
µSystems Research Group

School of Engineering

Synthesis and Verification of Mixed-Signal
Systems with Asynchronous Control

Vladimir Dubikhin

Technical Report Series

NCL-EEE-MICRO-TR-2020-217

November 2020

Contact: v.dubikhin1@ncl.ac.uk

Supported by EPSRC grant EP/L025507/1 and Dialog Semiconductor

NCL-EEE-MICRO-TR-2020-217
Copyright © 2020 Newcastle University

µSystems Research Group
School of Engineering
Merz Court
Newcastle University
Newcastle upon Tyne, NE1 7RU, UK

http://async.org.uk/

Contents

Contents i

List of Figures v

List of Tables viii

Acknowledgments xi

Publications xiii

Abstract xv

1 Introduction 1

1.1 Motivation . 1

1.2 Asynchronous circuit design . 3

1.2.1 ATACS . 4

1.2.2 Petrify . 4

1.2.3 MPSAT . 5

1.3 AMS formal verification . 5

1.3.1 Theorem Proving . 5

1.3.2 DC Operating Point Analysis . 6

1.3.3 Equivalence Checking . 6

1.3.4 Symbolic Simulation . 6

1.3.5 State Space Guided Simulation . 7

1.3.6 Reachability Analysis . 7

1.4 Contributions . 8

1.5 Dissertation Overview . 9

2 AMS system design 11

2.1 Signal Transition Graphs . 11

i

CONTENTS

2.2 Workcraft . 13

2.3 A4A design flow . 14

2.4 Multiphase buck . 16

2.4.1 Synchronous control . 18

2.4.2 Asynchronous control . 19

2.5 Results and analysis . 21

3 Formal verification 25

3.1 Labeled Petri Net . 26

3.2 LEMA . 29

3.2.1 Model generator . 30

3.2.2 Property expression . 31

3.2.3 SystemVerilog translator . 31

3.2.4 Model checker . 33

3.3 Combined verification environment . 34

3.4 Buck control . 36

3.4.1 Buck converter . 36

3.4.2 Model generation . 38

3.4.3 Optimization method . 42

3.4.4 Results . 43

4 Model generation 45

4.1 ModelGen: existing approach . 45

4.1.1 Data binning . 46

4.1.2 Detecting discrete multivalued variables 50

4.1.3 Calculating ranges of rates . 50

4.1.4 LPN synthesis . 51

4.2 ModelGen: proposed approach . 53

4.2.1 Discretization . 54

4.2.1.1 Unique values discretization 56

4.2.1.2 Data values clusterization 57

4.2.1.3 Derivative clusterization . 60

4.2.1.4 Threshold based discretization 62

4.2.2 Filtering . 65

CONTENTS

4.2.2.1 Adaptive low pass filter . 65

4.2.2.2 Pattern based filter . 67

4.2.3 Rule mining . 70

4.2.3.1 Extracting data rules . 72

4.2.3.2 Conflict detection . 76

4.2.3.3 Resolve by state set . 77

4.2.3.4 Resolve by set sequence . 78

4.2.3.5 Resolve by analog data . 79

4.2.3.6 Resolve by rule sequence 80

4.2.4 LPN synthesis . 81

4.3 Conclusion . 85

5 Case Studies 87

5.1 Digital circuits . 87

5.1.1 Or element . 87

5.1.2 Flip-flop . 88

5.1.3 Frequency divider with adder . 91

5.2 C-element example . 96

5.2.1 Analog to digital converter . 96

5.2.2 RC circuit . 98

5.2.3 C-element . 102

5.3 Memristor . 102

5.3.1 Control . 104

5.3.2 Resistance . 105

5.3.3 Voltage drop . 105

6 Conclusions 111

6.1 Summary . 111

6.2 Future work . 112

6.2.1 Additional clusterization methods . 112

6.2.1.1 K-Means clustering . 112

6.2.1.2 DBScan . 112

6.2.1.3 Sliding window and bottom-up 113

6.2.2 Evaluating generated models . 113

v CONTENTS

6.2.3 Improving rule mining . 115

6.2.3.1 Branch and bound . 116

6.2.3.2 Genetic algorithm . 117

6.2.4 Pseudo-transitions . 119

6.2.5 Annotating STG with timing information 119

List of Figures

1.1 AMS system with “little digital” control . 1

2.1 Inverter example. 12

2.2 Model relationship. 14

2.3 A4A design flow. 15

2.4 Buck converter. 17

2.5 Synchronous control module. 19

2.6 Asynchronous control module. 20

2.7 Asynchronous phase controller. 21

2.8 Simulation waveforms. 22

2.9 Comparison of peak current and inductor losses. 23

3.1 C-element example. 26

3.2 RC circuit. 28

3.3 RC LPN model. 29

3.4 LEMA’s tool flow. 30

3.5 A before B: LPN property. 32

3.6 C-element zone. 34

3.7 Workcraft and LEMA joint workflow. 35

3.8 Buck converter schematic. 37

3.9 Informal specification. 37

3.10 Buck control STG. 38

3.11 PMOS acknowledgement signals. 39

3.12 PMOS acknowledgement model. 40

3.13 Over-current and undervoltage signals. 40

3.14 Over-current and undervoltage models. 41

3.15 State graphs . 42

3.16 Optimized control models. 43

v

vi LIST OF FIGURES

4.1 Analog part of a buck converter. 48

4.2 Threshold discretization. 48

4.3 Threshold discretization problems. 49

4.4 PMOS signal with transient. 51

4.5 Bin to transitions translation. 53

4.6 ModelGen flow. 54

4.7 Derivative discretization. 56

4.8 Dendrogram of data values. 58

4.9 PMOS signal data clusterization. 59

4.10 Threshold discretization of a non-monotonic function. 62

4.11 Threshold discretization of a monotonic function. 65

4.12 State duration histogram. 66

4.13 Low pass filter problem. 70

4.14 Dynamic data discretization. 79

4.15 Partial model. 81

4.16 Partial model with reset links. 82

4.17 Complete model. 83

4.18 Connected model with rule dependency. 84

5.1 Or element waveforms. 88

5.2 Or element model. 89

5.3 Flip-flop waveforms. 90

5.4 Flip-flop model. 92

5.5 Frequency divider with adder. 93

5.6 Frequency divider waveforms. 93

5.7 Frequency divider model. 95

5.8 Frequency divider model waveform. 95

5.9 C-element modules. 96

5.10 RC circuit waveform. 97

5.11 C-element waveform. 97

5.12 RC1 to A A2D converter. 98

5.13 RC circuit binning. 98

5.14 Improved RC2 model. 99

5.15 Pseudo transitions. 100

LIST OF FIGURES vii

5.16 Original RC2 model. 101

5.17 C-element simulation results. 101

5.18 Or-element simulation results. 102

5.19 C-element LPN model. 103

5.20 Memristor circuit. 103

5.21 Memristor waveforms. 104

5.22 Memristor control model. 105

5.23 Memristor resistance model. 106

5.24 Memristor voltage drop sample model. 107

5.25 Memristor voltage drop state model. 108

5.26 Memristor simulation results. 109

6.1 Quality dimensions for model generation. 113

6.2 Imprecise model. 115

6.3 Branch and bound tree graph. 116

6.4 Genetic algorithm for rule mining. 118

viii LIST OF FIGURES

List of Tables

2.1 Comparison of the reaction time. 22

3.1 Optimization results. 43

ix

LIST OF ABLES

Acknowledgments

I would like to thank my supervisor, Alex Yakovlev, for his wisdom and guidance throughout

my research. He provided the invaluable opportunities to present my work as well as educated

me to become a better researcher. I would also like to thank Danil Sokolov, who has helped me

in developing the necessary skills in software design and publishing of scientific papers. I am

very grateful to Chris Myers with whom I had the pleasure of working together all these years.

He provided the critical feedback and helped me in shaping my ideas in numeral discussions.

I also extend my thanks to my colleges Jonathan Beaumont, Yuqing Xu, and Serhii Mileiko.

I enjoyed our discussions and learned a lot about software and circuit design from you. I also

want to express my gratitude to Thanasin Bunnam, who provided me the simulation data for the

memristor example. Finally, I would like to thank David Lloyd and Carlos Calisto from Dialog

Semiconductor for their help in implementation of the simulation testbench.

This research was supported by the EPSRC research grant ‘A4A: Asynchronous design for

Analogue electronics’ (EP/L025507/1).

xi

LIST OF ABLES

Publications

Conference papers

V. Dubikhin, C. Myers, D. Sokolov, I. Syranidis, and A. Yakovlev. Advances in formal

methods for the design of analog/mixed-signal systems. In Proc. Design Automation

Conference (DAC), 2017.

V. Dubikhin, D. Sokolov, C. J. Myers, A. Mokhov, and A. Yakovlev. Model discovery for

analog/mixed-signal circuits. In FAC 2017; Frontiers in Analog CAD, pages 1–6, July 2017.

D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev. Benefits of

asynchronous control for analog electronics: multiphase buck case study. In Proc. Design,

Automation & Test in Europe (DATE), 2017.

Journal article

V. Dubikhin, D. Sokolov, A. Yakovlev, and C. J. Myers. Design of mixed-signal systems

with asynchronous control. IEEE Design & Test, 33(5):44–55, 2016.

xiii

v LIST OF ABLES

Abstract

Analog/mixed signal (AMS) systems are widely used in electronic devices, such as mobile

phones, autonomous sensors, and radio transmitters. The traditional design flows are based

on synchronous circuits, which simplify the design process but raise a number of limitations

in certain applications. For example, in order to react promptly to the changes in an analog

environment the control module needs to have a high clocking frequency. This in return leads to

higher power consumption and wasted clock cycles, when no changes occur in the environment.

