarios below.

Zero Crossing (ZC) absent scenario: when the uv condition is detected (event uv+),

the NMOS transistor must be switched off (event gn-) and the PMOS has to be

subsequently switched on (event gp+).

ZC late scenario: The same two operations (switching off and on the transistors NMOS

and PMOS, respectively) have to be performed if the condition zc is detected right

after the condition uv.

The controller of the fabricated dataflow processor has to handle a 16-stage reconfig-

urable pipeline for computing the ordinal pattern encoding of long data streams (we will

describe this calculation in Section 5.2.1). The controller manages the energy-quality

of the result by controlling the number of active pipeline stages. It is an important

case study, as it was fabricated in an ASIC and tested. Three of its 13 scenarios that

compose the reconfigurable pipeline are specified below in the text-form, i.e. the scenario

s1 activates 4 pipeline stages, the s2 activates 5 stages, up to the scenario s13 that activates

all 16 stages of the pipeline, see the corresponding partial orders in Figure 2.3.

s1 = stage1→ stage2→ stage3→ stage4

s2 = stage1→ stage2→ stage3→ stage4→ stage5

...

s13 = stage1→ stage2→ · · · → stage16

Evaluation: Table 5.1 shows the results upon application of the state-of-the-art encoding

algorithms. The Single-literal encoding produces a 1.9% smaller buck controller in

comparison to other approaches, and uses one more variable than needed (|B| = 3). On

106

Chapter 5. Case studies

2 variables, the optimal controller is generated by the Exhaustive search by definition.

Such a controller is also achieved by the SAT-based and by the proposed Heuristic

algorithm.

The reconfigurable pipeline controller is not produced within the considered timeout

by the Exhaustive and the SAT-based algorithms, due to the complexity of the cor-

responding scenario specification. The Single-literal controller is ' 25.8% smaller

than the controller produced by the proposed encoding technique, and uses 3× more

variables. The final design implements the controller produced by the proposed

encoding technique, as the final design was constrained by the pins of the external

package.

The runtime of the tool for processing the above benchmarks is always less than 1 s.

5.1.4 Processor instruction sets

The second set of benchmarks includes different subsets of instructions of the ARM

Cortex M0+ [27], Texas Instruments MSP430 [40] and Intel 8051 [12, 24]. These

processor specifications were derived by analysing their corresponding ISA reference

manuals, and identifying classes of instructions (specification1 scenarios) that share

similar functionalities and addressing modes.

In regards to the design of real processors, the above manual scenario extraction

approach is not ideal to obtain accurate specifications. However, recent research on

specification languages for processor architectures (see Section 4.1.1.1) enables to fully

specify the behaviour of modern systems comprising hundreds of instructions, and

to derive accurate specifications for synthesising real processors. In this context, the

presented algorithm is important as it scales well to hundreds of scenarios (as we show

in Section 5.1.5) making the CPOG-methodology suitable to the design of such modern

systems.

We fully describe the ARM Cortex M0+ scenario specification in [27] (also see

Appendix A). This processor has an ISA constituted of 68 instructions. The specification

composed of 11 scenarios and 6 datapath modules (scenario operations) models 61 of

these instructions. As an example, two scenarios of the specification are shown in
1See the difference between specification, implementation, and activation scenarios in Chapter 2.

107

Chapter 5. Case studies

Arit/Log (Imm.)

Load (Reg.)

Figure 5.5: Two scenarios of the ARM Cortex M0+ specification.

Figure 5.5 and described below.

Load (reg.) covers the LDR (reg.) instruction. The ALU operation computes the memory

address, the MAU loads a value from the memory and stores it into a specified

register. The IFU fetches a new processor instruction.

Arit/Log (Imm.) covers arithmetical, logical and data transfer instructions with imme-

diate addressing, e.g. ADD (imm.), LSR (imm.). An immediate value is fetched

from the instruction register (PCIU → IFU), and used as operand for the selected

operation (ALU). The result is stored into a specified register. The ALU operation

is executed concurrently with the program counter incrementation (PCIU/2). The

resulting PC is used for fetching a new instruction (IFU/2).

Cond. ALU op. #123 to RnALU op. #123 to Rn

Figure 5.6: Two scenarios of the Texas Instruments MSP430 specification.

The Texas Instruments (TI) MSP430 scenario specification has been introduced in [40].

The specification composed of 8 scenarios and 7 datapath modules models the full

instruction set composed of 51 instructions. This benchmark is important as some of

its scenarios have conditional elements. As an example, two of its scenarios are shown

in Figure 5.6 and described below:

ALU op. #123 to Rn executes an arithmetic operation between two general purpose

registers {A, B}, and writes the result back into one of them (ALU). Operations

PCIU→ IFU fetch a new instruction concurrently.

108

Chapter 5. Case studies

Cond. ALU op. #123 to Rn executes the above arithmetic operation between two gen-

eral purpose registers {A, B} conditionally (ALU/2), on the condition le = A < B

set by the ALU. The flag le is input to the synthesised controller, and is used for

managing the activation of ALU/2.

The second scenario is said to be conditional, and can be described in the form of a

CPOG. Conditional scenarios can be composed regularly with other scenarios, see [23]

for further details.

The Intel 8051 specification supported the design of an asynchronous version of this

processor [12]. It comprises 37 scenarios and 17 datapath modules that model 255

processor instructions. It is important to the CPOG validation, as it contains 3× more

scenarios and 2×more operations than the other processor benchmarks.

Evaluation: Table 5.2 shows the results of the applied state-of-the-art CPOG encoding

algorithms to the described set of processor benchmarks. This set is also used to compare

the proposed algorithm based on CPOGs to the methodologies based on FSMs and STGs,

as it is the most diverse set being characterised by (1) specifications of different sizes

(from 4 to 37 scenarios), (2) specifications with conditional scenarios (see TI MSP430),

(3) specifications comprising a different number of datapath modules (from the ARM

processor with 6, to the Intel with 17). For these reasons, it is able to highlight the

characteristics of all used approaches to behavioural synthesis.

The Exhaustive search produces the smallest instruction decoders using dlog2|S|e
variables. In practice, it is applicable to specifications that contains up to 8 scenarios,

as its runtime increases exponentially with the specification size.

The Single-literal encoding produces the smallest instruction decoders in most of the

cases when it does not exceed the time limit. However, synthesised decoders might not

be applicable to real processors, as the code size |B| is fixed by the algorithm rather than

by the processor (op)code specifications.

The SAT-based encoding produces decoders with an average overhead of ' 7.4% in

comparison to Exhaustive decoders. The current implementation does not support

scenarios in the form of CPOGs (see missing results − in the TI MSP430 rows).

The runtime of the SAT-based and Single-literal approaches increase exponentially

(exceeding the timeout) when |S| grows.

109

M
od

el
|S
|

Ex
ha

us
ti

ve
Si

ng
le

-l
it

er
al

SA
T-

ba
se

d
Pr

op
os

ed
Pr

op
os

ed
FS

M
(s

eq
.e

nc
od

.)
ST

G
(o

ne
-h

ot
en

co
d.

)

#e
=

10
co

ns
tr

.,
#e

=
10

dc
sh

el
l

Pe
tr

if
y

/M
PS

at

A
re

a
(|B
|)

R
T

A
re

a
(|B
|)

R
T

A
re

a
(|B
|)

R
T

A
re

a
(|B
|)

R
T

A
re

a
(|B
|)

R
T

A
re

a
(|B
|)

R
T

A
re

a
(|B
|)

R
T

4
16

2
(2

)
1

17
7

(4
)

1
16

2
(2

)
1

16
2

(2
)

2
16

7
(2

)
1

19
3

(2
)

5
26

5
/

20
0

(4
)

51
/

93

5
17

9
(3

)
16

2
20

2
(5

)
1

20
1

(3
)

1
18

2
(3

)
2

19
2

(3
)

2
22

7
(3

)
7

24
3

/
24

2
(5

)
47

/
29

5

6
20

1
(3

)
52

4
19

8
(5

)
1

22
5

(3
)

3
20

1
(3

)
2

24
1

(3
)

2
30

3
(3

)
7

−
/

26
3

(6
)
−

/
27

0

A
R

M
7

20
9

(3
)

10
51

19
8

(5
)

1
22

5
(3

)
3

22
6

(3
)

2
24

9
(3

)
2

31
6

(3
)

7
−

/
31

9
(7

)
−

/
40

9

C
or

te
x

8
18

0
(3

)
10

05
16

5
(5

)
2

22
4

(3
)

2
22

4
(3

)
2

23
0

(3
)

2
34

5
(3

)
7

−
/

34
3

(8
)
−

/
98

1

M
0+

9
TO

TO
22

0
(5

)
1

26
9

(4
)

1
22

4
(4

)
2

23
5

(4
)

2
45

7
(4

)
6

−
/

45
6

(9
)
−

/
22

32

10
TO

TO
21

8
(5

)
1

23
2

(4
)

1
24

1
(4

)
2

25
2

(4
)

2
46

7
(4

)
10

−
/

TO
−

/
TO

11
TO

TO
21

2
(5

)
1

24
6

(4
)

2
24

9
(4

)
2

27
9

(4
)

2
49

8
(4

)
7

−
/

TO
−

/
TO

4
15

4
(2

)
1

17
7

(4
)

1
−

−
15

4
(2

)
2

17
1

(2
)

1
28

8
(2

)
5

29
2

/
TO

(4
)

11
9

/
TO

Te
xa

s
5

17
4

(3
)

16
2

18
1

(6
)

1
−

−
18

0
(3

)
2

19
3

(3
)

1
29

4
(3

)
7

−
/

TO
−

/
TO

In
st

ru
m

en
ts

6
18

9
(3

)
48

9
19

1
(7

)
2

−
−

20
5

(3
)

2
23

5
(3

)
1

38
4

(3
)

7
−

/
TO

−
/

TO

M
SP

43
0

7
25

2
(4

)
10

59
22

3
(8

)
1

−
−

27
6

(3
)

2
29

3
(3

)
2

37
6

(3
)

7
−

/
TO

−
/

TO

8
29

9
(4

)
11

45
30

4
(8

)
1

−
−

32
1

(3
)

2
34

5
(3

)
2

39
0

(3
)

6
−

/
TO

−
/

TO

4
17

5
(2

)
1

16
6

(3
)

1
17

5
(2

)
1

17
5

(2
)

2
17

5
(2

)
1

24
0

(2
)

7
−

/
TO

−
/

TO

5
17

5
(3

)
16

5
17

0
(4

)
1

18
9

(3
)

1
17

8
(3

)
2

19
3

(3
)

2
33

5
(3

)
7

−
/

TO
−

/
TO

6
21

4
(3

)
52

1
19

6
(5

)
1

23
5

(3
)

1
22

6
(3

)
2

22
4

(3
)

1
37

7
(3

)
7

−
/

TO
−

/
TO

7
23

4
(3

)
11

11
24

2
(6

)
1

23
9

(3
)

1
24

0
(3

)
2

26
0

(3
)

1
42

2
(3

)
7

−
/

TO
−

/
TO

8
29

5
(3

)
11

45
26

7
(7

)
1

TO
TO

30
2

(3
)

2
31

2
(3

)
2

49
8

(3
)

7
−

/
TO

−
/

TO

9
TO

TO
28

6
(8

)
1

30
3

(4
)

13
32

2
(4

)
2

34
7

(4
)

2
51

9
(4

)
10

−
/

TO
−

/
TO

In
te

l8
05

1
10

TO
TO

46
4

(9
)

2
TO

TO
33

5
(4

)
2

36
8

(4
)

2
56

5
(4

)
10

−
/

TO
−

/
TO

15
TO

TO
TO

TO
TO

TO
67

9
(4

)
2

73
6

(4
)

2
94

3
(4

)
12

−
/

TO
−

/
TO

20
TO

TO
TO

TO
TO

TO
82

2
(5

)
2

84
2

(5
)

2
11

87
(5

)
15

−
/

TO
−

/
TO

25
TO

TO
TO

TO
TO

TO
11

47
(5

)
3

12
02

(5
)

3
15

19
(5

)
17

−
/

TO
−

/
TO

30
TO

TO
TO

TO
TO

TO
13

76
(5

)
4

14
50

(5
)

4
18

79
(5

)
20

−
/

TO
−

/
TO

35
TO

TO
TO

TO
TO

TO
16

90
(6

)
4

17
41

(6
)

4
21

59
(6

)
21

−
/

TO
−

/
TO

37
TO

TO
TO

TO
TO

TO
18

79
(6

)
4

20
37

(6
)

4
23

36
(6

)
20

−
/

TO
−

/
TO

Ta
bl

e
5.

2:
Th

e
pr

op
os

ed
al

go
ri

th
m

is
co

m
pa

re
d

w
it

h
ex

is
ti

ng
C

PO
G

co
m

po
si

ti
on

te
ch

ni
qu

es
,

an
d

w
it

h
th

e
FS

M
an

d
ST

G
sy

nt
he

si
s

ap
pr

oa
ch

es
ov

er
26

pr
oc

es
so

r
in

st
ru

ct
io

n
se

t
be

nc
hm

ar
ks

.
Bo

ld
re

su
lt

s
ar

e
th

e
sm

al
le

st
co

nt
ro

lle
rs

fo
r

ea
ch

m
od

el
.

U
ni

ts
of

m
ea

su
re

:
A

re
a

(|B
|)

=
[µ

m
2](

nu
m

be
r

of
bi

ts
),

R
un

ti
m

e
(R

T)
=

[s
].

Chapter 5. Case studies

b3 b4 b1 b2

b2

b4

b4
b4
b3

b4b3

b
4

b
4

b4 b3

b4 b1

(a) Proposed encoding.

b1 b2

b
4

b
4

b2 b4 b3

b4b2

b3 b4
b1 b4

b1 b2 b4

b1 b2 b1 b3 b4

b2 b3 b4
b1 b3

b3

b1

b1
b2

(b) Random encoding.

Figure 5.7: ARM Cortex M0+ system specifications in the form of CPOG.

On average, the Proposed encoding produces implementations with an area overhead

of ' 4.5% in comparison to optimal solutions. It scales to higher number of scenarios

(see Intel 8051 results), and supports scenarios in the form of CPOGs (see TI MSP430

results). The runtime is always within the timeout. As an example, Figure 5.7a shows

the ARM system specifications obtained by composing its 11 constituent scenarios via

the proposed encoding, and Figure 5.7b shows the one derived via the random search

algorithm. The ‘proposed’ CPOG contains shorter conditions φ, which is why the

corresponding controller has also a smaller size.

We also run the Proposed encoding by constraining
⌈
|S|
2

⌉
scenarios of every processor

specification randomly, using {0, 1, ?, X}. The resulting decoders always satisfy the

composition constraints given, and have an overhead of ' 12.4%, on average, in

comparison to optimal implementations.

Finally, we used the behavioural synthesis approaches based on Finite State Ma-

chines (FSM) and Signal Transition Graphs (STG) to show that the proposed methodology

shows better results in comparison to these established techniques in the field. The

approach based on synchronous FSM and Design Compiler (known as dc shell in the

Synopsys tool-chain) is always able to synthesise controllers from the given specifica-

tions with the usage of the sequential encoding. Synthesised implementations show an

average area overhead of' 56% in comparison to the proposed unconstrained approach.

The processing runtime is comparable.

111

Chapter 5. Case studies

On the other hand, the methodology based on STG is never able to synthesise imple-

mentations from the given specifications with the sequential encoding. The results shown

on the table are derived with the one-hot encoding, which simplifies the specifications by

replacing the go transitions and their dependencies with the codes, see all benchmarks

in [68]. However, even after this simplification, the methodology is not often successful.