Asynchronous circuits do not have this disadvantage as they react to input events at the rate they

occur. However, with design automation being a huge concern asynchronous circuits are not

widely used by industry.

Another problem related to the AMS system design is the reliance on simulation as the

verification method. A simulation trace shows only one possible behavior of the system, as a

result simulation based verification largely depends on quantity and diversity of tests. Formal

methods, such as the reachability analysis, aim to address this problem. However, a lot of the

proposed methodologies are disruptive to the existing design flows and require engineers to

manually construct abstract models for their systems.

The main goal of this work is to introduce the novel automated workflow, which enables

formal verification of AMS systems with asynchronous control that has been optimized with

correct timing assumptions extracted from the full-system model. One of the key features of

the proposed design flow is the ability to reuse existing simulation traces to generate abstract

models, used for system validation. To overcome a number of flaws in the existing model

generator a new version, utilizing data clusterization and process mining techniques, is created

as a stand-alone framework in Java. The new model generator is designed to construct more

general models that produce correct behavior, when used with a different control module.

xv

xvi LIST OF ABLES

Chapter 1. Introduction

From simple analog-to-digital and power converters to complex cellular network integrated

circuits, analog/mixed-signal (AMS) systems are an essential component of many modern

system-on-chip designs. Ever growing system complexity, performance and reliability require-

ments lead to an increased number of digitally assisted analog blocks [42]. This tight coupling

of complex analog systems to complex digital solutions results not only in an extensive amount

of verification to perform, but also necessity to combine design and validation methods for two

fundamentally different system types.

1.1 Motivation

Existing trends in AMS system design, such as technology scaling, tight reliability margins,

and short development cycle, put a great emphasis on design automation and verification [57].

While numerous tools have been developed for automation and verification of digital design,

analog tool development has not kept pace. To cope with this problem, analog designers have

turned to using digital alternatives whenever possible.

The design paradigm of digital components of AMS systems is different from the traditional

computational electronics. As shown in Figure 1.1, such digital (on-top or within analog) elec-

A2D D2A

IP cores (big digital)

level shifters

sensorssynchronisers

sanitisers

power

converters

control for analog layer (little digital)

slow fast local

infrastructure

digital

analog

sensor/timing/energy

time bands

Legend:

design automation

scope for

Figure 1.1: AMS system with “little digital” control

1

tronics are “little digital” as opposed to “big digital” electronics. Designing “little digital” is

difficult because it should seamlessly integrate with the analog parts, which are dynamic and

notoriously difficult to automate. Existing methods for digital design are based on synchronous

circuits, which results in suboptimal solutions for mixed-signal systems [71]. The clocked op-

eration mode, natural for the data processing, might lead to either low responsiveness or power

consumption overheads in control modules of mixed-signal systems. On the one hand, the oper-

ating frequency must be sufficiently high to promptly react to changes in analog sensor readings.

On the other hand, high clocking frequency can potentially result in wasted clock cycles if the

sensors’ readings change slowly.

For these reasons, the use of asynchronous logic for digital control has the potential to

significantly improve the quality of the analog electronics. Asynchronous circuits can provide

greater robustness, reactivity, and power efficiency. However, due to the lack of necessary

computer-aided design tools, engineers have to rely on ad hoc development approaches and use

extensive simulation to prove correctness of their designs. Furthermore, not only simulation

time considerably increases with system’s complexity, but also simulation driven verification

is prone to human error and depends on the number and diversity of tests. This may result in

longer development times and even the necessity to restart the whole project from the start due

to some critical errors found at the final phase.

Furthermore, the fundamental problem in AMS system design is the gap in communication

between analog and digital designers. Analog and digital domains evolved separately, which

results in different tools and methodologies used to create analog and digital components. Ad-

ditionally, analog design with “little digital” is largely done by analog engineers without any

formal steps from the specification to netlists. No synthesis tools are in common use, and val-

idation with conventional simulation can take days or longer. Formal design methods [22] can

be used to improve the robustness of the designed systems as well as provide means to create

abstract models of analog components. The latter is especially important as high level of ab-

straction for analog and mixed signal blocks can help to identify problems during early stages

of development.

The main goal of this work is to improve the design process of AMS systems by adopting

asynchronous circuit design and formal verification methods. While there is a number of such

methods, as described in the following sections, there does not exist a unified methodology that

would combine these areas. The novel design flow, detailed in Chapter 3, couples established

asynchronous circuit design and formal verification tools and organically integrates into the

existing simulation based design flow. An important aspect of the proposed design flow is the

2

usage of model generation, which allows to create abstract models from simulation traces and

simplify verification process. Essentially, the model generation reuses existing simulation traces

to automatically construct models of analog elements without requiring extensive knowledge of

formal methods from engineers. As the model generation plays a key role in the design flow the

major contribution of this work is an improvement over the existing model generation algorithm,

as explained in Chapter 4. The improved model generation framework is capable of generating

more general models of an analog environment, which can produce accurate behavior with new

digital control module, as illustrated in Section 5.2 of Chapter 5.

1.2 Asynchronous circuit design

While early computers were either asynchronous, or had multiple asynchronous compo-

nents, asynchronous circuits are no longer used as a mainstream implementation platform for

electronic devices. The separation of functionality from timing, the necessary abstraction pro-

vided by synchronous logic, has paved way to the design of VLSI systems and as a result

the modern digital implementation flow relies on synchronous circuits. However, the usage

of the synchronization clock comes at a price, when moving to Deep Sub-Micron technology,

as clock skew, power consumption and electromagnetic interference might become a problem.

Asynchronous approach offers a number of significant advantages over traditional design meth-

ods [18]:

• Modularity. The ability to plug and play existing designs, without having to re-do the

clock routing and fabrication, can reduce the development time.

• Power Consumption and Electromagnetic Interference. Asynchronous control cir-

cuits tend to be quiet, as they avoid unneeded transitions, due to absence of the clock,

while spreading out needed transitions.

• Performance. Not only asynchronous modules may exhibit average case performance,

rather than worst case as synchronous ones, but also can be finely tuned down to the levels

of transistor sizing and individual transition delay, which can in turn improve overall

system performance.

Although, good on paper the design of asynchronous circuits is more difficult than synchronous

ones and is largely done by hand. In order to tackle the problem of asynchronous design au-

tomation a number of design methodologies has been developed [25, 55]. These tools, utilizing

3

various delay models from bundled delay to quasi-delay-insensitive circuits, allow for auto-

mated asynchronous system specification and synthesis.

1.2.1 ATACS

ATACS [2] is a synthesis, analysis, and verification tool for timed circuits. The tool accepts

designs given in various formats including VHDL, Petri nets, timed event/level structures, and

state graphs. Analysis is performed by running a stochastic simulation utilizing provided delay

information. For verification, a set of timing constraints is checked during timed state space

exploration. Afterwards, verified design can be synthesized via one of synthesis algorithms,

such as binary decision diagrams (BDD) or direct synthesis. Each synthesis method generates

circuits which are hazard-free under a particular technology model.

The tool has been used in the verification of delayed-reset domino circuits in the guTS (gi-

gahertz unit Test Site) processor [12]. A delayed-reset domino macro consists of a number of

levels of dynamic gates, each of which receives inputs from preceding layers. Formal verifica-

tion assured design correctness and gave confidence that all of the timing behaviors have been

considered.

1.2.2 Petrify

PETRIFY [4] is a tool for the synthesis of Petri nets and asynchronous controllers [17].

Given a Petri Net (PN), a Signal Transition Graph (STG), or a Transition System (TS) it can

generate another PN or STG, which is simpler than the original description, and produce an

optimized net-list of an asynchronous controller in the target gate library, while preserving the

specified input-output behavior.

For synthesis of an asynchronous circuit petrify performs state assignment by solving the

Complete State Coding problem. State assignment is coupled with logic minimization and

speed-independent technology mapping to a target library. The final net-list is guaranteed to

be speed-independent, i.e., hazard-free under any distribution of gate delays and multiple input

changes satisfying the initial specification. The tool has been used for synthesis of PNs and PNs

composition, synthesis and re-synthesis of asynchronous controllers and can be also applied in

areas related with the analysis of concurrent programs.

4

1.2.3 MPSAT

MPSAT [35] provides an extensive set of functions for composition and verification of

Petri nets and STGs, and for synthesis of electronic circuits from STGs. Additionally, to cope

with the problems of expressing verification properties for PNs the developers have designed

a new property expression language REACH to allow easy and concise specification of custom

properties. The tool builds a finite and complete prefix of the given Petri net unfolding to

represent a PNs state space. For STGs such a representation is often superior to that based on

explicit state graphs or BDDs due to the fact that STGs usually contain a lot of concurrency

but rather few choices. As a result, the memory requirements of synthesis algorithms based on

unfoldings are very moderate.

1.3 AMS formal verification

As an alternative to simulation-based verification, numerous researchers have been explor-

ing the application of formal verification methods to AMS circuits. Formal verification utilizes

exhaustive algorithmic techniques to ensure that a design implementation satisfies the properties

given in its specification [56]. These properties are often expressed using temporal logic, while

the model for the design can be expressed formally in a variety of ways including automata,

Petri nets, etc. Formal verification then proceeds to exhaustively check that the properties are

satisfied. In the end, if the formal representation of the system is correct and the set of prop-

erties precisely characterize the specification requirements, then the designer can have a higher

confidence of correct operation.

The key challenge with the application of digital domain formal methods to the analog

domain is the continuous nature of voltage and current state variables. Therefore, formal ap-

proaches in the AMS space must deal with a potentially infinite state space. To cope with this

problem researches have proposed a number of various methods, described below.

1.3.1 Theorem Proving

METITARSKI is an automatic theorem prover based on a combination of resolution and a

decision procedure for the theory of real closed fields. It is designed to prove theorems involving

real-valued special functions such as log, exp, sin, cos and sqrt. In particular, it is designed to

prove universally quantified inequalities involving such functions. METITARSKI has been lately

used to determine the possibility of oscillation of a tunnel diode oscillator and the change in gain

due to component tolerances for an operational amplifier [21]. In [53] Narayanan et al. adopted

5

the METITARSKI tool-set to verify saturation property of an Op-Amp under noise and process

variation conditions.

1.3.2 DC Operating Point Analysis

These approaches assume the inputs are held steady and try to find a unique equilibrium

point. One such approach is implemented in the FSPICE tool, which solves the multiple DC

operating points problem by setting up and solving a satisfiability (SAT) problem [70]. Other

techniques for DC analysis can be found in [32, 76, 69], and [78]. The latter, for example,

applies evolutionary computing for the detection of multiple equilibrium points.

1.3.3 Equivalence Checking

These approaches attempt to show that two representations of an AMS circuit produce the

same response to the same inputs. In [42], a new flow is proposed to enable a top-down de-

sign approach for analog components. Analog cells are described using SystemVerilog and

compared against their implementation at the transistor level, while digital blocks are validated

using existing tools for digital components. This validation method has been used to test analog

cells of a single-slope ADC and a serial link receiver.

1.3.4 Symbolic Simulation

Authors of [60] present an extension to the symbolic simulation approach utilizing affine

arithmetic to allow the representation of control flow and discrete changes. The proposed

methodology is used to verify the stability property of a 3rd order ΣΔ modulator.

Another approach using affine arithmetic, described in [31], tackles the problems of device

mismatch and process variation. They reformulate the basic modified nodal analysis (MNA)

equations in order to include vectors containing parameter expressions based on affine arith-

metic. The result of the simulation is not a single trace but a range of traces capturing all

potential simulation results obtained by varying a parameter in a certain range. The method-

ology is applied to an analog band-pass filter and the results are compared to a Monte Carlo

simulation. The simulation takes less time, however the algorithm tends to diverge when strong

nonlinearities occur.

6

1.3.5 State Space Guided Simulation

In [68], the authors propose a property verification and equivalence checking methodology

for analog circuit blocks based on a novel algorithm for formal automatic input stimuli gen-

eration. Therewith, it overcomes the incompleteness of transient simulation and the designer-

unfriendliness of formal approaches by combining a formal approach and conventional transient

circuit simulation. This method is applied to a Sallen-Key bi-quad low-pass filter with a cut-off

frequency of 1000 Hz. Using a property specification for overshoot behavior and an automatic

evaluation on the simulation result, complete and, therefore, formal property verification cover-

age is obtained without user-interaction.

1.3.6 Reachability Analysis

The COHO tool performs reachability analysis using state spaces represented as projections

of high-dimensional polyhedra onto high-dimensional spaces [74, 75]. This method is success-

fully used to verify the correctness of a high speed toggle element and an arbiter. Verification

of cyclic properties can also be performed by proving the existence of a cyclic invariant.

The PHAVER tool [29] operates on linear hybrid automata (LHA) which by definition

contain both discrete and continuous components. Similar to differential inclusions, LHA are

characterized by a set of states and linear inequalities defining transitions. For the computa-

tion of the reachable states, PHAVER uses a polyhedral representation and over-approximation

based on affine dynamics.

The SPACEEX tool [30] provides an extensible verification platform for hybrid systems. The

tool consists of three main components: an analysis core, a command line program, that anal-

yses the system; a web interface, which provides the ability to specify initial states and other

analysis parameters, run the analysis core, and visualize the output graphically; and a model

editor, a graphical editor for creating models of complex hybrid systems out of nested compo-

nents. SPACEEX relies on hybrid automata for model description and support functions [41] for

state space exploration. This system has been used to model and verify the behavior of several

benchmarks [54, 49].

Another work [7] presents a state space analysis method for verifying both the transient and

invariant specifications for a PLL using zonotopes by describing reachable sets. The behavioral

model of the charge-pump PLL is a hybrid automaton with linear continuous dynamics and

uncertain parameters. Furthermore, authors claim that their methodology computes accurate

over-approximations of reachable sets for hybrid systems when there are a large number of

7

discrete state transitions. The methodology is applied to the verification of locking time and

stability of a 27GHz PLL designed in 32nm CMOS SOI technology. The novel reachability

analysis method efficiently provides an upper bound on the worst-case lock time in the presence

of random phase error and charge pump current variations.

1.4 Contributions

This dissertation presents a number of improvements in the design of AMS systems, featur-

ing usage of asynchronous logic for digital control and formal verification methods of the entire

AMS design. The main contributions of this work are summarized below:

• Analysis of the multiphase buck converter with asynchronous control.

• Development of the new AMS design flow, based on tools WORKCRAFT and LEMA.

• Design of the singlephase buck converter with asynchronous control and control opti-

mization.

• Design and implementation of the new methodology for generating AMS models from

simulation traces.

The first contribution provides comparative analysis of the existing asynchronous control mod-

ule vs its synchronous counterpart. An AMS simulation testbench, written in Verilog-A, has

been built to obtain a number of metrics from mixed-signal simulation. Asynchronous circuit

has proven to have faster reaction time and potential for coil reduction, while maintaining the

same current ripple level.

The second contribution focuses on bringing together two research tools in a joint AMS

design flow. WORKCRAFT [5] allows automated synthesis of asynchronous circuits from their

STG specification, while LEMA [3] provides means to construct abstract models of the entire

AMS system and perform formal verification through reachability analysis. The core idea of the

new design flow is to reuse existing simulation traces and convert them into an abstract model

of the analog environment. This model in combination with the STG specification can not only

help increase reliability of AMS circuits, but also allow exploitation of timing information,

extracted from simulation.

The third contribution applies the proposed design flow to improve the design of a single-

phase buck converter. The buck converter with asynchronous control is used as a motivational

example to test the new flow and identify any underlying problems. Using the existing sim-

ulation testbench several simulation traces have been obtained to generate abstract models of

8

analog blocks. These models in combination with the STG specification have been used to for-

mally verify operation of the design. At the same time a new optimization algorithm, which

operates on the produced state graph of the system, has been capable to identify possibilities for

control optimization, such as concurrency reduction and scenario elimination.

And, finally, the fourth contribution is the implementation of the new model generation

algorithm. Several critical issues with the existing model generation module in LEMA have

been identified, which can limit quality and precision of the generated models. To overcome

these problems a new model generation flow has been developed. The proposed methodology

aims to improve model precision by introducing new derivative based discretization method.

Furthermore, a fine control over model fitness is provided via a notion of data rule mining, a

novel approach to finding recurring patterns in the input data.

1.5 Dissertation Overview

The rest of the dissertation is divided into five chapters:

• Chapter 2 expands on asynchronous control design principles, introduced in previous

chapter. The chapter describes the tool WORKCRAFT and provides the necessary back-

ground information, regarding STG semantics. Later on, the chapter explains the op-

eration of the new multiphase buck converter and proves that asynchronous control is

superior to synchronous one.

• Chapter 3 introduces the tool LEMA and the new LEMA-Workcraft AMS design flow.

Single-phase buck converter is to be used as motivational example to demonstrate that the

new flow can not only formally verify the operation of the system, but also provide means

for automatically identifying possibilities for control optimization.

• Chapter 4 highlights existing problems withing the model generation module in LEMA

and offers new methodology for generating abstract models from simulation traces. The

proposed methodology seeks to provide a finer control over ranges of rates as well as an

overall model structure.

• Chapter 5 provides further explanation to the operation of the new model generator by

applying it to a number of digital and analog components, such as a memristor.

• Chapter 6 summarizes the contributions of this dissertation. It recaps the advantages of

asynchronous circuits and how the new flow can improve the design of AMS systems.

9

The chapter concludes with a list of possible improvements to the new model generation

approach.

10

Chapter 2. AMS system design

Analog and mixed signal electronics govern distribution and regulation of energy flows,

monitoring of the system’s operating conditions, and interfacing with the analog environment.

Power converters [59] are of particular importance as energy is becoming the most valuable

resource in modern electronics. The responsiveness and robustness of power converters is de-

termined by the implementation of their control circuitry: millions of control decisions need to

be made every second and a single incorrect decision may cause a malfunction of the whole

system or even permanently damage the circuit. For example, a 3MHz switching regulator is

clocked around 473,364,000,000,000 times in 5 years of its operation [8].

AMS control can significantly benefit from the use of asynchronous logic [72] that does not

rely on the global clocking and operates at the pace determined by the operating conditions.

Hence, there is an ever increasing scope for the use of asynchronous design for analog elec-

tronics (A4A). There are many methodologies and design styles for asynchronous circuits [67],

however few of them tackle the problem of design automation. Ad hoc solutions, based on

unrealistic assumptions, may lead to hazards propagating into the digital core of the system.