In most cases, Petrify returns the error “support too big for minimisation” (see missing

results − on the left-hand side of the STG column), and MPSat does not find a solution

within the given time limit (see TO entries on the right-hand side). MPSat is partially

successful with the ARM Cortex M0+, whose scenarios include fewer datapath modules

(6 compared to the 17 modules of the Intel 8051) and which does not include conditional

scenarios (as the TI MSP430). On average, the methodology based on STG has an area

overhead of ' 43% in comparison to the proposed unconstrained approach, and a much

higher synthesis runtime.

5.1.5 Software output logs

The third set of benchmarks includes scenario specifications that describe a set of differ-

ent software output logs [101]. They come from the process mining community: artificial

logs derived from the simulation of a process model (BigLog1, Log2, Caise2014), and

real-life traces in different other contexts (purchasetopay, incidenttelco, svn log,

telecom, documentflow).

Due to the size of these benchmarks (from 16 to 651 scenarios), we compare the

Proposed encoding to the Sequential encoding and Random search, as the other CPOG

algorithms always exceed the time limit. The proposed encoding is applied in three

configurations: (a) #e set to 1 , (b) #e set to 10 , (c) with #e = 1 and the Simulated

Annealing parameters modified in such a way to allow ×10 more iterations for the

optimisation (SA ×10).

Evaluation: On average, the area of the controllers found by the proposed encoding in

configurations 1 and (2) are 4.7% (9.8%) more efficient, in terms of area, than sequential

controllers, and 12.9% (18%) more efficient than random controllers. In turn, the results

produced by the proposed encoding in configuration 3 are 13.2% and 21.7% more

efficient, on average, than the sequential and random implementations, respectively.

112

M
od

el
|S
|

Se
qu

en
ti

al
R

an
do

m
se

ar
ch

(a
)P

ro
po

se
d

(b
)P

ro
po

se
d

(c
)P

ro
po

se
d

#e
=

1
#e

=
10

#e
=

1,
SA
×

10

A
re

a
(|B
|)

R
un

ti
m

e
A

re
a

(|B
|)

R
un

ti
m

e
A

re
a

(|B
|)

R
un

ti
m

e
A

re
a

(|B
|)

R
un

ti
m

e
A

re
a

(|B
|)

R
un

ti
m

e

Bi
gL

og
1

16
50

3
(4

)
1

53
0

(4
)

1
49

5
(4

)
1

38
9

(4
)

2
44

7
(4

)
1

(S
)P

ur
ch

as
et

op
ay

20
58

1
(5

)
1

71
3

(5
)

1
50

2
(5

)
1

43
4

(5
)

3
54

6
(5

)
1

Bi
gL

og
2

26
95

3
(5

)
1

90
6

(5
)

1
69

9
(5

)
1

56
5

(5
)

3
56

8
(5

)
1

Lo
g2

32
11

63
(5

)
1

12
71

(5
)

1
96

9
(5

)
1

82
5

(5
)

3
81

5
(5

)
1

In
ci

de
nt

te
lc

o
77

35
31

(7
)

1
34

90
(7

)
1

29
53

(7
)

1
29

27
(7

)
6

26
13

(7
)

1

(M
)S

vn
lo

g
92

32
15

(7
)

1
32

74
(7

)
1

29
28

(7
)

1
27

69
(7

)
5

23
63

(7
)

2

Te
le

co
m

12
2

44
17

(7
)

1
46

44
(7

)
1

41
23

(7
)

1
42

37
(7

)
7

39
38

(7
)

2

C
ol

ib
ri

lo
g

16
7

68
70

(8
)

2
77

77
(8

)
2

72
12

(8
)

3
67

89
(8

)
11

68
52

(8
)

6

C
ai

se
20

14
40

1
37

31
4

(9
)

11
38

33
9

(9
)

11
37

23
4

(9
)

14
37

18
0

(9
)

11
5

35
61

6
(9

)
32

(L
)L

og
1-

fil
te

re
d

40
2

13
91

0
(9

)
3

20
21

5
(9

)
4

18
21

2
(9

)
6

18
00

4
(9

)
46

14
34

3
(9

)
31

D
oc

um
en

tfl
ow

65
1

21
13

1
(1

0)
8

25
22

2
(1

0)
8

24
70

0
(1

0)
12

24
62

3
(1

0)
11

2
22

64
6

(1
0)

57

Ta
bl

e
5.

3:
Th

re
e

co
nfi

gu
ra

ti
on

s
of

th
e

pr
op

os
ed

al
go

ri
th

m
ar

e
co

m
pa

re
d

w
it

h
tr

iv
ia

l
C

PO
G

co
m

po
si

ti
on

te
ch

ni
qu

es
on

11
so

ft
w

ar
e

ou
tp

ut
lo

gs
di

vi
de

d
in

(S
)m

al
l,

(M
)e

di
um

an
d

(L
)a

rg
e

si
ze

s.
Bo

ld
re

su
lt

s
ar

e
th

e
sm

al
le

st
co

nt
ro

lle
rs

fo
r

ea
ch

m
od

el
.

U
ni

ts
of

m
ea

su
re

:
A

re
a

(|B
|)

=
[µ

m
2](

nu
m

be
r

of
bi

ts
),

R
un

ti
m

e
(R

T)
=

[s
].

Chapter 5. Case studies

On average, the Sequential encoding produces ' 8.56% smaller controllers in com-

parison to the Random search algorithm. Such a good result is due to a certain degree of

similarity between pairs of subsequent scenarios, which are encoded naturally by pairs

of subsequent and similar codes by the Sequential algorithm.

In Table 5.3, the benchmarks are divided in three sets of different sizes, from the

bottom to the top: (S)mall (10 < |S| < 30), (M)edium (30 < |S| < 400) and (L)arge

(400 < |S| < 652). See below consideration:

Small set, configuration 2 of the proposed encoding finds the best results, as the higher

number of encodings inspected (#e = 10) provides a higher chance to produce a

good result. The increased number of SA iterations of configuration 3 is not justified

in this set due to the small |S|.

Medium set, configuration 3 finds the best results, as the higher |S| justifies a longer

optimisation time provided to the Simulated Annealing optimisation.

Large set, configuration 3 finds smaller controllers in comparison to configurations 1

and 2. However, these benchmarks highlight the heuristic (inaccurate) component

of the proposed approach, which may find worse controllers in comparison to

trivial algorithms. For this set, a higher number of SA iterations would be justified

for obtaining good results.

This set of benchmarks shows that the proposed approach can handle specifications of

hundreds of scenarios. Also, it can be tuned as much as needed by modifying the time

for the SA optimisation.

5.1.6 Conclusion

In this section, we evaluated the novel scenario composition approach (described in

Section 4.1) on an extensive set of benchmarks, and also compared it to the state-of-

the-art composition algorithms for CPOG, and to the behavioural synthesis techniques

based on FSM and STG.

Table 5.4 summarises the comparison of all CPOG composition techniques, relying on

the experimental results shown previously. The proposed algorithm, unlike the already

114

Chapter 5. Case studies

Table 5.4: Features of the CPOGs compositional algorithms. Max |S|: maximum number of
scenarios supported. CPOG-scenarios: support of scenarios in the form of CPOG. Constraints:
support of composition constraints.

Exhaustive SAT-based Single-literal Proposed
Max |S| 8 ' 10/15 ' 10/15 ' 650

CPOG-scenarios
√ √ √

Constraints
√

existing techniques, handles hundreds of scenarios with a good area/synthesis runtime

trade-off, and supports composition constraints. It also supports conditional scenarios

for modelling behaviours that contain dynamic branching. Also, the experimental results

highlight that the CPOG methodology produces more efficient implementations (in

terms of area) than the approaches based on FSMs and STGs. The latter can be applied

only to relatively compact models.

5.2 Reconfigurable asynchronous pipelines

In Section 4.2, we presented the Dataflow Structures formalism, and showed that it

can be used for modelling the behaviour of dynamically reconfigurable asynchronous

circuits by describing their constituent static scenarios and then composing them.

In this section, on the other hand, we validate the Dataflow Structures by designing an

asynchronous accelerator that is meant to compute the Ordinal Pattern Encoding (OPE),

introduced in Section 5.2.1. The accelerator relies on a pipeline that can be dynamically

reconfigured for performing a set of OPE computations of different sizes. Imple-

mentation scenarios have been fundamental for the design of this pipeline, where

the number of active stages is decided at runtime by a control logic derived from

CPOGs. Sections 5.2.2 and 5.2.3 describe a methodology based on the DFS to model

and implement reconfigurable asynchronous pipelines, and applies it to the OPE case

study. Our prototype implements both a static and a reconfigurable pipeline, and

has been fabricated on an Application Specific Integrated Circuit (ASIC). The chip is

evaluated in Section 5.2.4: the two pipelines are compared for highlighting advantages

and drawbacks of asynchronous dynamic reconfigurability. The related work in the field,

consisting of existing approaches to design dataflow pipelines, and conclusion are finally

115

Chapter 5. Case studies

discussed in Section 5.2.5. Part of the content of this section has been/will be published

in [29, 30].

We conclude our introduction with a couple of clarifications. Another solution

for accelerating the ordinal pattern encoding would be to use Field Programmable

Gate Arrays (FPGA) and static reconfigurability. The latter is different than dynamic

reconfigurability, as hardware architecture changes are achieved via total or partial

circuit re-synthesis rather than via extra on-board control logic. In our work, we focus

on studying dynamic asynchronous reconfigurability, and therefore we do not compare

our ASIC accelerator to FPGA implementations. However, we refer the reader to two

papers where ASIC and FPGA characteristics are compared [102, 103] for highlighting

the differences between these platforms.

Also, it is not in the scope of our work to compare our asynchronous accelerator to

its synchronous counterpart, as our goal is to validate the proposed Dataflow Structures

that is meant to improve asynchronous design. Synchronous and asynchronous circuits

have been extensively compared in literature under many perspectives – e.g. in terms

of power consumption [104], performance [105], resilience [106] – and their advantages

and drawbacks are known [25]. Also, the style of implementation that we chose for our

design (Null Convention Logic [107]) has been studied and compared to synchronous

logic [108, 109]. Thus, we believe that one more comparison would be redundant.

5.2.1 Introduction to ordinal pattern encoding

Let X be a series of numbers in the form of {x1, x2, · · · , xN}. The ordinal pattern

encoding of X is the permutation π = {k1, k2, · · · , kN} such that the series of num-

bers X′ = {xk1 , xk2 , · · · , xkN} is in ascending order (i.e. xk1 ≤ xk2 ≤ · · · ≤ xkN), e.g. let X

be {5, 2, 10}, then its OPE π is {2, 1, 3} such that X′ = {2, 5, 10}.
The OPE finds application in different areas where the analysis of numerical series is

important: from stock market prediction, to medical data analysis. In these applications,

its purpose is to detect repetitive patterns within long data streams in order to predict

future data values. To be really effective and discover hidden patterns within a stream,

however, the OPE needs to be applied to subsets of a series with different sizes.

116

Chapter 5. Case studies

Index Window OPE (π)

1 (3, 1, 4, 1, 5) (3, 1, 4, 2, 5)

2 (1, 4, 1, 5, 9) (1, 3, 2, 4, 5)

3 (4, 1, 5, 9, 2) (3, 1, 4, 5, 2)

4 (1, 5, 9, 2, 6) (1, 3, 5, 2, 4)

For example, the above table shows the application of the OPE to every subset (or

window) of size 5 of the series {3, 1, 4, 1, 5, 9, 2, 6}. At the start of the computa-

tion (Index 1), the first window of the series {3, 1, 4, 1, 5} is processed and the result

is {3, 1, 4, 2, 5}. Afterwards, the index of the window is increased (Index 2) and the

second window {1, 4, 1, 5, 9} is processed resulting in {1, 3, 2, 4, 5}. At the end of the

stream (Index 4), the final window {1, 5, 9, 2, 6} is processed and the result is {1, 3, 5, 2, 4}.
The results are different, indeed, if the same data stream is processed by considering

a window of size 6, see below.

Index Window OPE (π)

1 (3, 1, 4, 1, 5, 9) (3, 1, 4, 2, 5, 6)

2 (1, 4, 1, 5, 9, 2) (1, 4, 2, 5, 6, 3)

3 (4, 1, 5, 9, 2, 6) (3, 1, 4, 6, 2, 5)

In this section, we apply the DFS methodology to the design of an asynchronous

accelerator for performing a range of OPE computations of different window sizes via

dynamic hardware reconfiguration. Our design has been inspired by [35], where a

hardware-oriented (i.e. sorting-free) algorithm capable of computing the ordinal pattern

encoding is presented.

To avoid sorting, every incoming window of a series is converted into a Lehmer code.

Let W be a window {w1, w2, · · · , wN}, the Lehmer code L of W is {l1, l2, · · · , lN}, where

li = #{wj : i < j ∧ wj < wi}. In practice, every value of L represents the number of

positions that the corresponding value in W must be delayed to make the window sorted.

For example, the Lehmer code of the window {3, 1, 4, 1, 5} is {2, 0, 1, 0, 0}. From the right

to the left, w3 has to be delayed of 1 position first (i.e. the window becomes {3, 1, 1, 4, 5}),

117

Chapter 5. Case studies

< < < < <

+ + + + +0

series

code

input registers

comparators

adders

Lehmer registers

in

stage 1 stage 2 stage N

Figure 5.8: The N-stage pipeline for computing the OPE. The data stream is propagated through
the input registers, whose values are compared by the comparators to the latest incoming value hold
in the in register. The adders sum the comparator results with the results of the preceding pipeline
stages stored in the Lehmer registers, whose values are compressed into the final code.

and subsequently w1 has to be delayed of 2 positions: {1, 1, 3, 4, 5}.
The Lehmer code can be used to obtain the OPE [35], and can be computed in

hardware efficiently by relying on the following two properties:

1. If L(W) = (l1, l2, · · · , lN), then the Lehmer code of W ′ = (w2, · · · , wN) (where the

oldest value of the window is removed) is L(W ′) = (l2, · · · , lN). In other words,

the value of li is independent by older values of the stream wk, where k < i.

2. If L(W ′) = (l2, · · · , lN), then the Lehmer code of W ′′ = (w2, · · · , wN , wN+1) (where

a new value enters the window) is L(W ′′) = (l+2 , · · · , l+N , 0), where:

l+i =

li + 1 if wi > wN+1

li otherwise

Intuitively, the Lehmer bit of the most recent value (lN+1) is always 0, while the

remaining bits have to be increased by 1 (i.e. such values need to be delayed by

one more position to make this window sorted) if their corresponding window

values (wi) are bigger than the new one (wN+1).

In [35], these above properties are used to elaborate a hardware approach to compute

OPEs of incoming data streams very efficiently. The Lehmer code of each window is

computed by relying on comparators, half-adders, and registers. The produced result is

118

Chapter 5. Case studies

reused to compute the Lehmer code of the next window. Figure 5.8 shows the schematic

of this algorithm [35], where the squares (�) represent registers storing data values and

circles (©) represent operations between such values. Each value of the incoming data

series propagates through the input registers. At every cycle, the new incoming value

of a window (in register) is compared to all the remaining values of the window. Each

comparator generates a logic ‘1’ if in is smaller than the window value, otherwise it

generates a ‘0’. The comparator results are added to the results of the previous stages,

which are stored in the Lehmer registers. Such registers hold the Lehmer code of the

current window. In our implementation, the values of such registers are compressed into

the output code, which can be used to compute the OPE of the whole data stream. In the

figure, we highlight the stages of the pipeline. The number of active stages determines

the size of the OPE computation, e.g. 5-stage pipeline computes the OPE of size 5.