This chapter introduces the new A4A design flow, based on the STG formalism and sup-

ported by WORCKRAFT framework. This flow, developed by the asynchronous community

from the Newcastle university, is applied to the design of the control module for a multiphase

buck converter to demonstrate benefits of asynchronous controllers over the traditional syn-

chronous ones.

2.1 Signal Transition Graphs

Signal transition graph, a special type of a Petri net, provides excellent capabilities for

capturing concurrent behavior of asynchronous circuits as well as a necessary pragmatic design

notation [18]. An STG describes causality relations between input and output signals of a

system by associating rising and falling edges of a signal with a Petri net transitions. Formally,

an STG can be defined as a tuple S = �P,T,F,M0,λ ,Z,v� where:

• P is a finite set of places;

11

in out

(a) Schematic.

in

out

(b) Timing diagram.

(c) Signal transition graph.

Figure 2.1: Inverter example.

• T is a finite set of transitions;

• F ⊆(P×T)
�

(T ×P) is the flow relation;

• M0 ⊆P is the set of initially marked places;

• λ is a labeling function;

• Z is a set of signals;

• v is a vector of initial signal values.

The operation of an STG is best illustrated with the following examples. Consider a digital

inverter, as shown in Figure 2.1a. The traditional timing diagram in Figure 2.1b describes

timing and causal relations between signals in and out. These relations, expressed as colored

arcs, define the order in which the signals can appear in a simulation trace. For example, the

positive edge of the signal in causes the signal out to change its value from 1 to 0. Similarly,

a negative edge of signal in can only occur after the signal out transitioned to 0. The STG

specification of this system, provided in Figure 2.1c, captures this behavior in the form of a

Petri net.

12

The values of the signals in and out are assumed to be 0 and 1, respectively. Initially,

transition in+ is enabled, which corresponds to the positive edge of the in signal. Firing this

transition changes the value of this signal to 1 and enables the transition out-, which changes

the value of the out signal to 0. This effectively represents the causal relation between these

signals, expressed by the first red and blue arcs on the timing diagram. In a similar manner the

relation between the in negative edge and out positive edge is formulated.

In order for an STG model to be used for asynchronous circuit design it must possess a few

important properties. First of all the STG must be one place safe, which means that no more

than one token is permitted in any place at any time. The STG model must also be consistent,

which states that for any signal sequences labeled with + or - alternate in any firing sequence.

Additionally, the model must be persistent, indicating that no transition can be disabled by

another transition unless they both are events of different input signals. Finally, the model must

be free of deadlocks. It is important to note that for simplicity reason places are often omitted

from a graphical representation of an STG model.

2.2 Workcraft

WORKCRAFT is a tool-set for capture, simulation, synthesis, and verification of interpreted

graph models. The tool provides convenient mechanism for verification of constructed STGs

and subsequent high-level synthesis, using one of back-end tools: PETRIFY [4] or MPSAT [35].

The main features of this framework are [66]:

• Availability - open-source front-end and plugins, permissive licenses for back-end tools,

as well as frequent releases with bug fixes and features requested by users.

• Usability - elaborated GUI that was developed with much feedback from the users.

• Portability - it runs on Windows, Linux, and Mac OS X operating systems.

• Extendibility - the framework is designed to easily include new interfaces to back-end

tools as plugins.

• Automation - several complete design flows have been implemented by bridging the gaps

between back-ends and converting file formats.

WORKCRAFT is designed to provide a common framework for the development of Interpreted

Graph Models (IGMs), such as Finite State Machines, Petri nets, Signal Transition Graphs,

13

Conditional Partial
Order Graph

Digital Circuit

Dataflow Structure

xMAS Circuit

lossless translation lossy translation synthesis

Directed Graph

Finite State
Machine

Finite State
Transducer

Signal Transition
GraphPetri Net

Structured
Occurrence Net

Policy Net

Digital Timing
Diagram

abstract behaviour signal semantics structural information

Figure 2.2: Model relationship.

gate-level circuits, and dataflow structures. Consequently, the tool can be used for a wide va-

riety of applications ranging from modeling concurrent algorithms and biological systems to

designing asynchronous circuits and investigating crimes. WORKCRAFT allows to automati-

cally convert from one model into another formalism, as presented in Figure 2.2. For example,

a verilog netlist can be converted into an STG format, which can be transformed into a finite

state transducer.

While the primary goal of the tool is the automated synthesis of asynchronous circuits [65],

this flexibility allows WORKCRAFT to be used in multiple applications. For example, in [19] the

tool was used to specify and explore Instruction Set Architecture (ISA) of the ARM CORTEX-

M0 processor as well as synthesize an efficient processor microcontroller. Thanks to the dataflow

structure (DFS) support the tool proved useful in designing and verifying an asynchronous

dataflow accelerator for reconfigurable ordinal pattern encoding [62]. Finally, the plugin based

architecture allows to incorporate new asynchronous design methodologies, such the synthesis

of an STG specification from a number of high-level concepts [11].

2.3 A4A design flow

The A4A design flow, as shown in Figure 2.3, starts with an informal specification of the

intended system behavior in the form of phase diagrams, waveforms, and verbal requests [63].

This needs to be formalized in a consistent and unambiguous form of signal transition graphs.

14

informal design intent
(waveforms, phase diagrams)

architectural decomposition
and component formalisation

formal specification of components
(signal transition graph)

logic synthesis & technology mapping
(Petrify, Punf, MPSat)

verification report
(violation traces)

reachability report
(hazard traces)

signoff report
(timing violations)

hazard-free components
(Verilog netlist)

system integration
(Workcraft)

little digital asynchronous controller
(Verilog netlist)

sanity check
(Punf, MPSat)

functional verification
(PComp, Punf, MPSat)

design concepts

timing verification
(PrimeTime)

gate library

A2A interfaces

specification and synthesis verification
and validation

libraries and
design guidelines

manual effort

offline testing features
and place & route

conventional design flow

Figure 2.3: A4A design flow.

The STGs are either manually created using GUI or imported from a *.g file, produced by

PETRIFY. This step, being difficult to automate, relies on the designer experience and the

established design guidelines for decomposition of the design into simple sub-modules.

Afterwards, the designer verifies various properties of the specification, such as consis-

tency or deadlock freeness, while the tool helps the user to debug the STG by visualizing

reports from a back-end tool. The verified specifications of the sub-modules are synthesized

into speed-independent gate-level components [16], which are integrated into a complete “little

digital” controller. The circuit can be further verified or simulated to ensure no errors occurred

during the synthesis. Standard electronic design automation (EDA) tools can be reused for

place-and-route and offline testing of asynchronous “little digital” controllers [46]. For inter-

acting with the analog components the asynchronous controller relies on a library of analog-to-

asynchronous (A2A) [65, 64] interface elements for sanitizing non-persistent inputs. The next

sections illustrate how the proposed methodology can be applied to the design of a multiphase

buck converter.

15

2.4 Multiphase buck

A buck converter comprises an analog buck and a digital control [59], as shown in Fig-

ure 2.4a. A basic buck converter consists of the digital control, which determines the state

of the PMOS and NMOS transistors, depending on the input sensors. These transistors are

switched on and off periodically to step-down the input voltage and power the load. The induc-

tor and capacitor act as an LC filter to smooth the output voltage and provide steady voltage

level for the load.

The state of the power transistors is determined by three main conditions: under-voltage (UV),

over-current (OC) and zero-crossing (ZC) conditions (uv, oc and zc inputs respectively). These

conditions are detected by a set of sensors that compare the measured current and voltage with

some reference values (V_ref, I_max, I_0). Under-voltage shows that the output voltage is

below a specified minimum and a charging cycle must start by switching the NMOS transistor

OFF and PMOS transistor ON, while the over-current signal reports that the current flowing

through the system has reached the maximum safe limit and thus the state of the transistors

must be reverted - PMOS OFF and NMOS ON. Additionally, zero-crossing signal indicates the

direction of the current flowing through the coil and control prevents the reversal of the current

flow by turning both transistors off. Note that in order to avoid a short-circuit the PMOS and

NMOS transistors of the buck must never be ON at the same time. Therefore, the controller

is explicitly notified (by the gp_ack and gn_ack signals) when the power transistor threshold

levels (V_pmos and V_nmos) are crossed.

The operation of buck converter is usually specified in a rather informal way, for example

by describing sequences of input conditions and the intended reactions to these evens, as shown

in Figure 2.4b. This diagram shows that the UV condition is handled by turning the PMOS

transistor ON and the NMOS transistor OFF, while the OC condition reverts the state of these

transistors to PMOS OFF and NMOS ON. Detection of the ZC condition after UV does not

change this behavior. However, if ZC is detected before UV then both transistors must be

turned off until the UV condition.

A multiphase buck converter [9] combines several pairs of PMOS and NMOS transistors,

called phases, to power the same load, as illustrated in Figure 2.4a. The main advantages of this

distributed design compared to the basic buck are faster reaction to the power demand, heat dis-

sipation from a larger area, and the possibility to replace a large coil with several smaller ones,

thus reducing the dimensions of consumer gadgets [59]. The control circuit of a multiphase

buck monitors over-current and zero-crossing conditions of individual phases and the voltage

16

R
_l

o
a
d

V_nmos

V_pmos

V_nmos

V_pmos

analog
buck

PMOS

NMOS

PMOS[N]

NMOS[N]

digital

oc

zc

ocN

uv

zcN

gn_ackN

gn_ack

gp

gp_ack

gn

gp_ackN

gpN

gnN

hl

over-current

I_0 (I_neg)

I_max (I_0)

I_max (I_0)

I_0 (I_neg)

V_ref

zero-crossing

under-voltage

V_minhigh-load

V_maxover-voltage

ov

b
a
si

c
co

n
v
e
rt

e
r

control

m
u
lt

ip
h
a
se

 c
o
n
v
e
rt

e
r

(a) Schematic.

UV UV OC

I_max

current no ZC late ZC

OC

early ZC

PMOS OFF

ZC

PM
OS OFF

NM
OS ON

NMOS OFF

ZC

NMOS O
FF

PM
OS

ON

NM
OS

OFF
NM

OS ON

PM
OS OFF

PM
OS O

N

UV OC time

NM
OS

OFF

PM
OS

ON

I_0

(b) Informal specification of a basic buck.

Figure 2.4: Buck converter.

17

level at the load. When the UV condition is detected the controller performs a charging cycle

at the currently active phase. Traditionally, the active phase is selected in a round-robin manner

and only one phase can be active under normal conditions.

The high-load (HL) condition indicates a sudden increase in power demand, which corre-

sponds to the voltage drop below V_min1 value. As a result the controller reacts by starting a

charging cycle in all phases simultaneously. As buck rumps to its target voltage it can overshoot,

which leads to an excessive voltage on the capacitor and can damage the connected system. To

mitigate this problem the controller enters the over-voltage (OV) mode to sink extra energy.

This is achieved by changing reference values for OC and ZC conditions, so that PMOS is

switched OFF as soon as positive current is detected and NMOS stays ON until the negative

current limit is reached.

Note that for efficiency reasons, once ON, the PMOS and NMOS transistors should not

switch OFF for at least the predefined PMIN and NMIN time intervals, respectively. Further-

more, at the first charging cycle after the arrival of UV the PMOS transistor should stay ON

even longer (PMIN + PEXT).

2.4.1 Synchronous control

A high-level architecture of the synchronous multiphase buck controller is presented in Fig-

ure 2.5. The module consists of N phase control modules and a phase activator that selects the

phase controllers in a round-robin pattern. The signals, coming from the environment, are san-

itized by a set of synchronizers [36] (shaded components), implemented as a pair of flip-flops.

The processed input signals are used by other modules that a specified in conventional RTL

style as a clocked finite state machine (FSM) and synthesized by the standard EDA flow.

There are two clocks in this design: relatively slow clock for generating non-overlapping

pulses for phase activation, and a fast clock for reading sensors and clocking the FSM. The latter

clock is implicitly connected to synchronizers and other system components. Note that synchro-

nization imposes a latency of up to 2.5 clock periods in the reaction time of the synchronous

buck controller. Two clocks due to usage of double flip-flop synchronizers and 0.5 clocks for

FSM operation. The latter delay is achieved by doing the synchronization on the negative clock

edge and the FSM computation on the positive one. This latency can be increased if a synchro-

nizer hits metastability.

1It is implied that V_min < V_ref.

18

Figure 2.5: Synchronous control module.

2.4.2 Asynchronous control

Asynchronous control for the multiphase buck does not have an explicit phase activator and

instead utilizes a token ring architecture for phase activation [64], as shown in Figure 2.6. On

receiving a token a phase becomes active and starts a charging cycle. The token is passed to the

next connected stage after a predefined duration of time. A single phase controller, illustrated in

Figure 2.7, consists of several sub-modules, responsible for token propagation, synchronization

of input signals with internal logic, and performing a charge cycle. The asynchronous sub-

modules communicate by means of handshakes with the following naming convention: requests

start with ’r’ and acknowledgements with ’a’.

A number of A2A interface components (shaded) are used to process and sanitize input sig-

nals. In contrast to the conventional synchronizers these components are event driven, which

means that instead of continuously polling its state they wait for the specific change of a non-

persistent input. For example, a WAIT module is used to latch the HL condition and is anal-

ogous to a synchronizer. A WAIT01 is similar in operation, however it detects a rising edge

of the input signal rather than being triggered only by an input value. A WAITX2 component

identifies the UV and OV modes and performs arbitration between them. An RWAIT element,

which is used to wait for ZC condition, is a modification of the WAIT with an added possibility

to persistently cancel the waiting request. Finally, a WAIT2 module, which monitors the state

of the OC condition, uses a 2-phase output handshake, waiting for high and low input values,

one after the other.

19

Figure 2.6: Asynchronous control module.

The phase controller has two distinct functions, handling its activation and charging the

buck. The stage becomes active on receiving a token from the previous stage via the get/-

pass interface or when when the HL condition is detected by the HL_CTRL module. The

OR-causality between these scenarios is handled by the MERGE component which is imple-

mented using the opportunistic merge element [52]. The TOKEN_CTRL module activates

TOKEN_TIMER to delay passing the token to the next phase and at the same time activates

the MODE_CTRL component, which monitors OV and UV conditions and determines the

mode of operation. CHARGE_CTRL executes a charging cycle similar to that of the basic

buck. The DELAY_CTRL modules ensure the minimum ON time for PMOS and NMOS tran-

sistors by delaying the corresponding acknowledgements. They employ PMIN_TIMER and

NMIN_TIMER, respectively, to specify the delays. Furthermore, PEXT_TIMER is used to

keep PMOS transistor ON longer on the first cycle of charging in the UV mode.

STG specifications of all controller modules were developed, synthesized and verified using

WORKCRAFT framework [58, 5]. The produced STGs were verified to ensure consistency,

deadlock-freeness, and output-persistency. Additionally, specific buck converter properties,

such as the absence of a short circuit in PMOS/NMOS transistors, were verified. All the gate-

level implementations were also verified to be deadlock-free, hazard-free and conformant to

their STG specifications.

20

- A2A interface components

- synthesised SI components

- external delay elements

Figure 2.7: Asynchronous phase controller.

2.5 Results and analysis

A 4-phase buck using synchronous and asynchronous controllers was implemented. The

analog components were modeled in Verilog-A and the digital control was implemented in

TSMC 90nm technology. Synchronous controller was synthesized using Synopsys Design

Compiler for 100MHz, 333MHz, 666MHz, and 1GHz. Response time of synchronous control is

2.5 clock periods. The latency of asynchronous design was measured in Synopsys PrimeTime.

The operation of the buck was validated and its efficiency was estimated by simulation

with Cadence Incisive using an AMS testbench. Coils were modeled in the range from 1μH

to 10μH using the parameters of Coilcraft RF inductors [1]. Figure 2.8 shows the simulation

waveforms for one of the buck phases. One can notice that the asynchronous buck enjoys

smaller voltage overshoot after resolving the first HL condition at buck startup (1-2μs). This

results in shorter OV resolution time and absence of recurring OV conditions, which can be

observed in the synchronous buck waveform (2-4μs). Note that asynchronous buck does not

even overshoot at the exit from high load (7-8μs). At normal load (2-7μs) asynchronous buck

demonstrates smaller voltage ripple and lower inductor peak current than the synchronous buck:

0.36V vs 0.43V and 0.21A vs 0.24A, respectively. These advantages are due to faster reaction

of the asynchronous controller to the input stimuli, as summarized in Table 2.1. To achieve

response times similar to the asynchronous controller, the synchronous design would need to be

clocked at 3GHz, which is impractical.

The quick response of the asynchronous control enables it to operate with a significantly

21

0.43V

0 1 2 3 4 5 6 7 8 9 10

phase_clk
fsm_clk

V_load (V)

hl
uv
ov

oc
zc
gp
gn

act

TIME (μs)

3

2

1
0

3.3V

I_coil (A) 0

0.2
0.1

-0.1

0.24A

startup normal load high load normal load

0.43V

0 1 2 3 4 5 6 7 8 9 10

phase_clk
fsm_clk

V_load (V)

hl
uv
ov

oc
zc
gp
gn

act

TIME (μs)

3

2

1
0

3.3V

I_coil (A) 0

0.2
0.1

-0.1

0.24A

startup normal load high load normal load

0.43V

0 1 2 3 4 5 6 7 8 9 10

phase_clk
fsm_clk

V_load (V)

hl
uv
ov

oc
zc
gp
gn

act

TIME (μs)

3

2

1
0

3.3V

I_coil (A) 0

0.2
0.1

-0.1

0.24A

startup normal load high load normal load

0.43V

0 1 2 3 4 5 6 7 8 9 10

phase_clk
fsm_clk

V_load (V)

hl
uv
ov

oc
zc
gp
gn

act

TIME (μs)

3

2

1
0

3.3V

I_coil (A) 0

0.2
0.1

-0.1

0.24A

startup normal load high load normal load

(a) Synchronous control at 333MHz.

I_coil (A) 0

0.2
0.1

-0.1

0.21A

TIME (μs) 0 1 2 3 4 5 6 7 8 9 10

V_load (V)

hl
uv
ov

oc
zc

get & !pass

gp
gn

3

2

1
0

3.3V

startup normal load high load normal load

0.36V

(b) Event-driven asynchronous control.

Figure 2.8: Simulation waveforms.

Controller HL UV OV OC ZC
(ns) (ns) (ns) (ns) (ns)

100MHz 25.00 25.00 25.00 25.00 25.00
333MHz 7.50 7.50 7.50 7.50 7.50
666MHz 3.75 3.75 3.75 3.75 3.75
1GHz 2.50 2.50 2.50 2.50 2.50
ASYNC 1.87 1.02 1.18 0.75 0.31

Improvement
over
333MHz

4x 7x 6x 10x 24x

Table 2.1: Comparison of the reaction time.