The described hardware architecture is an optimal testbench to validate the formal

model that we proposed in Section 4.2, namely Dataflow Structures. DFS models are

capable of modelling dynamic reconfigurability of asynchronous circuits, which is what

we need to design an accelerator for processing OPE of different sizes via pipeline depth

reconfiguration. In the next sections we present a methodology to design asynchronous

reconfigurable pipelines, and apply it to the OPE case study.

5.2.2 Modelling reconfigurable asynchronous pipelines

Figure 5.9a shows a generic pipeline structure comprising N stages, which interface to

each other via local channels (dashed arcs), and are connected to the common input in

and aggregated output out via global channels (solid arcs).

A DFS model for a pipeline stage is shown in Figure 5.9b. It applies a function f to

the tokens in the local in1 register (input data from the previous stage local output)

and produces a token in the local out register (local output data for the next stage).

The produced token, paired with the common input token in global in and the global

output of the previous register in local in2, are passed to a function g, which produces

a global out token, used to aggregate the output of all stages.

As for the OPE case study, one typical reconfiguration scenario for such a pipeline is to

change its depth (i.e. the number of stages) depending on the application requirements.

119

Chapter 5. Case studies

(a) Generic N-stage pipeline.

(b) Static pipeline stage.

(c) Reconfigurable pipeline stage.

Figure 5.9: Pipeline with local and global stage interfaces.

120

Chapter 5. Case studies

We design a reconfigurable generic pipeline that is capable of using a given number

of initial stages, bypassing the remaining ones. Figure 5.9c shows our DFS design

of a reconfigurable pipeline stage. The stage local input is implemented as a pair of

push registers local in1 and local in2 controlled by the local ctrl structure. The

global in and global out are push and pop registers, respectively, controlled by the

global ctrl structure. Both local ctrl and global ctrl are 3-register loops (the

minimum number of registers required for a token oscillation). To include a stage into the

reconfigurable pipeline, these control loops need to be initialised with the True tokens;

to exclude it – with the False tokens. Note that a token starts oscillating in local ctrl

only if the previous stage is included in the pipeline and global in operates as a static

register – this is done to prevent the stage operation when the previous stage is inactive.

The model of the OPE reconfigurable pipeline

Using the DFS-based static and reconfigurable pipeline stages described previously,

Figure 5.10 shows our DFS model of the reconfigurable OPE pipeline.

The pipeline works as in the schematic shown in Figure 5.8. The incoming data tokens

of numerical series propagate through the pipeline via the local in1 and local out

registers of the stages, and are compared (by the logic node <) to the new incoming

data item (in the data register) that propagates to the global in register of each stage.

The result of the comparison is added (by the logic node +) to the OPE delay result of

the previous stage (coming from the local in2 register) and stored into the global out

register of each stage. The global out registers store the OPE delay values, which are

aggregated into the final code register.

In the example of this figure, the first stage s1 is always included and is therefore

implemented in the static style; the remaining stages are reconfigurable. Note that

the stage s2 is optimised by reusing global ctrl to control both the local and global

interfaces, which is possible because s1 is always included in the pipeline and its

global in is a static register, not a push.

Using the developed WORKCRAFT plugin, the DFS model of the reconfigurable OPE

pipeline can be visually simulated and formally verified at the abstract technology-

independent level where data is represented by abstract tokens. Several cases of

121

re
co

nf
ig

ur
ab

le
 fa

no
ut

 (
se

e
F

ig
. 5

.1
3)

pu
sh

 r
eg

is
te

r
(s

ee
 F

ig
. 5

.1
4b

)
ha

lf-
ad

de
r

(s
e

e
F

ig
. 5

.1
2)

st
at

ic
 r

eg
is

te
r

(s
ee

 F
ig

. 5
.1

4a
)

po
p

re
g

is
te

r
(s

ee
 F

ig
. 5

.1
4c

)

Fi
gu

re
5.

10
:T

he
D

FS
m

od
el

of
th

e
re

co
nfi

gu
ra

bl
e

O
PE

pi
pe

lin
e,

fr
om

1
to

N
st

ag
es

th
at

co
rr

es
po

nd
s

to
th

e
O

PE
w

in
do

w
si

ze
.T

he
m

od
el

ha
s

be
en

de
ri

ve
d

by
th

e
ef

fic
ie

nt
co

m
po

si
ti

on
of

st
at

ic
an

d
re

co
nfi

gu
ra

bl
e

pi
pe

lin
e

st
ag

es
(d

es
cr

ib
ed

in
Fi

g.
5.

9)
.

T
he

fir
st

st
ag

e
s1

is
st

at
ic

as
it

is
al

w
ay

s
pr

es
en

t,
w

hi
le

th
e

re
m

ai
ni

ng
st

ag
es

ca
n

be
di

sa
bl

ed
by

th
e

co
rr

es
po

nd
in

g
co

nt
ro

lr
eg

is
te

rs
.

N
ot

ic
e

th
at

th
e

se
co

nd
st

ag
e

s2
ha

s
be

en
op

ti
m

is
ed

,a
nd

th
e
l
o
c
a
l
c
t
r
l

co
nt

ro
lr

eg
is

te
rs

ha
ve

be
en

re
m

ov
ed

as
th

e
pr

ec
ed

in
g

st
ag

e
s1

is
al

w
ay

s
ac

ti
ve

.
Th

e
gr

ey
-s

ha
de

d
co

nt
ro

lr
eg

is
te

rs
ar

e
ne

ed
ed

to
co

or
di

na
te

th
e

be
ha

vi
ou

r
of

th
e

pi
pe

lin
e

in
th

e
m

od
el

,b
ut

ar
e

su
bs

ti
tu

te
d

by
a

co
m

bi
na

ti
on

al
co

nt
ro

l
un

it
(d

es
cr

ib
ed

in
Se

ct
io

n
5.

1.
3)

in
th

e
fin

al
ha

rd
w

ar
e

im
pl

em
en

ta
ti

on
.

In
Se

ct
io

n
5.

2.
3,

w
e

sh
ow

th
at

th
e

D
FS

m
od

el
ca

n
be

m
ap

pe
d

to
a

di
gi

ta
lc

ir
cu

it
us

in
g

a
lib

ra
ry

of
as

yn
ch

ro
no

us
co

m
po

ne
nt

s,
an

d
de

sc
ri

be
a

fe
w

ex
am

pl
es

on
th

e
ke

y
pa

rt
s

of
th

e
pi

pe
lin

e,
e.

g.
re

co
nfi

gu
ra

bl
e

fa
no

ut
.

Chapter 5. Case studies

M
o
re

 a
cc

u
ra

cy

Scenario1

Le
ss

 e
n
e
rg

y

Scenario2

Scenario13

(a) Implementation scenarios of the OPE-pipeline.

in out

select

common functionality

scenario1

scenario2

scenario13

(b) Efficient composition.

select

outin

1

2

13

2

13

1scenario1

scenario2

scenario13

(c) Inefficient composition.

Figure 5.11: The scenarios of the OPE-pipeline, and two approaches to their composition.

deadlock and non-persistent behaviour (mostly due to incorrect initialisation of control

registers) were identified, analysed and corrected during the design process.

The model of the pipeline has been obtained by composing the static and reconfig-

urable pipeline stage templates shown in Figure 5.9. The composition is said to be

efficient (see Figure 5.11b) because the functionality of each stage is reused in all the

implementation scenarios where a pipeline stage is included, e.g. stage 7 is synthesised

once and used whenever one has to compute the OPE with size ≥ 7, i.e. for all si in

4 ≤ i ≤ 13, see Figure 5.11a. As opposed to the inefficient scenario composition approach

(see Figure 5.11c), where each scenario of the pipeline is synthesised in isolation, causing

stages to be synthesised multiple times. The number of active pipeline stages determines

the size of the OPE computation, and consequently also the quality (i.e. seen as the

capability of analyse longer series) and energy consumption of the chip, see Figure 5.11a.

123

Chapter 5. Case studies

ab

c

(a) XOR gate.

c

ab

(b) AND gate.

1-bit
half-adder

1-bit
half-adder

cin op[0] op[1] op[N-1]

coutres[0] res[1] res[N-1]

XOR AND

(c) N-bit half-adder.

1-bit half-adder

Legend:

1-rail
0-rail dual-rail signals}

input signalsred

output signalsblue

Figure 5.12: Implementation of an asynchronous dual-rail N-bit half-adder, with NCL-D gates.

5.2.3 Implementing reconfigurable asynchronous pipelines

The DFS model was translated into a circuit implementation netlist using a library of

pre-built NCL-D style asynchronous dual-rail components (comparator, half-adder, and

a set of registers) that rely on the 4-phase communication protocol [107]. A conventional

flow was subsequently employed for technology mapping, layout, and place-and-route

tasks. Here, we describe the implementation of some of these components, which can be

reused as IP blocks for other circuits that make use of the same style and protocol.

As an example of a combinatorial logic node, the circuit behind the N-bit half-adder

embedded in the OPE stages (node + in Figure 5.10) is shown in Figure 5.12. Its purpose

is to increment the result of the previous stage (op operand contained in the local in2

register) by the comparator result (cin operand in the node <), which can either be

a logic 0 or 1. The N-bit half-adder is implemented as a chain of 1-bit half-adders

(see Figure 5.12c) made of NCL-D XOR and AND gates (see Figures 5.12a-b). In the

schematics shown in this section, pins highlighted in red are the input signals, and the

ones in blue are the output signals. Dual-rail signals have their pins coloured as black

124

Chapter 5. Case studies

out
r

p1 p2 pNp3
in

ctrl

ctrl

M(p)

M(r)

cNc3c2

(a) Reconfigurable interconnections.

out
r

p1 p2 pNp3
in ctrl

M(r)

c c

c

M(p)

(b) Distributed reconfiguration.

Figure 5.13: Asynchronous reconfigurable fanout implementations.

and white pairs, the former represents the 0-rail and the latter represents the 1-rail, see

legend at the bottom of Figure 5.12.

While logic nodes are passive to the handshake mechanism, register nodes have

an active role. Their implementation is at the core of asynchronous reconfiguration

mechanisms. Figure 5.13 shows two approaches to implement the handshake between r

(data node in Figure 5.10) and its N reconfigurable fanout registers p (global in nodes)

representing the pipeline stages. The pipeline can be shortened by disabling the latest

push registers, e.g. if the pipeline depth is 2: {p1, p2} are enabled, if it is 3: {p1, p2, p3}
are enabled, and so on.

In the approach in Figure 5.13a, all registers (including push and pop) are mapped

to the N-bit static register implementation in Figure 5.14a, which enables the usage of 4-

phase dual-rail asynchronous communication under the delay-insensitive timing model,

as described in [110]. The ctrl input enables a register, and it is omitted for the

static registers in Figure 5.13a that are indeed always enabled. The M(r) output is the

register marking state, while the M(p) input is the marking state coming from the R-

postset of r. In this approach, the fanout reconfiguration is controlled by modifying the

125

Chapter 5. Case studies

M(r)

in[0]

in[N-1]

out[0]

out[N-1]

ctrl

M(p)

(a) N-bit static register.

M(r)

N-bit
static
register

ctrl

in[0]

in[N-1]

out[0]

out[N-1]

M(p)

M(q)

(b) N-bit push register.

ctrl

M(r)

N-bit
static
register

in[0]

in[N-1]

out[0]

out[N-1]

M(p)

(c) N-bit pop register.

Figure 5.14: Static and dynamic register implementations.

acknowledgement interconnection between registers, i.e. the registers p are connected

to r through a daisy chain of C-elements and a multiplexor. The latter selects which

marking state M(p1, · · · , pN) to consider according to the number of push registers

enabled by ctrl, e.g. if 3 stages are enabled, the multiplexor propagates the output

of the C-element c3: M(p1, p2, p3), see grey part in Figure 5.13a.

In the approach in Figure 5.13b, on the other hand, the reconfiguration mechanism

is distributed across the implementation of push and pop registers. In this approach,

static registers are mapped to the structure in Figure 5.14a, and push and pop registers

are mapped to Figures 5.14b and 5.14c, respectively. At the core of both the N-bit

push and pop registers there is a static register. Push registers are extended with extra-

logic (highlighted in green) that allows them to behave as static registers when enabled

(ctrl = 1), and to propagate an ‘empty’ marking state M(r) driven by the R-preset

126

Chapter 5. Case studies

marking state M(q) when disabled (ctrl = 0), see Figure 5.14b. Pop registers, in turn,

also extend the static register implementation with extra-logic (in green) that allows them

to behave as static registers when enabled, and propagate an ‘empty’ data value out

encoded by a logic 0, driven by their R-postset marking state M(p), when disabled, see

Figure 5.14c. This approach allows the interconnection of r and its fanout registers p

via a tree of C-elements for the propagation of the fanout marking state M(p1, · · · , pN),

see grey part in Figure 5.13b. Notice that the implementation of push and pop registers

can be customised to accommodate application needs, e.g. pop registers propagating a

logic 1 as ‘empty’ output data value.

The proposed implementation of push and pop registers allows them to behave as the

corresponding nodes of the DFS formalism. Hence, one can place such registers at the

input and output of a block/scenario, as in Figure 4.18, to isolate this from unnecessary

switching activity when not in use. In literature, this approach is referred to as operand-

isolation, and can save large amount of dynamic circuit power [83]. The reconfigurable

interconnections approach does not make use of such elegant implementations of

push and pop registers, but achieves the same goal by dynamically reconfiguring the

interconnections between static registers.

Our prototyped OPE chip makes use of the reconfigurable interconnections approach

to implement all internal reconfiguration scenarios, e.g. final code aggregation. The

chip evaluation (see Section 5.2.4) highlighted a delay in the computation caused by the

daisy chain of C-elements, which led us to design the improved distributed reconfiguration

approach for avoiding this issue in future prototypes. This latter approach has two

practical advantages: (a) it is more scalable due to the tree of C-elements that has a

logarithmic latency with respect to the number of pipeline stages, and due to the lack

of the multiplexor. (b) It is more flexible, as push and pop registers can acknowledge

‘empty’ marking states and data values when disabled. This enables such registers to be

disabled in any order without affecting interconnections to their preset and/or postset.

We tested the correctness of the distributed reconfiguration approach by functional

simulation. However, the physical implementation and evaluation of this approach is

left for future research, see Section 6.2.

We used a combinational control unit for managing the ctrl bus and controlling the

127

Chapter 5. Case studies

LFSR

accumulator

static OPE reconfig. OPE

seed configin

out

count

mode

0 1

0 1

0 1

0 1

0 1

(a) High-level structure.

accumulatorstatic
OPE

reconfig
OPELFSR

(b) Floorplan.

Figure 5.15: Ordinal pattern encoding chip.

pipeline depth (described in details in Section 5.1.3). The control registers shown in

Figure 5.10 were not synthesised.

The presented library of components has been used to map our DFS model of the OPE

pipeline to a digital circuit described in Verilog. Our implementation belongs to the class

of Quasi Delay Insensitive asynchronous circuits [25]. However, engineers can design their

own libraries of components, and implement other classes of circuits (e.g. delay insensi-

tive), handshake protocols (e.g. bundled-data) and implementation styles (e.g. NCL-X)

while being independent from circuit functionality. This is the main advantage of using

a higher-level model such as the Dataflow Structures.

5.2.4 Evaluation of the fabricated prototype

Figure 5.15a shows the top-level schematic of the designed evaluation chip. It comprises

two implementations of the OPE pipeline, static and reconfigurable, that are selected by the

config input. The static implementation is a fixed 18-stage pipeline that can only compute

the OPE with window size set to 18. The reconfigurable pipeline, on the other hand,

supports 16 different depth settings, from 3 to 18 stages. Notice that the pipeline depth

determines the OPE window size. The reconfigurable pipeline has an area overhead

of '26% in comparison to the static pipeline due to the extra control logic for dynamic

reconfiguration.

The chip can be used in normal or random mode, as selected by the mode input. In

128

Chapter 5. Case studies

Figure 5.16: Testbench setup.

the normal mode, an input data stream is supplied via the in port and the results are

produced at the out port at every iteration. In the random mode, a series of count

random numbers is generated using a linear-feedback shift register (LFSR) based on a

user-defined seed. A checksum of the output stream is calculated in the accumulator

and a single data item is produced after all generated data is processed. This mode is

essential for accurate measurements of the chip performance and energy consumption,

as it removes the overheads for interfacing the chip to the testbench environment. The

produced checksum is validated against the output of the OPE behavioural model

initialised with the same seed and count parameters.

The chip floorplan and its main components are shown in Figure 5.15b. It was

fabricated using TSMC 90nm CMOS technology for low-power applications via Europar-

actice [111].

A custom test PCB was developed to interface the packaged chip with a Xilinx Virtex

7 FPGA board [112]. A series of experiments was run in the random mode for a stream

of 16M LFSR-generated numbers, at supply voltages from 0.3V to 1.6V. The computation

time was measured by the FPGA with 1ms precision, the power was monitored using

129

Chapter 5. Case studies

0.5 0.6 0.8 1 1.2 1.4 1.6
0.1

1

10

100

0.1

1

10

Voltage [V]

C
om

pu
ta

tio
n

tim
e

C
on

su
m

ed
 e

ne
rg

y

nominal voltage

reconfigurable
static static

reconfigurable

2.74mJ

1.22s

(a) Computation time and energy consumption at different voltages.

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

Time [s]

P
ow

er
 c

on
su

m
p

tio
n

[µ
W

]

0.34

0.5

0.49

0.48

0.47
0.46
0.45

0.44

Supply
voltage [V]

(b) Power consumption at changing supply voltage.

Figure 5.17: Experimental results for ordinal pattern encoding chip.

KEITHLEY 2612B SYSTEM source meter [113], with 1nW accuracy. The testbench setup is

shown in Figure 5.16.

Experiments at varying voltage supply

The chip is fully asynchronous and can therefore operate in a wide range of voltages,

dynamically adapting its speed. The computation time and energy consumption are

characterised in Figure 5.17a for supply voltages from 0.5V to 1.6V. The length of the

reconfigurable pipeline (dashed lines) is set to the maximum value and matches that of

the 18-stage static pipeline (solid lines). Both the computation time and the consumed

energy are normalised to the corresponding measurements of the static pipeline at the

130

Chapter 5. Case studies

nominal voltage of 1.2V (the reference values are 1.22s and 2.74mJ, respectively). As

expected, the lower the voltage the slower, but at the same time more energy-efficient, is

the circuit. The energy consumption of the reconfigurable implementation is slightly

higher (5% overhead) due to the additional control logic for managing the pipeline

configuration. The high computation time of the reconfigurable pipeline (36% overhead)

is due to an inefficient implementation of the synchronisation between the stages using a

daisy-chain C-element structure. This can be significantly improved (estimates overhead

below 10%) using a tree-like C-element structure, see Section 5.2.3.

Another experiment demonstrates the capability of asynchronous pipelines to operate

correctly at an unstable voltage supply, down to the near-threshold values. Figure 5.17b

shows the power consumption of the reconfigurable OPE pipeline (with all 18 stages

activated) during a single LFSR-generated experiment. At the very beginning (the left

side of the graph), the voltage is set to 0.5V, the circuit does nothing, and the power

consumption is due to the leakage current. Then, the up spike represents the beginning

of the computation. Throughout the experiment, we gradually decreased the supply

voltage down to 0.34V, which corresponds to the threshold voltage of the cells used

for technology mapping (below this voltage the chip stops functioning as the difference

between the low and high voltage levels is no more recognised). At this voltage level, the

chip operation is frozen – all the gates within the digital circuit keep their logic state, the

chip can be left at this voltage for hours with no progress being made. When the voltage

is raised up again the circuit completes the remaining part of the computation (down

spike) correctly.

Experiments at varying pipeline depth

All configurations of the reconfigurable pipeline (from 3 to 18 stages) were exercised

and functionally verified at 0.5-1.6V. Figures 5.18, 5.19 and 5.20 describes the behaviour

of the OPE chip under varying pipeline depth in terms of computation time, power

consumption, and consumed energy, respectively. We show the analysis to the range of

supply voltages {0.5, 0.8, 1.2, 1.6} for improving the readability of the shown diagrams.

Figure 5.18 shows the computation time of the chip. When the pipeline depth is lower

or equal than 6 stages (region 1), the computation time is limited by the accumulator (see

131

Chapter 5. Case studies

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Pipeline depth

C
om

pu
ta

tio
n

tim
e

[s
]

S
up

pl
y

vo
lta

g
e

[V
]

region 2 0.8

1.6

1.2

region 1

Figure 5.18: Computation time at varying voltages and pipeline depths.

Figure 5.15a), whose size is fixed by the maximum OPE result size. Reducing the number

of stages below 6 does not reduce the computation time. In region 1, the computation

time is only scaled down exponentially by the supply voltage reduction. On the other

hand, when the pipeline depth is higher than 6 (region 2), the computation time of the

chip is limited by the synchronisation time between the pipeline stages, whose delay

is directly-proportional to the pipeline depth due to the daisy-chain of C-elements, see

Section 5.2.3. In this region, the slope of the increment is reverse-proportional with the

supply voltage. In this diagram, the experiments corresponding to the supply voltage of

0.5V are omitted for the sake of readability: the computation time is 19.4s in the region 1,

and grows up to 42.4s when the pipeline depth is 18.

Figure 5.19 shows the power consumption of the chip. It increases with the pipeline

depth up to the minimum latency point (which falls at 6/7 stages depending on the

supply voltage), and subsequently decreases. The minimum latency point represents the

situation in which the computation time of the accumulator and of the synchronisation

time between pipeline stages are balanced, resulting in a higher throughput. In other

words, data tokens can move faster within the pipeline, exercising more parts of the chip

concurrently, and thus maximising the power consumption. Since the diagram scale

does not allow to read the power consumption of the experiments corresponding to 0.5V

supply voltage, we report for convenience the related data points in Table 5.5.

Figures 5.20a and 5.20b show the energy consumption of the chip per computation

132

Chapter 5. Case studies

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

7

8

Pipeline depth

P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

S
up

pl
y

vo
lta

g
e

[V
]

Minimum latency

0.8

1.6

1.2

0.5

Figure 5.19: Power consumption at varying voltages and pipeline depths.

Pipeline depth Power cons. [mW]
3 15.2
4 16.0
5 16.8
6 17.5
7 17.3
8 16.3
9 15.7

10 15.4

Pipeline depth Power cons. [mW]
11 14.6
12 14.3
13 14.1
14 13.8
15 13.7
16 13.5
17 13.3
18 13.3

Table 5.5: Data points of the 0.5V line in Figure 5.19.

and per active stage, respectively. The former increases linearly with the depth of the

pipeline, the slope of its increment is directly-proportional to the supply-voltage. The

latter, in turn, decreases exponentially with the depth of the pipeline, i.e. the amount of

work done per energy grows, resulting in a higher chip efficiency. Notice, however, that

the pipeline depth is determined by the workload in applications that make use of OPE,

rather than by the energy efficiency.

Figure 5.21 summarises these experimental results. It shows the computation time,

power consumption and consumed energy at the nominal voltage 1.2V during four

LFSR-generated experiments: with the pipeline depth set to 6, 10, 14 and 18. The power

consumption is higher when the depth is set to 6 (minimum latency), and decreases

with the increment of the pipeline depth. The computation time grows linearly with

the increase of the pipeline depth (region 2 of Figure 5.18). The consumed energy is

shown within the area delimited by the power consumption lines: one can see that it

133

Chapter 5. Case studies

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

Pipeline depth

C
on

su
m

ed
 e

ne
rg

y
[m

J]

S
up

pl
y

vo
lta

g
e

[V
]

0.8

1.6

1.2

0.5

(a) Energy per computation.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

1.2

Pipeline depth

E
ne

rg
y

pe
r

st
ag

e
[m

J]

S
up

pl
y

vo
lta

g
e

[V
]

1.6

1.2

0.5
0.8

(b) Energy per computation per active stage.

Figure 5.20: Energy statistics at varying voltages and pipeline depths.

also increases with the pipeline depth. When the chip is waiting for the test to start, the

power consumption is due to the leakage current of 15µW.

Summary of the results

The experiments demonstrate the high degree of flexibility and resilience of the fab-

ricated OPE accelerator: it supports flexible window size (via reconfiguration of the

pipeline depth) and can operate at a variable supply voltage (thanks to its asynchronous

implementation). The cost of the reconfigurability is 5% in terms of power consumption

134

Chapter 5. Case studies

1.5

2.0

2.5

Computation time [s]

P
ow

er
 c

on
su

m
pt

io
n

[m
W

]

0 0.76 1.07 1.38 1.64

18
14

10

6
Pipeline depth

2.1
Consumed
energy [mJ]

15
 µ

W
le

ak
ag

e 1.7 2.5 2.8

Figure 5.21: Time, power, and energy per computation at different pipeline depths at the nominal
supply voltage 1.2V.

and 36% in terms of performance (can be improved to 10% in a future prototype).

5.2.5 Related work and conclusion

We described a methodology for designing and implementing asynchronous reconfigurable

pipelines. While these have not been extensively studied in the past, there are a number

of approaches available in literature for supporting other types of pipelines:

• Synchronous pipelines have been widely studied [114], and are supported by the

mainstream EDA tools. As an example of a formal model for specifying, optimising

and verifying reconfigurable synchronous pipelines see xMAS [115].

• Asynchronous non-reconfigurable pipelines have been also extensively studied. Engi-

neers can rely on Static Dataflow Structures [25], reviewed in Section 3.4, for their

design and optimisation. In [116], Nowick and Singh discuss how these pipelines

can be implemented on a circuit using different styles.

• Machine learning networks are an important case of reconfigurable pipelines. These

can be described by Google’s TensorFlow [117], which combine Google’s hardware

tensor processing units to derive distributed processing systems.

To conclude, we summarise this research. We used the developed Dataflow Structures

formalism to elaborate a general methodology for designing reconfigurable asyn-

chronous pipelines. We showed a set of DFS-based pipeline stage templates that can

be composed to achieve the desired circuit functionality. Afterwards, we proposed two

135

Chapter 5. Case studies

possible implementations for the available DFS set of nodes, which can be employed

to implement Delay-Insensitive 4-phase dual-rail static and reconfigurable self-timed

logic. We finally evaluated one of our proposed implementations by fabricating a

reconfigurable accelerator for ordinal pattern encoding, and compared it to its static

implementation counterpart for studying the characteristics of asynchronous dynamic

reconfigurability. We relied on the conditional partial order graphs formalism for

designing the reconfiguration control logic.

Our experimental results show that the reconfigurability overhead of our implemen-

tation is 26% in terms of area, 36% in terms of performance (10% expected for the

improved presented implementation, whose evaluation is left for future research) and

5% in terms of power. The produced chip, as expected, is highly resilient to power supply

variation, and can deliver a range of EQ implementation scenarios.

5.3 FPGA accelerator for drug discovery

So far, we validated the proposed scenario composition algorithm by designing different

types of control architectures, and the presented Dataflow Structures formalism by de-

signing a reconfigurable pipeline of an asynchronous processor. For these applications,

we made use of specification and implementation scenarios. In this section, on the other

hand, we consider the domain of network analysis and show that activation scenarios are

instrumental to deal with large-scale systems, such as the networks in the domain of

computational drug discovery.

This section is divided as follows. Section 5.3.1 follows up our motivational

discussion (in Section 2.4) to introduce the reader to the area of computational drug

discovery. Section 5.3.2 presents the developed accelerator that we prototyped on FPGA.

Section 5.3.3 describes the scenario-based model of the drug discovery process, which we

used to design part of the accelerator. Experimental results and final discussion are in

Sections 5.3.4 and 5.3.5, respectively. Part of the content of this section has been published

in [36–38].

136

Chapter 5. Case studies

A B

C

D

E

(a) PPI network.

Drugs:

(1) AD

(2) AE

(3) C

(4) B

...

A B

D

E

(b) Drug 3 injection.

A

C

D

E

(c) Drug 4 injection.

Figure 5.22: A PPI network, its possible drugs, and networks resulting from drug injection.

5.3.1 Introduction to computational drug discovery

Following the motivational discussion in Section 2.4, we give an example for introducing

the reader to the domain of computational drug discovery [39], see Figure 5.22. For an in-

depth technical introduction to the topic, we refer the interested reader to [39, 118].

Figure 5.22a shows an example of a protein-protein interaction (PPI) network [49]

comprising 5 proteins {A, B, C, D, E}, which interact with each other according to the

arcs that interconnect them. A PPI network is an undirected unweighted graph that

models the functions of a biological system. On the right-hand side of the PPI network,

four possible drugs are shown: e.g. drug 3, when injected into the network, disables

protein C and leaves the network as in Figure 5.22b; drug 4, on the other hand, disables

protein B and leaves the network as in Figure 5.22c. Intuitively, drugs, when injected in

a biological system, modify its structure by attacking and disabling some of its proteins.

Real-life biological PPI networks are dense with interconnections: they can contain

up to 20,000 nodes and 500,000 arcs. These networks are resilient to drug perturbation,

i.e. the removal of one or more nodes does not modify the functionality of the system

radically, as proteins are still able to interact with each others via the remaining paths and

perform usual system functions. For example, the PPI network in Figure 5.22b, derived

137

Chapter 5. Case studies

by the removal of protein C, is still able to behave regularly as 4 out of 5 proteins can

still interact to each others through the available arcs. On the other hand, the network

obtained by the injection of drug 4 (see Figure 5.22c) is more disrupted, as A cannot

interact with the remaining proteins due to the resulting lack of connections.

For quantifying the effectiveness of a drug x on a given PPI network G, the experts in

this field rely on the so called impact measure (Ix), which is defined as:

Ix =
|θn(G)− θ0(G)|

θ0(G)
(5.1)

where θ0 is the Average Shortest Path (ASP) of the non-perturbed PPI network (i.e. no drugs

injected), and θn is the ASP of the PPI network where n proteins are removed. The ASP θ

is widely used to measure network resilience [119], and it is defined as:

θ(G) =
1

N(N − 1)

N

∑
i=1

N

∑
j 6=i

D(pi, pj) (5.2)

where N is the number of proteins, and D(pi, pj) is the distance between two proteins2. A

drug x is said to be more effective than a drug y if: Ix > Iy. In the example in Figure 5.22,

drug 4 is more effective than drug 3 as I4 = 0.59 and I3 = 0.04, i.e. drug 4 can better

disrupt the functionality of the disease represented by the PPI network in Figure 5.22a.

In software, classifying each possible drug according to the shown impact measure is

extremely time consuming for the following two reasons: (1) computing the average

shortest path of a graph requires calculating the all-pairs shortest path of a network

(for example by using the breadth-first search algorithm [52]), which is a computationally

expensive task; (2) PPI networks cannot be stored entirely in processor cache due to their

size. Thus, the processor has to communicate with the main (slow) memory multiple

times to process a network.