22

3.11.8 2.25 4.7 8.26.85.7

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700 100MHz
333MHz
666MHz
1GHz
ASYNC

Coil inductance (μH)

In
du

ct
or

 p
ea

k
cu

rr
en

t (
m

A
)

(a) Peak current for 1-10μH coils at 6Ω load.

3 6 9 12 15
0

100

200

300

400

Load resistance (Ω)

In
du

ct
or

 p
ea

k
cu

rr
en

t (
m

A
)

(b) Peak current for 3-15Ω loads at 4.7μH coil.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Coil inductance (μH)

R
e
la

ti
v
e
 l
o
ss

e
s

(%
)

(c) Losses for 1-10μH coils at 0.55A sink current.

Figure 2.9: Comparison of peak current and inductor losses.

smaller peak current when using the same coils, see Figure 2.9a. This advantage can be effi-

ciently traded off for the size of coils, which are bulky and may affect the dimensions of con-

sumer gadgets. For example, for a 6Ω load, the asynchronous control maintains the peak cur-

rent below 300mA using 1.8μH inductors, while the synchronous control requires 10μH coils at

100MHz, 6.8μH at 333MHz, or 3.1μH at 666MHz (denoted by hollow markers in Figure 2.9a).

This trend persists for a wide range of load resistance that covers the typical computational load

of mobile microprocessors, see Figure 2.9b for the peak current data at 3-15Ω loads and 4.7μH

coils. Note that smaller peak current translates into fewer losses in the inductors, as shown in

Figure 2.9c normalised to the losses of asynchronous buck, and helps to achieve higher power

efficiency. These improvements enable a designer to reduce the physical dimensions of the

system, while maintaining its operating characteristics.

This work demonstrates clear advantages of asynchronous design methodology for “little

digital” control. The simulation results show improved reaction time, voltage ripple, peak cur-

rent, and inductor losses of the buck when controlled asynchronously. These benefits lead to the

higher efficiency of power conversion, and can be traded off for the cost of analog components.

23

24

Chapter 3. Formal verification

Asynchronous logic offers a number of improvements for AMS systems. The A4A design

flow, introduced in the previous chapter, provides automated means for asynchronous circuit

design and synthesis. However, STGs, formalism used in the A4A flow, have no means to

describe the behavior of the analog environment, making full-system verification problematic.

Several approaches, such as hybrid automata [37] and hybrid Petri nets [20], have been

proposed to construct abstract models of mixed-signal systems [77]. These models enable for-

mal verification methods for AMS designs, reducing the need for the conventional simulation

methods and improving robustness of the whole system. One particular example of hybrid Petri

nets, labeled Petri net (LPN) [44], can specify timing behavior, discrete events, and continuous

dynamics. LPNs include continuous variables that can be sampled in an enabling condition and

delay assignment labels on the transitions in the LPN. These continuous variables or their rates

of change can be modified by transition firings. In addition, conversion between STG and LPN

formats can be done in a straightforward manner, thus making analysis of asynchronous control

within analog environment with formal methods possible.

As a motivating example, consider the C-element example shown in Figure 3.1a. This AMS

system consists of a C-element, which feeds its output through an inverter to two RC circuits

with different time constants. Without knowledge of the analog environment, the designer has to

use the complete STG specification from Figure 3.1c. However, using the proposed workflow, it

is possible to discover that A changes before B, leading to the updated STG with added timing

assumptions (shown as gray arcs) in Figure 3.1d. These timing assumptions make other arcs

obsolete (shown as dashed arcs) introducing the possibility of control simplification. As a result,

it is possible to use an inverter instead of a C-element as shown in Figure 3.1b.

The main goal of this chapter is to introduce the novel automated workflow, which en-

ables formal verification of AMS systems with asynchronous control that has been optimized

with correct timing assumptions extracted from the full-system model. The flow combines two

state-of-the-art tools, WORKCRAFT and LEMA. WORKCRAFT allows automated synthesis of

asynchronous circuits from their STG specification, while LEMA provides means to construct

25

R1C1

R2C2

A

B

C

Analog Digital

C

(a) Original system.

R1C1

R2C2

Analog Digital

B

A
C

(b) Optimized system.

(c) Original STG. (d) Optimized STG.

Figure 3.1: C-element example.

abstract models of the entire AMS system via LPN formalism and perform formal verification

through reachibility analysis, thus increasing reliability of AMS circuits. The application of the

flow is demonstrated on the C-element example and buck converter in Section 3.4.

3.1 Labeled Petri Net

An LPN is a special type of a PN with additional apparatus to capture the dynamics of

continuous and analog systems. Similar to a classical PN, an LPN contains places, that keep

track of the current state, and transitions, that evolve the LPN from one state to another. In

addition LPNs contain Boolean and continuous variables, which model signals in the sim-

ulation data. Transitions have extra connotation added to them via labels, which affect the

transition firing condition and model variables. In order for a transition to fire, not only do

enough tokens have to be present in the preset, but also the enabling condition, expressed as

a Boolean formula, of the associated label has to be satisfied. Furthermore, the enabled tran-

sition is only allowed to fire in a specified time window. Once the transition fires, it modifies

26

associated the variables via assignment statements. Formally, an LPN is defined as a tuple [27]

N = �P,T,F,M0,TF ,X ,V,Y0,Q0,R0,L� where:

• P is a finite set of places;

• T is a finite set of transitions;

• F ⊆(P×T)
�

(T ×P) is the flow relation;

• M0 ⊆P is the set of initially marked places;

• Tf is a finite set of failure transitions;

• X is a finite set of discrete variables;

• V is a finite set of continuous variables;

• Y0 : X → Z is the initial range of values for each discrete variable;

• Q0 : V → Q is the initial range of values for each continuous variable;

• R0 : V → Q×Q is the initial range of rates of change for each continuous variable;

• L is a tuple of labels defined below.

Places (P) with initial markings (M0), transitions (T), and arcs (F) connecting them represent

traditional PN elements. Failure transitions (Tf) are used by LPNs to signal when a failure has

occurred. The labels, L, for an LPN are defined by the tuple L = �En,DA,XA,VA,RA�:

• En : T → Pφ labels each transition t∈T with an enabling condition;

• DA : T → Pκ labels each transition t∈T with an expression for the delay before a transi-

tion t can fire;

• XA : T ×X → Pκ labels each transition t∈T and discrete variable x∈X with an expression

for the discrete variable assignment that is made to x when t fires;

• VA : T ×V → Pκ labels each transition t∈T and continuous variable v∈V with an expres-

sion for the continuous variable assignment that is made to v when t fires;

• RA : T ×V → Pκ labels each transition t∈T and continuous variable v∈V with an expres-

sion for the rate assignment that is made to v when t fires,

27

(a) Schematic.

5

4

1

102 12 200
Time(µS)

(b) Waveform.

Figure 3.2: RC circuit.

where Pφ and Pκ are sets of all formulae that can be constructed using the Boolean grammar,

φ , and the numerical grammar, κ, respectively [10]. The Boolean grammar consists of the

Boolean operators: negation, conjunction, and disjunction, the Boolean data types and the rela-

tional operator, which operates on the numerical data types. The numerical grammar combines

the numerical data types: rational constants, discrete variables, and continuous variables, the

mathematical operators: summation, multiplication, and subtraction, as well as special func-

tions int and uniform. The function int converts the Boolean true or false to an integer 1 or 0,

respectively, while the function uniform1 returns a uniform random value between the specified

lower and upper bounds.

As an example, consider the RC circuit, that is connected to a square wave generator, as

shown in Figure 3.2a. The voltage over the capacitor, being charged and discharged periodi-

cally, follows the well-known exponential curve in Figure 3.2b. The corresponding LPN model,

Figure 3.3, linearly approximates the waveform via ranges of rates.

The LPN model consists of model’s variables, initial conditions, which set values of vari-

ables, and a Petri net model with additional label semantics, added to the transitions. In the

provided model the output voltage(Vc) and its rate(V
�
c) are set to 0. The operation of the model

is similar to the operation of a classic Petri net model and for a transition to fire tokens have

to be present in all preset places of a transition. Furthermore, a transition can only fire if it’s

enabling condition, which is expressed as a Boolean formula, is evaluated as true. For example,

The charging of the capacitor is initiated by the transition Charge 1. The enabling condition of

the transition in curly brackets is set to true, which effectively means that the transition does

not perform any checks. In contrast the enabling condition of the transition Charge 2 can only

fire if the voltage Vc reaches the value of 4000 mV . Note that enabling conditions of transitions

1To improve the readability of LPN models the uniform statement is replaced by square brackets. E.x. uni-
form(1,2) is equivalent to [1,2].

28

Discharge 2 and Return have logical negation which effectively flips the comparison sign from

≥ to ≤.

However, the transition cannot fire immediately as it is only allowed to fire in the window,

specified by the delay expression in square brackets. For example, the transition Charge 1 has

a delay between 1 and 2 microseconds. Once the transition fires it modifies variables as stated

in the assignment expression. In the case of the transition Charge 1 a positive rate to the output

voltage in the range between 1000 and 2000 mV/µS2 is assigned. This range of rates effectively

represents a whole spectrum of possible rates within allowed boundaries, which allows it to

capture multiple rate trajectories, using only one statement. One such possible trajectory is

shown in Figure 3.2b via red and blue lines, that approximate the original curve, during charge

and discharge cycles, respectively.