To overcome these issues, we present a hardware-software infrastructure to accelerate

the process of drug discovery. Our solution uses FPGAs as support for hardware

processing, which has a number of advantages in comparison to other solutions that

use many-core/cluster-based systems [120] or GPUs [121]:
2D(pi , pj) = 0 if pj cannot be reached from pi .

138

Chapter 5. Case studies

• FPGAs are more cost effective than other types of hardware supports.

• FPGAs allow a direct mapping between network elements and physical silicon

structures (i.e. vertices can be mapped to flip-flops and edges to interconnect paths,

as will be discussed shortly). This increases both the scale and performance of drug

discovery analysis compared to other types of hardware supports that need more

complex abstraction implementations for modelling PPI networks.

• FPGAs are programmable, so a single device can be used to analyse multiple

networks, unlike ASICs. This is particularly useful if the underlying network is

frequently updated (e.g. due to acquisition of new data).

The next section presents the prototyped accelerator for drug discovery.

5.3.2 The presented accelerator

General architecture

An architectural overview of the accelerator is shown in Figure 5.23. At the core, the

accelerator consists of an in silico instance of a PPI network, synthesised by mapping

vertices to individual memory elements (flip-flops) and edges to combinational paths

between these elements, see Figure 5.24. The resulting hardware graph is encapsulated

by the control circuitry to enable/disable selected vertices, coordinate computation,

and read shortest-path computation results. An on-chip software processor (Nios II)

is also included to communicate with the host computer and provide an Application

Programming Interface (API) for drug discovery.

In our experiments, we used the Altera DE4 FPGA board [122] as in the configuration

shown in Figure 5.23, and the Xilinx Virtex 7 board [112] (where the Nios II is substituted

by the Microblaze software processor). Our experimental results on the two boards only

differ by the utilisation factors of hardware resources, as the Xilinx board contains more

resources. Thus, we will only show the results collected by means of the Altera board.

139

Chapter 5. Case studies

Accumulator (AC)

Completion DetectionEnable Register (RE)

O
ut

 R
eg

is
te

r
(R

O
)

In
it

R
eg

is
te

r
(S

R
)

Counter (CT)

nodes

no
de

s

no
de

s

×

PPI network
Nios II ProcessorHost Computer

Drug discovery accelerator
(Altera Stratix IV FPGA)

Σ

Figure 5.23: Overview of the hardware-software infrastructure for accelerating drug discovery.

Graph traversal in hardware

The basic idea behind representing graphs using flip-flops and combinational paths is

that we wish to perform graph traversal by propagating logic high values between flip-

flops. The logic state of each flip-flop therefore indicates whether a given vertex has been

visited (logic high) or not (logic low). To propagate a visited state between flip-flops, we

OR the outputs of all vertex neighbours and use it as an input to the vertex flip-flop. This

mapping scheme is illustrated in Figure 5.24, and has been automated in the developed

tool named FANTASI (i.e. FAst NeTwork Analysis in SIlicon) [123], where a PPI network

(in the form of a XML-based file format) is used to generate the hardware representation

of the graph and the architecture for its drug discovery analysis automatically.

Using this hardware representation, shortest path calculation from a starting vertex

S is performed as follows. Initially, all vertex flip-flops except for S are reset (indicating

an unvisited state). On the first clock cycle following the initial state, the visited state

of S propagates to its immediate neighbours. The newly-visited vertices then propagate

this state to their own neighbours in the following cycle and so on until the graph is

fully traversed (i.e. when all vertices have been visited). In short, this computation

is a classic breadth-first search where each iteration is performed in a clock cycle and

involves visiting flip-flops by changing their state to logic high.

Note that the maximum number of clock cycles required to traverse the graph is equal

to the graph diameter (i.e. the shortest distance between the two most distant vertices),

140

Chapter 5. Case studies

Mapping
A B

C

D

E

Application Graph

A B

C

D

E

Hardware Representation

Figure 5.24: Mapping a graph to a digital circuit for implementing on an FPGA.

which is often very small for real-life graphs. For example, biological networks in our

case study comprise thousands of vertices yet their diameter is typically around 5 due

to the small-world phenomenon [124]. These networks can therefore be traversed in few

clock cycles, which is faster than a single memory access on a commodity computer.

This forms the basis for the significant acceleration factors reported in Section 5.3.4.

Calculating average shortest path

The accelerator is designed primarily to compute the average shortest path θ. For a better

correspondence with hardware, we reformulate Equation 5.2 for computing θ as follows:

θ(G) =
1

N(N − 1)

N

∑
i=1

∑
k=1

k× C(vi, k) (5.3)

where C(a, k) is the number of vertices at a distance k from vertex a. In this case the inner

loop terminates when C(vi, k) = 0 since this implies C(vi, h) = 0 for h > k.

We now describe in more details how the accelerator computes θ, see Figure 5.23.

The graph circuit interfaces with three registers: an initialisation shift register (SR), an

enable register (RE) and an output register (RO). Register SR initialises vertex values

at the beginning of each traversal while RE enables/disables selected vertices and RO

detects which vertices have been visited during the current traversal step. Additionally,

a counter CT maintains the step count during each traversal. Computing θ involves N

traversals, each amounting to calculating the inner sum in Formula 5.3. During each

step (of each traversal), the number of logic-high values in RO (vertices reached at a

considered traversal step) is multiplied by CT and the result is added to an accumulator

141

Chapter 5. Case studies

AC. Each traversal is completed when RO = 0 (i.e. when no new vertices are visited).

After N traversals, each starting from a different vertex, the value held in AC is read

by the Microblaze processor and divided by N(N − 1) in software to obtain θ. Register

SR initialises the graph in preparation for a traversal operation. As discussed earlier, all

vertices except for the starting vertex S are initialised in an unvisited state. The value of

SR is therefore a one-hot encoding of the index of S.

The accelerator is designed to simulate the process of drug injection, i.e. graph vertices

can be disabled (modelling the proteins attacked by a drug) and θ can be recomputed

in order to determine the impact of a drug on the network. Register RE provides

this functionality; it is an N-bit register that can be prepopulated by the user (via API

calls). Any 0 bit entries in this register will disable the corresponding vertices during the

traversal process, effectively removing them from the graph. In Section 5.3.3, we describe

alternative approaches to reconfigure PPI networks for simulating drug injections, and

explain the reasons for which we opt for the one described in this paragraph.

The accelerator is controlled by a host computer; computations are started, monitored

and their results are read via API calls. This provides a programmatic interface enabling

the accelerator to be used as a step in an automatic quantitative workflow involving

manipulating a base graph via vertex removal and evaluating the impact of drugs by

re-calculating θ. Using the developed tool [123], an input graph can be converted into

VHDL code and synthesised into an FPGA within the accelerator framework. Therefore,

developers can read a graph description, synthesise and implement the accelerator, and

then use it to analyse the graph, all while remaining within the same programming

environment.

5.3.3 The scenario-based model of drug discovery

As anticipated in Section 2.4, one can model a PPI network and its drugs as activation

scenarios and use them to derive control architectures for simulating the process of drug

injection. In this section, we describe a CPOG-based approach to model this process,

which inspired the choice of the described approach to network reconfiguration.

The goal of computational drug discovery is to select a set of promising drug

candidates (i.e. which have a high impact on a PPI network) to be tested biologically

142

Chapter 5. Case studies

PPI network

3 proteins disabled

1 protein disabled

2 proteins disabled

4 proteins disabled

A B

C

D

EA B

C

D

E

B

C

D

EB

C

D

E A

C

D

EA

C

D

E

A B

C

EA B

C

E

A B

D

EA B

D

E

A B

C

D

A B

C

D

B

C

E

B

D

E
C

D

EB

C

D

A B

D

A

D

E

A

C

E

A
C

D
A B E

A B

C

A E

C

E

C

D D

E B

D

B

C

A D A BEB A C

A B C D E

Figure 5.25: A PPI network (on top), and all its possible drugs in the form of activation scenarios.

143

Chapter 5. Case studies

b1 b4
b3b4
b1b3

b2 b3 b5
b1 b2 b3 b5
b1 b4 b5

b4b2
b1 b3b2
b3 b4

b4b5b3 b1b2 b2b3 b1b3

b1b2 b4b3 b5

b1b2

b2b4
b1b4

A B

C

D

E

(a) The heuristic composition technique.

A B

C

D

E
b1 b2

b3

b4

b5

(b) Single-literal composition.

A B

C

D

E
b3 b5

b2

b1

b4

(c) SAT-based composition.

Figure 5.26: The reconfiguration structure of the random-based drug discovery as CPOGs.

in wet-labs. This moves part of the workload for testing drugs to the earlier process of

automated selection, and results in a higher drug discovery efficiency [50].

There are several approaches for the selection of promising drugs. The trivial

approach is a random-based technique, and consists of disabling random subsets of

proteins on a network (to simulate the process of drug injection) and calculating their

corresponding impact. In this approach, one might want to be able to inspect all possible

drugs (= all combinations of disabled proteins). As an example, Figure 5.25 shows the

PPI network used in the previous sections (on top), and all its possible drugs grouped

in terms of the number of proteins that they disable. Every drug is represented as an

activation scenario, which includes the proteins and interactions that are still active after

its injection.

Using the CPOG automated composition features, it is possible to derive hardware

controllers for reconfiguring PPI networks. Figure 5.26 shows three CPOGs derived by

three of the composition techniques that we compared in Section 5.1, where:

144

Chapter 5. Case studies

Activation scenarios

PPI network

Drug 1

Drug 2

Drug 3

Drug 4
Drug 5

Drug 6

A B

C

D

E

C

D

E

EB

D

E

Figure 5.27: A PPI network (on top), and a set of activations scenarios: the networks that can be
induced by a list of realistic drug candidates.

• Proteins are enabled if the paired Boolean conditions are satisfied, otherwise they

are disabled.

• The network structure is determined by the injected drugs, which are encoded by

the codes selected during the scenario composition step.

Our proposed heuristic composition algorithm does not find an efficient CPOG,

as the conditions for controlling the proteins are not trivial (see Figure 5.26a) and

introduce unnecessary complexity for reconfiguring the PPI network at runtime. On

the other hand, the single-literal and the SAT-based algorithms (see Figures 5.26b

and 5.26c, respectively) find more efficient CPOGs that have conditions composed of one

independent variable per protein, even though the SAT-based solution has some of these

variables inverted. These two latter algorithms are better suited to this random-based

type of analysis, where proteins need to be switched on and off in any combination to

enable one to simulate all internal activation scenarios of a network.

A different approach to the selection of promising candidates is the so called drug

library-based. In this approach, libraries of realistic drug candidates – i.e. drugs that

145

Chapter 5. Case studies

b1

b2 b3

b2b3
b1b3

A B

C

D

E
b2 b3

(a) The proposed composition technique.

A B

C

D

E
b1 b2

b3

b4

(b) Single-literal composition.

b3

b2

b1

b4b1+

(c) SAT-based composition.

Figure 5.28: The reconfiguration structure of the library-based drug discovery as CPOGs.

are known to be realistically available and injectable in a system as they do not entail

dangerous side effects, for example – are simulated and their drugs ranked in terms of

their impact. As an example of a library of realistic drugs, see Figure 5.27.

Using the previous scenario composition techniques, we derived the three CPOGs in

Figure 5.28. Notice that there are no drugs in the library that affect protein E, which is

in fact always enabled in the shown CPOGs. The single-literal composition technique,

whose CPOG is in Figure 5.28b, is the most area effective as proteins are controlled by

independent variables and are enabled (disabled) by a logic 1 (0). The proposed and

the SAT-based CPOGs, on the other hand, need a further combinational layer to be

reconfigured according to the library of drugs in Figure 2.6.

The CPOGs derived by several low-scale PPI networks, such as the ones shown

above, inspire the design of the hardware reconfiguration approach implemented in the

prototype, which has the following characteristics:

• Reconfiguration features are provided for all proteins (as in Figure 5.26b). This

enables the accelerator to simulate the injection of any drug and frees the PPI

146

Chapter 5. Case studies

network hardware mapping from the dependency with the used drug library (as

many of these libraries are available for a PPI network). This is also important

because the number of possible scenarios explodes exponentially for large-scale

graphs, making thus infeasible to synthesise optimal reconfiguration structures

without relying on simpler solutions that allow to potentially execute all of such

scenarios without knowing them upfront.

• Each protein (modelled as a flip-flop) is controlled by an independent variable. This

enables to encode a drug x by a code of size N (where N is the number of proteins of

the network), with x(i) = 1 for all proteins i that are not affected by x, and x(i) = 0

otherwise. This is instrumental from the point of view of a user, who only needs to

know the index of a protein to investigate its effects on a network.

• A drug is injected via software API calls (by populating the ER register by a drug

code). This enables users of the accelerator to implement custom drug discovery

algorithms in software. For example, one could implement the hub-proteins based

approach, where proteins with high degree of interconnections are disabled first as

they are more likely to have a higher impact on a system.

In addition, this approach to network reconfiguration is simple to implement, as the

enable input of each flip-flop (protein) has to be only connected to its corresponding

activation variable (a bit of the ER register).

5.3.4 Experimental results

We evaluate the developed drug discovery accelerator by synthesising and analysing six

protein interaction networks on the Altera DE4 FPGA board3. The networks are used

to evaluate and compare the effects of different drug candidates on complex cellular

systems. The impact of each drug is evaluated by disabling selected vertices that the

drug is known to perturb and then calculating θ. Our motivation was: (i) to compare

the accelerator performance to a software implementation, and (ii) to test the scalability

of our hardware prototype using benchmarks from an industrial application. Our
3The experimental results on the Xilinx Virtex 7 only differs by resource utilisation factors, and are thus not shown.

147

Chapter 5. Case studies

Table 5.6: Resource Utilisation and Performance Comparison for Six Protein to Protein Interaction
Network Benchmarks on the Altera DE4 board (FPGA: Stratix IV EP4SGX230).
The Resource Utilisation of the Network entries show the resources used by the hardware
representation (HW) of the considered PPI network only. Our biggest benchmark n5 cannot be
synthesised into the FPGA, thus some of the table entries are missing (see −) and others were
estimated (see values followed by ∗).
The Resource Utilisation of the Prototype shows the amount of resources used by the entire drug
discovery prototype. The volume of logic utilization added by the extra control circuitry and the
NIOS II software processor is not negligible, but it is not the cause of the network n5 synthesis
failure. In fact, the Altera tool QUARTUS also fails in the attempt of synthesizing only n5.
The Operating Parameters show the power consumption of the prototype in the FPGA as
estimated by the Altera tool PowerPlay Power Analyser. It also shows the maximum working
frequency at which each network can be clocked (calculated without the extra accelerator logic),
and the frequency that we fixed for the prototype. The prototype frequency and processing
cycles (i.e. number of cycles needed to calculate θ) are used to determine prototype performance.
Finally, the Performance part of the table shows the obtained acceleration figures relative to a
software implementation in C++. See Section 5.3.4 for further details on the experimental results.

Network n0 n1 n2 n3 n4 n5

Vertices 3 15 87 349 1628 3487

Edges 2 42 804 6456 53406 115898

Resource Utilisation of the Network

Dedicated registers (FFs) 3 15 87 349 1628 3487

Lookup Tables (LUTs) 3 29 250 1541 11054 24878

Logic Utilisation 1% 1% 1% 1% 8% 18%*

Average Interconnect Usage ∼0% ∼0% ∼0% 0.4% 6% 16%*

Peak Interconnect Usage ∼0% ∼0% 1% 18% 79% 95%*

Resource Utilisation of the Prototype

Dedicated registers (FFs) 1272 1362 1753 3089 9510 18850

Lookup Tables (LUTs) 1347 1453 1954 4192 18114 38759

Logic Utilisation 1% 1% 1% 3% 12% −
Average Interconnect Usage 0.6% 0.6% 0.7% 1% 11% 27%*

Peak Interconnect Usage 15% 15% 18% 31% 90% 120%*

Operating Parameters

Power Consumption (mW) 956 956 961 993 1238 −
Network Frequency (MHz) >1000 >1000 426 195 122 −
Prototype Frequency (MHz) 100

Processing Cycles (per network) 32 215 1206 4793 22772 48371

Performance

Software Throughput (networks/sec) 105 >104 1176 56 3 ∼0.88

FPGA Throughput (networks/sec) >106 >105 82918 20863 4391 2067*

Acceleration Factor ∼10× ∼10× 70× 372× 1463× 2349×*

148

Chapter 5. Case studies

benchmarks ranged from very small test networks to considerably large real-life PPI

networks (3,487 vertices, 115,898 edges).

Table 5.6 summarises accelerator resource utilisation and performance for the six

PPI networks. In the Resource utilisation side of the table, the Dedicated Registers

instantiated on FPGA for the hardware representation of the networks match the number

of vertices of the PPI networks, meaning that every protein is successfully mapped to a

flip-flop register as expected (see Figure 5.24). We found that our biggest benchmark n5

cannot be synthesised into the FPGA. This is due to the high degree of Edges (protein

interactions) of this network, which is not matched by the number of planar FPGA

interconnections (see Peak Interconnect Usage entries). Many real-world networks have

comparable degrees of connectivity and so we expected the scalability of our hardware

implementation to be upper-bounded by FPGA interconnect density. Notice that the

Altera tool QUARTUS could not provide an estimate of the Logic Utilization factor of

the prototype that encapsulates n5. This factor provides an indication of how full

the FPGA device is, and it is calculated during the Place & Route task of the fitting

step of the synthesis process [125]. The failure might be an indication that also the

synthesis tool capabilities fail in the attempt to synthesize such a large and highly

interconnected biological network. Nevertheless, n5 is the largest within its class of

proteins interaction networks used at our industrial partner e-Therapeutics, and so our

hardware implementation and choice of FPGA device is sufficient for this particular

application.

The Operating Parameters part of the table summarises the maximum working

frequency found by the Altera QUARTUS tool for the HW networks (see Network

Frequency values); the working frequency of the prototype (including the software

processor) that we fixed to 100 Mhz (see Prototype Frequency value); and the number

of cycles needed to calculate the average shortest path of each network (see Processing

Cycles values). The network frequency found by the tool reduces when synthesising

larger networks. This is because neighbouring vertices had to be mapped to more distant

flip-flops to accommodate the entire network and the worst-case propagation delay had

to be increased accordingly. Another effect of increasing network scale is that the number

of cycles to calculate θ also increases since the all-pairs shortest path computations have

149

Chapter 5. Case studies

E
xe

cu
tio

n
tim

e
[s

ec
]

0 10 20 30 40 50 60
10
−7

10
−6

10
−5

10
−4

25
0x

 a
cc

el
er

a
tio

n

Prototype

Software

10
00

x
ac

ce
le

ra
tio

n

Number of Edges (1000x)

Figure 5.29: Execution time of a analysis run on the network n4 at varying number of edges.

to be repeated for a larger number of vertices.

In the Performance part of the table, we compare our reference software imple-

mentation (single-threaded implementation of the breadth-first search algorithm written

in C++, running on Intel i7-6700HQ 2.60GHz CPU, 16GB RAM, 6MB cache) to the

developed prototype (using 100 Mhz as working frequency). Notice that the acceleration

of the prototype encapsulating n5 was estimated assuming that its frequency meets the

fixed 100 Mhz. The throughput of average path calculations using our prototype was

higher by 1-3 orders of magnitude depending on the network size. Even though larger

networks require more cycles to calculate θ, the relative acceleration in comparison to

the software reference was higher. This is a trend that we expected: our approach scales

much better with respect to network size compared to a software implementation. This

is because the diameter of the network decreases in bigger networks due to the increase

of interconnection density. The performance benefit is therefore more prominent when

processing larger networks.

This trend can be also observed in Figure 5.29, where we show the execution time of

10 different θ calculations on the network n4. In each of these calculations, a different

number of edges (decided randomly) is enabled, from 10% to 100%. When the number

of edges increases, the runtime of the software implementation also increases due to the

higher number of internal paths that need to be inspected. Conversely, the runtime of

150

Chapter 5. Case studies

the prototype decreases since the higher number of edges reduces the diameter of the

network. This is the cause of the higher acceleration, which increases from ' 250× (10%

of the edges enabled) to more than 1000× (100% of the edges enabled).

5.3.5 Related work and conclusion

The idea of using FPGAs to accelerate graph processing is not new. However, to the

best of our knowledge, the existing approaches are all based on the Von Neumann

architecture of storing a graph in the memory, and then operating on the graph via a

set of processing cores that read and write to the memory. These approaches achieve

acceleration by relying on memory structures that exploit the flexibility of FPGA [126,

127], or on cores optimised to perform specific types of graph calculations [128, 129].

Our approach is not general purpose as it can only traverse graph and compute average

shortest paths, but it achieves much higher acceleration factors.

Another attempt to accelerate computational drug discovery is in [130], where the

author describes two algorithms for processing PPI networks (1) on GPUs: graphs

are divided into strongly connected sub-graphs whose average shortest paths are

calculated concurrently using the Bellman-Ford algorithm [52]; and (2) on FPGAs: the

problem of calculating average shortest paths (implemented by the breadth-first search

algorithm [52]) is transformed to a matrix vector multiplication problem via linear

algebra and solved on FPGA. Again, these approaches are constrained by the Von

Neumann approach, and achieve an acceleration of less of 5×.

We presented a prototype for accelerating the process of drug discovery. The purpose

of the prototype is to calculate average shortest paths of protein-protein interaction

networks very efficiently for estimating the impact that drugs have on biological systems.

In our approach, PPI networks are mapped to a hardware representation where proteins

are modelled by flip-flops, and protein interactions by combinational paths between

such flip-flops. PPI networks can be dynamically reconfigured, i.e. flip-flops can be

disabled at runtime for simulating the injection of drugs. The design of the described

reconfiguration structure has been supported by a scenario-based model of the process

of drug discovery that relies on activation scenarios.

The experimental results highlight a consistent acceleration compared to a reference

151

Chapter 5. Case studies

approach for calculating average shortest paths in software. The acceleration is higher

as PPI networks become bigger and denser of interconnections. The reason of such a

big acceleration is due to the fact that PPI networks are mapped to silicon without any

form of abstraction, thus each flip-flop can act concurrently and fully exploit hardware

parallelism.

152

Chapter 6

Conclusions

This thesis presents new approaches and formal models for tackling the design of

microelectronic systems using high-level scenarios. The proposed approaches have been

applied to real-life case studies for evaluating the maturity of the considered scenario-

based methodologies.

In this chapter, we summarise the main ideas developed and described along the

thesis. Section 6.1 summarises key contributions, experimental results and limitations of

the considered approaches. Section 6.2 outlines the future research areas that we believe

are worth to investigate further.

6.1 Summary of the contributions

Scenarios for control synthesis with CPOGs: in Section 4.1, we presented an algorithm for

composing scenarios into efficient implementations, and applied this approach to the composition

of Partial Orders into Conditional Partial Order Graphs. The proposed algorithm uses

similarities between scenarios to drive the scenario encoding process, which affects

the characteristics of the final system implementation. Unlike existing composition

approaches, the proposed solution supports composition constraints, which enable en-

gineers to specify custom encodings and reuse existing IP blocks. In Section 5.1, we

applied the proposed composition technique on an extensive set of benchmarks that

153

Chapter 6. Conclusions

includes control architectures for different applications. Compared to existing scenario

composition algorithms, the proposed technique finds equally good results (in terms of

size of the derived implementations, and synthesis runtime) when dealing with small-

scale benchmarks, and scales better when the number of scenarios of a system grows.

Our experiments also highlight that the CPOG-methodology can achieve equally good

results (in terms of size of derived implementations, synthesis runtime and supported

models) in comparison to the classic FSM-based methodology, and better results than the

STG-based methodology, which typically targets small-scale asynchronous controllers.

The main current limitation of the methodology based on CPOGs resides at the scenario

specification phase. Currently, scenarios of systems have to be specified by hand, which

may be a long and error-prone process.

Scenarios for asynchronous design with DFSs: in Section 4.2, we presented the

new Dataflow Structures formal model, which extends the existing Static Dataflow Structures

formalism with an additional set of nodes that can be used for modelling dynamic reconfiguration

in asynchronous circuits. We described formally the behavioural semantics of the new

formalism, and showed how to translate DFS models to Petri nets, which enables

designers to reuse the wide range of existing back-end tools for automated hardware

synthesis and verification. In Section 5.2, we used the presented DFS formalism to

elaborate a general methodology for modelling and implementing reconfigurable asyn-

chronous pipelines. We also validated the methodology by fabricating an asynchronous

dataflow accelerator for the ordinal pattern encoding. The chip implements both a

reconfigurable (i.e. whose number of active stages can be selected at runtime) and a static

pipeline; it was used (1) to characterise the overhead (in terms of area, power and

performance) of asynchronous dynamic reconfigurability, and (2) validate the proposed

Dataflow Structures formalism. Experimental results highlight that the implemented

reconfigurable pipeline has a 26% area overhead, a relatively low energy consumption

overhead (5%) but a fairly large speed overhead (36%) in comparison to the static

pipeline. We described an alternative implementation for overcoming this issue. As

expected, the energy consumption and speed of the chip have a quadratic dependency

with the voltage supply. We also characterised the reconfigurable pipeline under a

variable number of active stages. The data collected shows that the power consumption

154

Chapter 6. Conclusions

depends on the amount of computation performed concurrently. Even though the energy

consumption of the pipeline increases when more stages are active, the ‘energy per stage’

factor decreases. The current methodology is based on the presented DFS behavioural

semantics, which can only be applied to circuits functioning with the 4-phase handshake

protocol. The formalisation of newer semantics are left for future research.

Decomposing concurrent systems into scenarios with PWs: in Section 4.3, we

presented the new Process Windows formal model, which provides automated decomposition

features to extract scenarios (or windows) from complex concurrent system specifications. Every

extracted window models a part of a system. Windows can interact with each other

to model the behaviour of the whole system. In order to show that Process Windows

can simplify the understanding of complex specifications, we applied the proposed

methodology to low-scale examples in the context of asynchronous digital design, and

process mining. The characteristics of the model have to be further characterised by an

extensive benchmarking phase, which we leave for future research.

Scenarios for graph processing: in Section 5.3, we presented a hardware accelerator for

processing graphs coming from the domain of computational drug discovery, and prototyped

it on FPGA. Unlike existing approaches, a graph is not stored in memory but it is a

digital circuit itself that can be simulated on silicon to collect data. The accelerator is

application specific, i.e. it is designed to compute the all-pairs shortest paths of protein

interaction networks, but it achieves much higher acceleration factors in comparison to

other general-purpose solutions (two or three orders of magnitude). We described the

process of computational drug discovery with a model based on scenarios (relying on

CPOGs). This was essential to design the reconfiguration structure for disabling network

nodes at runtime, and potentially being able to analyse any subgraph of the original

graph. This approach is constrained by the amount of FPGA resources: very large

networks including hundreds of thousands of interconnections cannot be synthesised

on a single FPGA (see our biggest benchmark n5 in Section 5.3.4).

155

Chapter 6. Conclusions

6.2 Future work

To further improve the CPOG methodology a number of recommendations for future

research are given. (1) Automating the extraction of scenarios from high-level languages.

Research on a specification language capable of extracting scenarios is currently ongo-

ing [64]. (2) Parallel implementation of the presented composition algorithm, which is

important to further improve the efficiency of scenario composition by exploring more

solutions at no extra runtime cost. (3) Support for x-aware scenario encoding (with x

being latency, power, energy, and other characteristics), which is important for making

the methodology attractive to many practical domains.

The presented DFS methodology can be also improved with: (1) description of

additional behavioural semantics for other popular asynchronous protocols, see [25].

(2) Development of a domain-specific language for describing reconfigurable dataflow

pipelines textually. (3) Evaluation of the described distributed reconfiguration approach

as implementation for reconfigurable asynchronous pipelines, and comparison to the

reconfigurable interconnections approach that has been evaluated in this work.

Additional work can be done also for the presented Process Windows methodology.

In this work, we showed how to enforce a set of properties for deriving choice-free

scenarios. However, other types of properties (application dependent) can derive struc-

turally different scenarios. Also, the developed algorithm for window decomposition

have to be tested on a wider set of benchmarks in order to evaluate its applicability to

real-life specifications.

Finally, the presented prototype for drug discovery can also be enhanced in a few

different aspects. (1) The accelerator is meant to compute the average shortest path

of encapsulated networks. It might be extended to enable other types of network-

based calculation, e.g. network centrality. (2) The generation of network reconfiguration

hardware structure can be automated by means of the CPOG synthesis features. This

might be beneficial for some networks where internal parts are not to be disabled.

(3) Supporting large graphs that do not fit in one FPGA [38].

156

Appendix A

The scenario-based specification of the

ARM Cortex M0+ processor

The appendix shows (see Figure A.1) and describes (see below description) the scenario-

based specification of the ARM Cortex M0+ processor. It consists of 11 scenarios that

have been derived by analysing the instruction set architecture reference manual of

the ARMv6-M [131], and modelling by hand sets of instructions that share similar

functionality and addressing modes. The presented scenario specification models 61

out of 68 processor instructions. Below, we briefly describe the function and structure of

every scenario.

Scenario 1 covers the LDR (reg.) instruction. It loads a specified register with a

word located in memory, whose address is obtained from two registers (ALU → MAU).

Afterwards, the next instruction is fetched (IFU).

Scenario 2 covers the NOP instruction, which increments the PC (PCIU→ PCIU/2) and

fetches the next instruction (IFU).

Scenario 3 covers the POP instruction. It loads multiple memory locations into specified

registers (MAU), and then fetches the next instruction in the program memory (IFU).

157

Appendix A. The scenario-based specification of the ARM Cortex M0+ processor

Scenario 1

ALU MAU IFU

Scenario 2

PCIU PCIU/2 IFU

Scenario 3

MAU IFU

Scenario 4

ALU IFU

Scenario 5

PCIU IFU ALU MAU PCIU/2 IFU/2

Scenario 6

PCIU IFU ALU MAU IFU/2

Scenario 7

PCIU IFU ALU IFU/2

Scenario 8

PCIU IFU

ALU MAU

Scenario 9

PCIU IFU

ALU

PCIU/2

IFU/2

Scenario 11

PCIU IFU

ALU

Scenario 10

PCIU IFU

MAU

Figure A.1: The scenario specification of the ARMV6-M instruction set architecture.

Scenario 4 covers the branch with link and exchange (BLX) and branch and ex-

change (BX) instructions. They both branch to an address specified in a register R,

conditionally changing the processor state (ARM or Thumb states). The ALU operation

moves the content of R to PC. In the case of a BLX instruction, ALU also stores the PC

content into the link register before branching.

Scenario 5 covers the load and store instructions with immediate addressing mode:

LDR (imm.) and STR (imm.). An immediate value is fetched from the IR (PCIU→ IFU),

and is used to compute the memory address for the load/store operation (ALU→MAU).

Afterwards, the next instruction is fetched from the program memory (PCIU/2→ IFU/2).