Initial condition Transition label

Enabling condition

Delay expression

Assignment expression

Figure 3.3: RC LPN model.

3.2 LEMA

LEMA [28], the LPN Embedded Mixed-Signal Analyzer, is a tool that seeks to enable the

formal verification of AMS circuits and has a tool flow as shown in Figure 3.4. The flow begins

with the creation of an LPN model from a simulation trace. The model is combined with a set

of properties to be used in the formal verification process. More information about the flow

aspects is presented in the subsequent sections.

2Values of real signals have been upscaled by a factor of 1000 due to integer value requirements.

29

The tool has been utilized to verify a number of AMS circuits including digital to analog

converters (DACs), phase interpolators, voltage controlled oscillators [39], etc. In [73] the tool

has been successfully used to model the behavior and verify the design of a switched capacitor

circuit. Formal verification underlined the problem with charge building up on a capacitor, while

stochastic simulation did not present such a result. Furthermore, LEMA has shown potential in

analyzing non-linear systems, such as a tunnel diode oscillator [44].

LAMP
SPICE

Simulation Data
Thresholds

Property
Compiler

Model
Generator

SystemVerilog
Model

Labeled Petri Net
(LPN)

SystemVerilog
Translator

BDD/SMT
Model Checker

Zone-Based
Model Checker

Octagon-based
Model Checker

Pass/Fail + Error Trace

Figure 3.4: LEMA’s tool flow.

3.2.1 Model generator

In order to use formal verification, it is necessary to have methods for automated construc-

tion of formal models. While it is possible to create LPNs by hand, it is a tedious process, and it

is not easy to convince AMS designers to do so. Consequently, LEMA streamlines the process of

constructing LPNs by providing a means for automated generation of models from simulation

traces. The process starts with the analysis of the existing SPICE simulation data [45, 10, 38],

used in a traditional simulation-based verification approach. The data is discretized, using a

set of thresholds, provided by the user or automatically generated by the tool. The thresholds

30

divide the space of the continuous variables into regions, which are used by the model generator

operates to produce a formal model in LPN format [44]. Furthermore, the model generator can

identify discrete transitions and assign an appropriate delay. More information on the model

generation aspects is presented in Chapter 4

3.2.2 Property expression

After a formal model has been created, the next step is to create a property to check the

desired behavior. The properties are specified using the Language for Analog/Mixed-Signal

Properties (LAMP) [27]. This language provides convenient means for a designer to express

verification properties without the knowledge of LPN semantics. The specified property is

compiled into an LPN to be later used by a model checker.

Algorithm 3.1 A before B: LAMP property.

p r o p e r t y AbeforeB {
r e a l A;
r e a l B ;
a lways {

a s s e r t U n t i l (~ (B>=2500) , (A> = 2 5 0 0)) ;
w a i t ((B> = 2 5 0 0)) ;
a s s e r t U n t i l ((B>=2500) ,~ (A> = 2 5 0 0)) ;
w a i t (~ (B> = 2 5 0 0)) ;

}
}

For example, to optimize the C-element example, introduced earlier, it is necessary to deter-

mine the order of signals A and B. To do that a verification property, shown in Algorithm 3.1,

has been created. This property checks that signal A changes before signal B. Initially, both

signals are set to 0 and an assertion is made that ensures that signal A goes high, while signal

B stays low3. Once A is high, the property waits for signal B to go high. After that, a similar

check is performed to confirm that A goes low before B. The compiled LPN for this property is

shown in Figure 3.5.

3.2.3 SystemVerilog translator

A property can be checked using a system-level simulation. For that reason, LEMA can en-

code LPN models into the SystemVerilog (SV) format. In SV, places become logic variables and

3Although, A and B are discrete signals, the property operates on continuous variables and explicitly discretizes
analog signals with 0V being low and 5V being high.

31

Figure 3.5: A before B: LPN property.

transitions become wires, while LPN variables are translated into real variables. The value of

the logic variables equates to the place being not marked for logical zero or marked for logical

one. The initial state of the system is set by the SV initial block, which assigns values to logic

variables and real variables in accordance to LPN initial marking and initial conditions. A tran-

sition firing consists of two steps. Once the enabling condition is satisfied, the corresponding

wire is set high after a specified delay. After that, a SV always block, triggered by the positive

edge on the wire, executes the assignment expression of the LPN transition and sets the new

net marking by changing the real and logic variables. A fragment of SV code for an RC circuit

model is shown in Figure 3.2. Note, that delay and uniform are custom SV functions that have

the same functionality as LPN statements.

32

Algorithm 3.2 Portion of the SystemVerilog for the RC model.

module rc_model () ;
w i r e charge1 , charge2 , d i s c h a r g e 1 , d i s c h a r g e 2 , r e t u r n ;
r e a l Vc_ra te , Vc ;
l o g i c p0 , p1 , p2 , p3 , p4 , f a s t C l k , r e s e t ;

i n i t i a l b e g i n
V c _ r a t e = 0 ; Vc = 0 ; r e s e t = 1 ;
p0 = 0 ; p1 = 0 ; p2 = 0 ; p3 = 0 ; p4 = 0 ;
1 ;
p0 = 1 ; / / I n i t i a l l y Marked
r e s e t = 0 ;

end

a lways #1 f a s t C l k = (~ f a s t C l k)&(~ r e s e t) ;
a lways @(f a s t C l k) b e g i n

Vc <=Vc+ V c _ r a t e ;
end

a s s i g n # (d e l a y (~ charge1 , 1 , 2)) c h a r g e 1 = p0 ;
a s s i g n # (d e l a y (~ charge2 , 0 , 0)) c h a r g e 2 = p1 && (Vc > = 4) ;
. . .
a lways @(posedge c h a r g e 1) b e g i n

p0 <= 0 ; p1 <= 1 ;
V c _ r a t e <= un i fo rm (1 . 0 , 2 . 0) ;

end
a lways @(posedge c h a r g e 2) b e g i n

p1 <= 0 ; p2 <= 1 ;
V c _ r a t e <= un i fo rm (0 . 1 , 0 . 2) ;

end
. . .

endmodule

3.2.4 Model checker

LEMA provides multiple reachability analysis methods. It includes both an explicit state

method, originally used for timing verification that leverages zones and difference bound ma-

trices (DBMs) to represent the continuous state space [44], and implicit state methods, that use

binary decision diagrams (BDDs) and SMT solvers [73]. The main verification method, used

in this work, is based on the zone-based model checker.

Zones are a subset of convex polytopes with 90◦ and 45◦ angles between half-planes.

Thanks to this limitation a zone can be completely determined by the pairwise inequalities

vi−v j ≤ ci, j together with vi− t0 ≤ ci,0 and t0−vi ≤ c0,i, where v0, ...,vn−1 is a set of continous

variables, ci, j is a constant and t0 is a timer that is always zero. A compact representation of

33

12

153

5

1
2

Figure 3.6: C-element zone.

these inequalities is created by collecting constants ci, j into a DBM. A standard zone, obtained

from the reachibility analysis of the C-element example, is depicted in Figure 3.6. This example

has two continuous variables V A
C and V B

C and the corresponding inequalities are:

t0 − t0 ≤ 0 t0 −V A
C ≤−3 t0 −V B

C ≤−5

V A
C − t0 ≤ 15 V A

C −V A
C ≤ 0 V B

C −V A
C ≤ 3

V B
C − t0 ≤ 12 V A

C −V B
C ≤ 5 V B

C −V B
C ≤ 0

Collecting constants gives corresponding DBM:

t0 V A
C V B

C


0 −3 −5

15 0 3

12 5 0




Initially, zone-based methods were used to verify timed automata, which operated only

clock variables. To cope with continous variables, which can have rates not equal to one, LEMA

uses warping [44]. With warping, variables are scaled by their rate, turning them into rate-one

variables and then the resulting figure is over-approximated by a zone.

3.3 Combined verification environment

Asynchronous and formal verification tools, described in the previous chapters, seek to

improve the design of AMS systems. However, there are no convenient means to exchange data

between them. As a result, the verification process becomes cumbersome and does not provide

any information on optimization possibilities for the asynchronous digital control circuit.

LEMA and WORKCRAFT were identified as the most suitable candidates for the creation

of a unified verification and synthesis environment. Both tools are based on PNs formalism,

34

so the data transfer process is straightforward. LEMA provides excellent capabilities for model

generation from simulation traces, which appeals to analog designers, who are not familiar with

PNs. It is also important to note, that these tools are actively developed and are written in the

same programming language, which simplifies the integration process. A workflow, combining

both tools, is presented on Figure 3.7.

Control Implementation

Workcraft
Asynchronous control
 - specification
 - verification
 - synthesis

Simulation
Analog/Mixed-signal system
 - transient simulation

LEMA
Analog/Mixed-signal model
 - generation
 - simulation
 - verification

Control optimization
 - concurrency reduction
 - scenario elemination

Informal specification

Specification formalization

Digital Analog

Verified specification Simulation traces

Error traceTiming assumptions

Figure 3.7: Workcraft and LEMA joint workflow.

Initially, only an informal specification of the AMS system is given. This specification con-

tains high-level information on system behavior and does not represent internal structure. The

first step is system’s formalization: digital part is expressed in STG format, using WORKCRAFT

framework, and analog environment is implemented as a behavioral model, for example in the

form of Verilog-AMS or Spice.