Scenario 6 covers the LDR (lit.). A immediate value is fetched from the IR (PCIU→ IFU),

and is added to the PC to compute the memory address of the word to be loaded into

a specified register (ALU → MAU). Afterwards, the next instruction is fetched from the

program memory IFU/2.

158

Appendix A. The scenario-based specification of the ARM Cortex M0+ processor

Scenario 7 covers the unconditional branch instruction B. The branch offset is specified

as an immediate value, and is fetched from the IR (PCIU → IFU). Afterwards, the

target branch is computed and moved into the PC, and the next instruction is fetched

(ALU→ IFU/2).

Scenario 8 covers the load and store instructions with register addressing mode:

LDR (reg.) and STR (reg.). Unlike the Class 5, the memory operation is executed

(ALU→MAU) without the need for an immediate value, the fetch of the next instruction

(PCIU→ IFU) is therefore executed concurrently.

Scenario 9 covers arithmetical, logical and data transfer instructions with immediate

addressing mode, e.g. ADD (imm.), LSR (imm.). An immediate value is fetched from

the IR (PCIU → IFU), which is used for the selected operation (ALU). The latter can

be executed in parallel with the program counter incrementation (PCIU/2), needed for

fetching the next instruction from the memory (IFU/2).

Scenario 10 covers memory access instructions where multiple registers and memory

locations are involved, e.g. PUSH, LDM, STM. Data transfer is meant to be done

by the MAU operation, executed concurrently with the fetch of the next instruction

(PCIU→ IFU).

Scenario 11 covers arithmetical, logical and data transfer instructions with register ad-

dressing mode, i.e. CMP (reg.), MOV (reg.). The next instruction is fetched (PCIU→ IFU)

concurrently with the selected operation (ALU).

159

Bibliography

[1] R. R. Schaller, “Moore’s Law: Past, Present, and Future”, IEEE Spectr., vol. 34,

pp. 52–59, June 1997.

[2] R. Brayton and J. Cong, “Electronic design automation past, present, and future”,

July 2009. Available online at cadlab.cs.ucla.edu/nsf09/NSF_Workshop_

Report.pdf, last accessed: 20/09/2017.

[3] Calma, “GDSII stream format manual”, February 1987. Documentation No.:

B97E060, release 6.0, available online at bitsavers.informatik.uni-stuttgart.

de/pdf/calma/GDS_II_Stream_Format_Manual_6.0_Feb87.pdf, last accessed:

20/09/2017.

[4] C. Mead and L. Conway, Introduction to VLSI Systems. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1979.

[5] A. Sangiovanni-Vincentelli, “The tides of EDA”, IEEE Design Test of Computers,

vol. 20, pp. 59–75, Nov 2003.

[6] H. P. Sharangpani and M. L. Barton, “Statistical analysis of floating point flaw

in the pentium processor”, November 1994. Intel Corporation – Available

online at http://users.minet.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_

bug/intel_white11.pdf, last accessed: 03/10/2017.

[7] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding sources of

160

cadlab.cs.ucla.edu/nsf09/NSF_Workshop_Report.pdf
cadlab.cs.ucla.edu/nsf09/NSF_Workshop_Report.pdf
bitsavers.informatik.uni-stuttgart.de/pdf/calma/GDS_II_Stream_Format_Manual_6.0_Feb87.pdf
bitsavers.informatik.uni-stuttgart.de/pdf/calma/GDS_II_Stream_Format_Manual_6.0_Feb87.pdf
http://users.minet.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_bug/intel_white11.pdf
http://users.minet.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_bug/intel_white11.pdf

Bibliography

inefficiency in general-purpose chips”, in ACM SIGARCH Computer Architecture

News, vol. 38, pp. 37–47, ACM, 2010.

[8] D. Gajski, A.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama, and P. Bricaud, “Essential

issues for IP reuse”, in Design Automation Conference, 2000. Proceedings of the ASP-

DAC 2000. Asia and South Pacific, pp. 37–42, IEEE, 2000.

[9] M. J. A. Sexton, “History of Intel Chipsets”. Tom’s Hardware. Available online at:

www.tomshardware.com/picturestory/784-intel-chipset-history.html, last

accessed: 22/09/2018.

[10] M. Wolf, “The Physics of Event-Driven IoT Systems”, IEEE Design & Test, vol. 34,

pp. 87–90, April 2017.

[11] C. LaFrieda, B. Hill, and R. Manohar, “An Asynchronous FPGA with Two-Phase

Enable-Scaled Routing”, in Proceedings of the 2010 IEEE Symposium on Asynchronous

Circuits and Systems, ASYNC ’10, (Washington, DC, USA), pp. 141–150, IEEE

Computer Society, 2010.

[12] M. Rykunov, Design of Asynchronous Microprocessor for Power Proportionality. PhD

thesis, Newcastle University, 2013.

[13] Sun Microsystems, “Datasheet ULTRASPARC IIII processor”. Available online

at http://datasheets.chipdb.org/Sun/UltraSparc-IIIi.pdf, last accessed:

13/10/2017.

[14] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev,

“Benefits of asynchronous control for analog electronics: Multiphase buck case

study”, in Design, Automation Test in Europe Conference Exhibition (DATE), 2017,

pp. 1751–1756, March 2017.

[15] A. D. Brown, J. E. Chad, R. Kamarudin, K. J. Dugan, and S. B. Furber, “SpiNNaker:

Event-Based Simulation - Quantitative Behavior”, IEEE Transactions on Multi-Scale

Computing Systems, vol. 4, pp. 450–462, July 2018.

161

www.tomshardware.com/picturestory/784-intel-chipset-history.html
http://datasheets.chipdb.org/Sun/UltraSparc-IIIi.pdf

Bibliography

[16] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-

memory accelerator for parallel graph processing”, in 2015 ACM/IEEE 42nd Annual

International Symposium on Computer Architecture (ISCA), pp. 105–117, June 2015.

[17] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and Future”, IEEE

Design Test of Computers, vol. 26, pp. 18–25, July 2009.

[18] “IEEE Standard System C Language Reference Manual”, IEEE Std 1666-2005,

pp. 01–423, 2006.

[19] D. J. Greaves, “Layering RTL, SAFL, Handel-C and Bluespec constructs on Chisel

HCL”, in 2015 ACM/IEEE International Conference on Formal Methods and Models for

Codesign (MEMOCODE), pp. 108–117, Sept 2015.

[20] J. Beaumont, A. Mokhov, D. Sokolov, and A. Yakovlev, “Compositional design of

asynchronous circuits from behavioural concepts”, in 2015 ACM/IEEE International

Conference on Formal Methods and Models for Codesign (MEMOCODE), pp. 118–127,

Sept 2015.

[21] A. Alekseyev, Compositional Approach to Design of Digital Circuits. PhD thesis,

Newcastle University, June 2014.

[22] G. Birkhoff, Lattice Theory. No. v. 25, pt. 2 in American Mathematical Society

colloquium publications, American Mathematical Society, 1940.

[23] A. Mokhov, Conditional Partial Order Graphs. PhD thesis, Newcastle University,

2009.

[24] A. Mokhov, A. Iliasov, D. Sokolov, M. Rykunov, A. Yakovlev, and A. Romanovsky,

“Synthesis of Processor Instruction Sets from High-Level ISA Specifications”, IEEE

Transactions on Computers, vol. 63, pp. 1552–1566, June 2014.

[25] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A Systems

Perspective. Springer Publishing Company, Incorporated, 1st ed., 2010.

[26] D. Sokolov, I. Poliakov, and A. Yakovlev, “Analysis of static data flow structures”,

Fundamenta Informaticae, vol. 88, pp. 581–610, 2008.

162

Bibliography

[27] A. de Gennaro, P. Stankaitis, and A. Mokhov, “A Heuristic Algorithm for Deriving

Compact Models of Processor Instruction Sets”, in 2015 15th International Conference

on Application of Concurrency to System Design, (Brussels, Belgium), pp. 100–109,

June 2015.

[28] A. de Gennaro, P. Stankaitis, and A. Mokhov, “Efficient composition of scenario-

based hardware specifications”, IET Computers Digital Techniques, vol. 13, no. 2,

pp. 57–69, 2019.

[29] D. Sokolov, A. de Gennaro, and A. Mokhov, “Reconfigurable asynchronous

pipelines: From formal models to silicon”, in 18th Design, Automation Test in Europe

Conference Exhibition (DATE), pp. 1562–1567, March 2018.

[30] A. de Gennaro, D. Sokolov, and A. Mokhov, “Design and Implementation of

Asynchronous Reconfigurable Pipelines”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems. To be submitted.

[31] A. Mokhov, J. Cortadella, and A. de Gennaro, “Process Windows”, in 17th

International Conference on Application of Concurrency to System Design (ACSD),

pp. 86–95, June 2017.

[32] The tool SHUTTERS for Process Windows synthesis. GitHub repository:

https://github.com/tuura/shutters.

[33] D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years later”, in This

asynchronous world. Essays dedicated to Alex Yakovlev on the occasion of his 60th

birthday, pp. 269–293, 2016. Available online: async.org.uk/ay-festschrift/

paper25-Alex-Festschrift.pdf.

[34] The WORKCRAFT design environment. GitHub repository: https://github.com/

workcraft/workcraft, see also the reference website: www.workcraft.org.

[35] C. Guo, W. Luk, and S. Weston, “Pipelined reconfigurable accelerator for ordinal

pattern encoding”, in 2014 IEEE 25th International Conference on Application-Specific

Systems, Architectures and Processors, pp. 194–201, June 2014.

163

https://github.com/tuura/shutters
async.org.uk/ay-festschrift/paper25-Alex-Festschrift.pdf
async.org.uk/ay-festschrift/paper25-Alex-Festschrift.pdf
https://github.com/workcraft/workcraft
https://github.com/workcraft/workcraft
www.workcraft.org

Bibliography

[36] A. Mokhov, A. de Gennaro, G. Tarawneh, G. Lukyanov, S. Mileiko, J. Scott,

A. Yakovlev, and A. Brown, “Language and Hardware Acceleration Backend

for Graph Processing”, in International Conference on Application of Concurrency to

System Design, (Verona, Italy), IEEE, 2017.

[37] A. Mokhov, A. de Gennaro, G. Tarawneh, G. Lukyanov, S. Mileiko, J. Scott,

A. Yakovlev, and A. Brown, “Language and hardware acceleration backend for

graph processing”, in Languages, Design Methods, and Tools for Electronic System

Design - Selected Contributions from FDL 2017, Springer, 2018. In Press.

[38] A. Brown, D. Thomas, J. Reeve, G. Tarawneh, A. de Gennaro, A. Mokhov,

M. Naylor, and T. Kazmierski, “Distributed Event-based Computing”, in Parallel

Computing ’17 (ParCo), Advances in Parallel Computing, 2017. In press.

[39] M. P. Young, S. Zimmer, and A. V. Whitmore, “Chapter 3. Drug Molecules and

Biology: Network and Systems Aspects”, in RSC Drug Discovery (J. R. Morphy and

C. J. Harris, eds.), pp. 32–49, Royal Society of Chemistry.

[40] A. Mokhov, A. Alekseyev, and A. Yakovlev, “Encoding of processor instruction

sets with explicit concurrency control”, IET Computers Digital Techniques, vol. 5,

pp. 427–439, November 2011.

[41] D. R. Schertz, “Fault-Tolerant Computing: An Introduction”, IEEE Transactions on

Computers, vol. C-23, pp. 649–650, July 1974.

[42] M. Alioto, “Energy-quality scalable adaptive VLSI circuits and systems beyond

approximate computing”, in Design, Automation Test in Europe Conference Exhibition

(DATE), 2017, pp. 127–132, March 2017.

[43] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Approximate computing: An integrated hardware approach”, in 2013 Asilomar

Conference on Signals, Systems and Computers, pp. 111–117, Nov 2013.

[44] A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Improving fault-

tolerance in intelligent video surveillance by monitoring, diagnosis and dynamic

reconfiguration”, in Third International Workshop on Intelligent Solutions in Embedded

Systems, 2005., pp. 194–201, May 2005.

164

Bibliography

[45] P. Wang, J. Zhang, and Z. Chang, “Fault Tolerance of Multiprocessor-Structured

Control System by Hardware and Software Reconfiguration”, in 2007 International

Conference on Mechatronics and Automation, pp. 3745–3749, Aug 2007.

[46] G. Chang, S. Maity, B. Chatterjee, and S. Sen, “A MedRadio Receiver Front-End

With Wide Energy-Quality Scalability Through Circuit and Architecture-Level

Reconfigurations”, IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 8, pp. 369–378, Sept 2018.

[47] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenarios in system

development: current practice”, IEEE Software, vol. 15, pp. 34–45, Mar 1998.

[48] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks”, Rev.

Mod. Phys., vol. 74, pp. 47–97, Jan 2002.

[49] W. Zhang et al., “Network pharmacology: A further description”, Network

Pharmacology, vol. 1, no. 1, pp. 1–14, 2016.

[50] e-Therapeutics story, https://www.etherapeutics.co.uk/our-story/, last ac-

cessed: 15/01/2018.

[51] The Partially Order Event Triggered Systems (POETS) project website. Available

online: https://poets-project.org/. Last accessed: 11/09/2018.

[52] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, Third

Edition. The MIT Press, 3rd ed., 2009.

[53] A. Mokhov and A. Yakovlev, “Conditional Partial Order Graphs: Model, Synthesis,

and Application”, IEEE Transactions on Computers, vol. 59, pp. 1480–1493, Nov 2010.

[54] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,

“Petrify: A tool for manipulating concurrent specifications and synthesis of

asynchronous controllers”, IEICE TRANSACTIONS on Information and Systems,

vol. E80-D No.3, pp. 315–325, 1997.

[55] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic

synthesis of asynchronous controllers and interfaces. Springer, Jan 2002.

165

https://www.etherapeutics.co.uk/our-story/
https://poets-project.org/

Bibliography

[56] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Universitt Hamburg, 1962.

[57] T. Murata, “Petri Nets: Properties, analysis and applications”, Proceedings of the

IEEE, pp. 541–580, Apr. 1989.

[58] L. Y. Rosenblum and A. Yakovlev, “Signal Graphs: From Self-Timed to Timed

Ones”, in International Workshop on Timed Petri Nets, (Washington, DC, USA),

pp. 199–206, IEEE Computer Society, 1985.

[59] T. A. Chu, Synthesis of self-timed VLSI circuits from graph-theoretic specifications. PhD

thesis, 1987. MIT Laboratory for Computer Science.

[60] A. Arnold, Finite Transition Systems: Semantics of Communicating Systems.

Hertfordshire, UK, UK: Prentice Hall International (UK) Ltd., 1994.

[61] A. Mokhov and V. Khomenko, “Algebra of Parameterised Graphs”, ACM Trans.

Embed. Comput. Syst, vol. 13, pp. 143:1–143:22, July 2014.

[62] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,

O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end verification of processors with

ISA-Formal”, in International Conference on Computer Aided Verification, pp. 42–58,

Springer, 2016.

[63] K. E. Gray, P. Sewell, C. Pulte, S. Flur, and R. Norton-Wright, “The Sail instruction-

set semantics specification language”, Technical report published by Cambridge

University, 2017.

[64] G. Lukyanov and A. Mokhov, “Concurrency Oracles for Free”, in Proceedings of the

Algorithms & Theories for the ANalysis of Event Data 2018 Workshop, 2018.

[65] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set solving: From

theory to practice”, Artificial Intelligence, vol. 187, pp. 52 – 89, 2012.

[66] N. Eén and N. Sörensson, An Extensible SAT-solver, pp. 502–518. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004.

[67] R. Hamming, “Error detecting and error correcting codes”, The Bell System Technical

Journal, vol. 29, pp. 147–160, April 1950.

166

Bibliography

[68] The Conditional Partial Order Graph tool SCENCO. GitHub repository:

https://github.com/tuura/scenco, see also the WORKCRAFT website:

workcraft.org/help/encoding_plugin.

[69] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated annealing”,

SCIENCE, vol. 220, no. 4598, pp. 671–680, 1983.

[70] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vicentelli, “ESPRESSO-

SIGNATURE: a new exact minimizer for logic functions”, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 1, pp. 432–440, Dec 1993.

[71] B. L. Synthesis and V. Group, “ABC, a system for sequential synthesis and

verification”. Website available at: eecs.berkeley.edu/~alanmi/abc/, last

accessed: 24/04/2019.

[72] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “Sis: A system for

sequential circuit synthesis”, Tech. Rep. UCB/ERL M92/41, EECS Department,

University of California, Berkeley, 1992.

[73] A. Mokhov, M. Rykunov, D. Sokolov, and A. Yakovlev, “Design of Processors with

Reconfigurable Microarchitecture”, Journal of Low Power Electronics and Applications,

vol. 4, no. 1, pp. 26–43, 2014.

[74] J.-R. Abrial, Modeling in Event-B: System and Software Engineering. New York, NY,

USA: Cambridge University Press, 1st ed., 2010.

[75] C. A. R. Hoare, Communicating Sequential Processes. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1985.

[76] V. Khomenko, M. Koutny, and A. Yakovlev, “Logic synthesis for asynchronous

circuits based on Petri net unfoldings and incremental SAT”, in Proceedings. Fourth

International Conference on Application of Concurrency to System Design, 2004. ACSD

2004., pp. 16–25, June 2004.

[77] V. Khomenko, “A usable reachability analyser”. Technical Report, CS-TR-1140,

Newcastle University, 2009.

167

https://github.com/tuura/scenco
workcraft.org/help/encoding_plugin
eecs.berkeley.edu/~alanmi/abc/

Bibliography

[78] A. Bouakaz, P. Fradet, and A. Girault, “A Survey of Parametric Dataflow Models of

Computation”, ACM Transactions on Design Automation of Electronic Systems, vol. 22,

pp. 38:1–38:25, Jan. 2017.

[79] J. B. Dennis, J. P. Fosseen, and L. J. P., “Data Flow Schemas”, Massachussets

Institute of Technology, 1972. Available online at https://link.springer.com/

content/pdf/10.1007/3-540-06720-5_15.pdf.

[80] J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token

Flow Model. PhD thesis, 1993. AAI9431898.

[81] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow”, Proceedings of the

IEEE, vol. 75, pp. 1235–1245, Sept 1987.

[82] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur, “BPDF: A statically analyzable

dataflow model with integer and boolean parameters”, in 2013 Proceedings of the

International Conference on Embedded Software (EMSOFT), pp. 1–10, Sept 2013.

[83] A. Saifhashemi and P. A. Beerel, “Observability Conditions and Automatic

Operand-Isolation in High-Throughput Asynchronous Pipelines”, in Integrated

Circuit and System Design. Power and Timing Modeling, Optimization and Simulation

(J. L. Ayala, D. Shang, and A. Yakovlev, eds.), (Berlin, Heidelberg), pp. 205–214,

Springer Berlin Heidelberg, 2013.

[84] Wojcik and K.-Y. Fang, “On the Design of Three-Valued Asynchronous Modules”,

IEEE Transactions on Computers, vol. C-29, pp. 889–898, Oct 1980.

[85] J. de San Pedro and J. Cortadella, “Mining Structured Petri Nets for the

Visualization of Process Behavior”, in Proceedings of the 31st Annual ACM

Symposium on Applied Computing, SAC ’16, (New York, NY, USA), pp. 839–846,

ACM, 2016.

[86] E. Best and R. Devillers, “Characterisation of the state spaces of live and bounded

marked graph petri nets”, in Language and Automata Theory and Applications (A.-

H. Dediu, C. Martı́n-Vide, J.-L. Sierra-Rodrı́guez, and B. Truthe, eds.), (Cham),

pp. 161–172, Springer International Publishing, 2014.

168

https://link.springer.com/content/pdf/10.1007/3-540-06720-5_15.pdf
https://link.springer.com/content/pdf/10.1007/3-540-06720-5_15.pdf

Bibliography

[87] E. Best and R. Devillers, “Synthesis of Bounded Choice-Free Petri Nets”, in

26th International Conference on Concurrency Theory (CONCUR 2015) (L. Aceto and

D. de Frutos Escrig, eds.), vol. 42 of Leibniz International Proceedings in Informatics

(LIPIcs), (Dagstuhl, Germany), pp. 128–141, Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, 2015.

[88] J. Desel and J. Esparza, Free Choice Petri nets. Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press, 1995.

[89] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriving petri nets

from finite transition systems”, IEEE Transactions on Computers, vol. 47, pp. 859–

882, Aug 1998.

[90] E. Boros and P. L. Hammer, “Pseudo-boolean optimization”, Discrete Applied

Mathematics, vol. 123, no. 1, pp. 155 – 225, 2002.

[91] The tool CATS for Process Windows extraction. GitHub repository: https://

github.com/upc-eda/Cats.

[92] T. Philipp and P. Steinke, “Pblib – a library for encoding pseudo-boolean

constraints into cnf”, in Theory and Applications of Satisfiability Testing – SAT

2015 (M. Heule and S. Weaver, eds.), (Cham), pp. 9–16, Springer International

Publishing, 2015.

[93] D. Harel and P. S. Thiagarajan, “UML for Real”, ch. Message Sequence Charts,

pp. 77–105, Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[94] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Programming Using LSC’s

and the Play-Engine. Berlin, Heidelberg: Springer-Verlag, 2003.

[95] D. Fahland, “Oclets – scenario-based modeling with petri nets”, in Applications

and Theory of Petri Nets (G. Franceschinis and K. Wolf, eds.), (Berlin, Heidelberg),

pp. 223–242, Springer Berlin Heidelberg, 2009.

[96] A. Polyvyanyy, M. La Rosa, C. Ouyang, and A. H. Hofstede, “Untanglings: A

Novel Approach to Analyzing Concurrent Systems”, Form. Asp. Comput., vol. 27,

pp. 753–788, Nov. 2015.

169

https://github.com/upc-eda/Cats
https://github.com/upc-eda/Cats

Bibliography

[97] M. Koutny and B. Randell, “Structured Occurrence Nets: A Formalism for Aiding

System Failure Prevention and Analysis Techniques”, Fundam. Inf., vol. 97, pp. 41–

91, Jan. 2009.

[98] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher

Education, 1st ed., 1994.

[99] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state coding conflicts in stg

unfoldings using sat”, in Third International Conference on Application of Concurrency

to System Design, 2003. Proceedings., pp. 51–60, June 2003.

[100] P. Kurup and T. Abbasi, Logic synthesis using Synopsys. Kluwer Academic

Publishers, 1995.

[101] A. Mokhov, J. Carmona, and J. Beaumont, Mining Conditional Partial Order Graphs

from Event Logs, pp. 114–136. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[102] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,

pp. 203–215, Feb 2007.

[103] T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji, “A Comparative Study on ASIC,

FPGAs, GPUs and General Purpose Processors in the O(N2) Gravitational N-

body Simulation”, in 2009 NASA/ESA Conference on Adaptive Hardware and Systems,

pp. 447–452, July 2009.

[104] L. S. Nielsen and J. Sparsø, “Designing asynchronous circuits for low power: an

IFIR filter bank for a digital hearing aid”, Proceedings of the IEEE, vol. 87, pp. 268–

281, Feb 1999.

[105] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth,

U. Cummings, and T. K. Lee, “The design of an asynchronous MIPS R3000

microprocessor”, in Proceedings Seventeenth Conference on Advanced Research in

VLSI, pp. 164–181, Sept 1997.

[106] L. F. Cristfoli, A. Henglez, J. Benfica, L. Bolzani, F. Vargas, A. Atienza, and F. Silva,

“On the comparison of synchronous versus asynchronous circuits under the scope

170

Bibliography

of conducted power-supply noise”, in 2010 Asia-Pacific International Symposium on

Electromagnetic Compatibility, pp. 1047–1050, April 2010.

[107] K. M. Fant and S. A. Brandt, “Null convention logic
TM

: a complete and consistent

logic for asynchronous digital circuit synthesis”, in Proceedings of International

Conference on Application Specific Systems, Architectures and Processors: ASAP ’96,

pp. 261–273, Aug 1996.

[108] R. Sovani, K. Haque, and P. Beckett, “Short word length NULL convention logic

FIR filter for low power applications”, in 2015 IEEE International WIE Conference on

Electrical and Computer Engineering (WIECON-ECE), pp. 102–105, Dec 2015.

[109] A. Vakil, K. P. Jayadev, S. Hegde, and D. Koppad, “Comparitive analysis of null

convention logic and synchronous CMOS ripple carry adders”, in 2017 Second

International Conference on Electrical, Computer and Communication Technologies

(ICECCT), pp. 1–5, Feb 2017.

[110] T. E. Williams, Self-timed Rings and Their Application to Division. PhD thesis,

Stanford, CA, USA, 1991. UMI Order No. GAX92-05744.

[111] Europractice IC website, “TSMC 90nm technology overview”. https:

//www.europractice-ic.com/technologies_TSMC.php?tech_id=90nm, last

accessed: 04/07/2018.

[112] Xilinx Virtex-7 FPGA VC707 Evaluation kit. https://www.xilinx.com/products/

boards-and-kits/ek-v7-vc707-g.html, Last accessed: 28/06/2018.

[113] Keithley 2612B system source meter data sheet. www.testequipmentdepot.com/

keithley/pdfs/2600b_datasheet.pdf, last accessed: 04/07/2018.

[114] Arvind and D. E. Culler, “Annual Review of Computer Science Vol. 1, 1986”,

ch. Dataflow Architectures, pp. 225–253, Palo Alto, CA, USA: Annual Reviews Inc.,

1986.

[115] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras, “xMAS: Quick Formal Modeling

of Communication Fabrics to Enable Verification”, IEEE Design Test of Computers,

vol. 29, pp. 80–88, June 2012.

171

https://www.europractice-ic.com/technologies_TSMC.php?tech_id=90nm
https://www.europractice-ic.com/technologies_TSMC.php?tech_id=90nm
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
www.testequipmentdepot.com/keithley/pdfs/2600b_datasheet.pdf
www.testequipmentdepot.com/keithley/pdfs/2600b_datasheet.pdf

Bibliography

[116] S. M. Nowick and M. Singh, “High-Performance Asynchronous Pipelines: An

Overview”, IEEE Design Test of Computers, vol. 28, pp. 8–22, Sept 2011.

[117] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vigas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-

Scale Machine Learning on Heterogeneous Distributed Systems”. White paper,

Google Research, 2016.

[118] T. Ideker and R. Sharan, “Protein Networks in Disease”, vol. 18, no. 4, pp. 644–652.

[119] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, “Efficiency of scale-free

networks: error and attack tolerance”, Physica A: Statistical Mechanics and its

Applications, vol. 320, no. C, pp. 622–642, 2003.

[120] N. Satish, C. Kim, J. Chhugani, and P. Dubey, “Large-scale energy-efficient graph

traversal: A path to efficient data-intensive supercomputing”, in High Performance

Computing, Networking, Storage and Analysis (SC), 2012 International Conference for,

pp. 1–11, Nov 2012.

[121] P. Harish and P. J. Narayanan, “Accelerating Large Graph Algorithms on the GPU

Using CUDA”, in Proceedings of the 14th International Conference on High Performance

Computing, HiPC’07, (Berlin, Heidelberg), pp. 197–208, Springer-Verlag, 2007.

[122] Altera DE4 Development Board. http://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&No=501, Last accessed: 28/06/2018.

[123] FANTASI tool. GitHub repository: https://github.com/tuura/fantasi.

[124] J. Kleinberg, “The Small-world Phenomenon: An Algorithmic Perspective”, in

Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing,

STOC ’00, (New York, NY, USA), pp. 163–170, ACM, 2000.

172

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=501
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=501
https://github.com/tuura/fantasi

Bibliography

[125] Intel Corporation, “How do I interpret the Logic Utilization number

reported in the Quartus II Fitter report?”. Available online: https:

//www.altera.com/support/support-resources/knowledge-base/solutions/

rd05172012_146.html, last accessed: 24/07/2018.

[126] B. Betkaoui, D. B. Thomas, W. Luk, and N. Przulj, “A framework for FPGA

acceleration of large graph problems: Graphlet counting case study”, in 2011

International Conference on Field-Programmable Technology, pp. 1–8, Dec 2011.

[127] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F.

Martnez, and C. Guestrin, “GraphGen: An FPGA Framework for Vertex-Centric

Graph Computation”, in 2014 IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines, pp. 25–28, May 2014.

[128] N. Kapre, “Custom FPGA-based soft-processors for sparse graph acceleration”, in

2015 IEEE 26th International Conference on Application-specific Systems, Architectures

and Processors (ASAP), pp. 9–16, July 2015.

[129] M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput Bayesian Computing

Machine with Reconfigurable Hardware”, in Proceedings of the 18th Annual

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’10,

(New York, NY, USA), pp. 73–82, ACM, 2010.

[130] A. Grivas, High Performance Graph Analysis on Parallel Architectures. PhD thesis,

Newcastle University, 2016.

[131] ARMV6-M Architecture Reference Manual. ARM DDI 0419C (ID092410). 2010.

173

https://www.altera.com/support/support-resources/knowledge-base/solutions/rd05172012_146.html
https://www.altera.com/support/support-resources/knowledge-base/solutions/rd05172012_146.html
https://www.altera.com/support/support-resources/knowledge-base/solutions/rd05172012_146.html

	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Public Presentations & Demos
	List of Figures
	List of Tables
	Introduction
	New design challenges
	Scenario-based design
	Research contributions
	Organisation and collaboration

	Motivation
	Processor instruction sets
	Reconfigurable architectures
	Understanding complex systems
	Network analysis
	Summary

	Background
	Partial orders
	Conditional partial order graphs
	Petri nets
	Signal transition graphs

	Static dataflow structures
	Labelled transition systems

	Scenario composition
	Efficient composition of scenarios
	Background
	Related work
	The new scenario composition algorithm
	Design automation
	Summary

	Composition of dataflow structures
	Motivation
	The Dataflow Structures model
	Composition of scenarios
	Execution semantics expressed with Petri nets
	Design automation
	Related work
	Summary

	Decomposition of system specifications
	The idea with an example
	The Process Windows model
	Extracting windows from system specifications
	Deriving window conditions
	Applications of the model
	Related work and summary

	Case studies
	Control synthesis
	Related work
	Configuration and notation for benchmarking
	Ad-hoc controllers
	Processor instruction sets
	Software output logs
	Conclusion

	Reconfigurable asynchronous pipelines
	Introduction to ordinal pattern encoding
	Modelling reconfigurable asynchronous pipelines
	Implementing reconfigurable asynchronous pipelines
	Evaluation of the fabricated prototype
	Related work and conclusion

	FPGA accelerator for drug discovery
	Introduction to computational drug discovery
	The presented accelerator
	The scenario-based model of drug discovery
	Experimental results
	Related work and conclusion

	Conclusions
	Summary of the contributions
	Future work

	The scenario-based specification of the ARM Cortex M0+ processor
	Bibliography