The digital module is developed in accordance to the A4A design flow, described in Chap-

ter 2. The control STG is verified, using one of the back-end tools, and the later control circuit

is synthesized from the verified specification. The resulting verilog netlist is combined with the

model of the analog environment.

In order to proceed with formal verification of the whole systems, it is necessary to obtain a

number of simulation traces. There are two possible ways to do so:

• Full-system simulation. Verilog netlist, obtained from the STG, is combined with the

environment model and the system undergoes transient simulation. Although this is a an

easy and straightforward method, it has a serious drawback: the resulting trace might not

35

cover all possible states of the environment, making verification limited.

• Simulation of individual modules. The analog part of the design is split into individual

modules, which are simulated intensively to provide better state coverage. However,

special care has to be taken during system partitioning to prevent space state explosion,

while keeping sufficient level of detail.

After the simulation data is obtained, LEMA is able to generate LPN models for the analog

portion of the AMS system. The STG is automatically converted to the LPN format. As a result,

hybrid Petri net model of the entire system is created, thus enabling the checking of important

properties of the design. If formal verification reveals no problems, then digital control can

be optimized by comparing states in a stand-alone STG and the one used in combination with

the analog environment. Unused states can be removed, reducing the complexity of the control

circuit. Discovered optimizations are reported to WORKCRAFT in the form of timing relations

for the input signals and the digital part can be resynthesized, using the information about

correct timing assumptions. When no optimizations are possible, the designer can proceed to

layout implementation.

The proposed methodology aims to integrate both tools in a unified environment and to

provide a joint workflow for the synthesis and verification of AMS systems with asynchronous

control.

3.4 Buck control

The described methodology has been applied to the asynchronous control module of a buck

converter. The circuit, synthesized from the STG specification, is used in mixed-signal simu-

lation with an analog environment. Using the set of generated simulation traces, a full-system

model was generated, which shows possibilities for concurrency and scenario optimizations in

the original specification.

3.4.1 Buck converter

DC-DC converters are an important part of modern digital circuits and are required to pro-

vide a stable power supply over long periods of time. A basic power regulator consists of

an analog block and a digital controller, as shown in the schematic in Figure 3.8. The con-

troller determines the state of NMOS and PMOS transistors as a reaction to acknowledgement

(ACK), under-voltage (UV), and over-current (OC) conditions. These conditions are detected

36

control

Th_nmos

Th_pmos

buck

V_ref

R
_l

o
a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

gn_ack

gp

gn

over-current (oc)

under-voltage (uv)

Figure 3.8: Buck converter schematic.

uv

oc

gp

gp_ack

gn

gn_ack

(a) OC with UV.

uv

oc

gp

gp_ack

gn

gn_ack

(b) OC without UV.

Figure 3.9: Informal specification.

and signaled by a number of special sensors, implemented as comparators in combination with

buffering latches.

Initially, specification of the control module is given as timing diagrams with causal re-

lations between signals. Two possible scenarios are considered: stable state when output ca-

pacitor charges up to threshold value during one charge cycle (see Figure 3.9a), and start-up

operation mode during which multiple charge cycles are needed to charge the output capacitor

(see Figure 3.9b).The formal specification is derived from the provided diagrams. The resulting

STG, shown in Figure 3.10, captures the behavior of both scenarios. In addition, special care is

taken to incorporate the concurrent nature of the transistors’ acknowledgments and over-current

signals.

37

Figure 3.10: Buck control STG.

3.4.2 Model generation

The control circuit, synthesized from the STG, is combined with a Verilog-AMS model of

the analog part of buck converter to undergo a series of simulations, using the VIRTUOSO AMS

simulation environment. The dynamic resistive load is used to ensure that the system works

under different operating conditions.

In order to generate abstract models of the analog components, causal relations between

the digital and the corresponding analog signals have to be established. There are two possible

types of causality that have to be identified:

• Direct causality: An analog signal is directly affected by a digital control signal.

• Indirect causality: A digital control signal affects an analog signal transitively via some

intermediate events.

The voltage on the transistors’ gates is in direct correlation with control outputs gp and gn

and determines the state of the corresponding acknowledgment signals gp_ack and gn_ack, as

shown on Figure 3.11. The process of model generation revolves around determining states with

unique variable encodings. Values of continuous variables are assigned to different regions or

bins, according to the specified thresholds and linearly approximated with ranges of rates. The

construction of the LPN is performed by creating transitions with proper variable assignments

and guard conditions for input signals. These transitions are linked together in accordance with

their evolution in the waveform.

The resulting LPN model shown in Figure 3.12 captures the presented behavior for signals

of the PMOS transistor. The model decides upon voltage evolution rate, depending on input sig-

nal state and current voltage value. Transitions charging{1,2} and discharging{1,2} represent

charging and discharging processes of the gate capacitor with threshold points specified at the

change of the acknowledgment signal. For example, the annotation of the discharging1 transi-

38

0

1

gp

0

1
gp
_a
ck

0

5

10

1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235

P
M
O
S

vo
lta
ge

V

ns

Figure 3.11: PMOS acknowledgement signals.

tion means that when the gp is true and the voltage of the gp_gate signal is above or equal to 4V,

the change of this voltage must be relatively fast (within the shown range between -0.27V/ns

and -0.28V/ns), and then the discharging2 shows that as soon as the gp_gate voltage drops be-

low 4V the rate of discharge becomes slower (within the shown range between -0.03V/ns and

-0.048V/ns). Special transitions corner{1,2} are essential to prevent voltage from reaching val-

ues not present in the original waveform. The model of the acknowledgment signal (upper part

of the Figure 3.12) communicates with the voltage model (lower part of the Figure 3.12) via

guard conditions and assigns output values in accordance with the voltage value. For example,

the discharge 2 transition is synchronized with the ack_pos transition and charge2 with ack_neg

(cf. corresponding events in the waveforms of Figure 3.11). This unique feature of LPNs allows

one to construct complex models as a set of small Petri nets with implicit communication via

guard variables. A model of the acknowledgment signal of the NMOS transistor is derived in a

similar manner.

There is, however, no direct dependency (see Figure 3.13) between digital outputs and the

signals responsible for generating UV and OC inputs. The output voltage, as well as current

through PMOS transistor, are affected by the inductor current. Thus, an intermediate model of

the inductor has to be created first. The model presented in Figure 3.14a describes the behavior

of the inductor’s ripple current. Transitions increasing and decreasing set the current rate ac-

cording to the transistor’s state. Over-current and under-voltage models are derived in a similar

style to the acknowledgment models with inductor current as one of the input signals. The UV

model (see Figure 3.14b) sets output capacitor charge rate, depending on inductor current. A

wide range of rates is needed to model dynamic load.

39

gp_ack = false
gp = false
gp_gate = 10000
gp_gate_rate = 0

gp_gate_rate

gp_gate_rate

gp_gate_rate gp_gate_rate

gp_gate_rate

gp_gate_rate

Figure 3.12: PMOS acknowledgement model.

0

1

gp
_a
ck

0

1

oc

0

1

uv

-4

-2

0

2

4

In
du
ct
or

cu
rr
e
nt

I

4.85

5

5.15

8000 8500 9000 9500 10000 10500 11000 11500

O
ut
pu
t

vo
lta
ge

V

ns

Figure 3.13: Over-current and undervoltage signals.

40

gp_ack = false
ind_cur = 0
ind_cur_rate = 0
out_volt = 0

(a) Inductor model.

uv = false
state = 0
out_voltage = 0
out_voltage_rate = 0
ind_cur = 0

(b) Undervoltage model.

gp_ack = false
oc = false
ind_cur = 0
ind_cur_rate = 0

(c) Over-current model.

Figure 3.14: Over-current and undervoltage models.

41

3.4.3 Optimization method

Once the models of the analog blocks are created, it is possible to obtain a full-system model

by directly converting the control STG into LPN format. The resulting model can be used to

find possibilities for optimization in the control module.

As a first step, the state graph of the system is reduced via a node contraction algorithm.

Connected states with similar vectors of control variables are merged together to reduce the

state graph size while maintaining the original graph structure. An example of this reduction

process is shown in Figure 3.15. Initially a full-state graph is traversed and states, where digital

control signals (gp, gp_ack, oc) do not change, as indicated by the dotted ovals, in comparison

with all of the preset states, are marked. After that, these marked places are removed, and extra

arcs are added to the remaining places to preserve the original graph structure.

(a) Full state graph.

gp = false;
gp_ack = false;
oc = false;

gp = true;
gp_ack = true;
oc = false;

gp = true;
gp_ack = true;
oc = true;

S0

S5

gp = true;
gp_ack = false;
oc = false;

S1

S9

(b) Reduced state
graph.

Figure 3.15: State graphs

The reduced state graph is later analyzed to determine the timing relations of the input

signals. This timing information can be used in the synthesis process with PETRIFY. Ad-

ditionally, the reduced state graph can be converted into a STG form, which can be used in

42

(a) Concurrency reduction.

(b) Scenario elimination.

Figure 3.16: Optimized control models.

Buck control Total area Average delay
Original 240 0.83

Reduced concurrency 144 0.58
Removed scenario 112 0.57

Table 3.1: Optimization results.

WORKCRAFT using the established design flow. Although the original structure of the STG

may not be preserved, the new version can show greater optimization potential in the form of

scenario elimination.

3.4.4 Results

The proposed workflow has been applied to the optimization of the buck converter control.

The optimization method yields a timing dependency between transistors’ acknowledgment

and over-current signals, thus reducing all concurrent places in the original model (see Fig-

ure 3.16a). While the achieved area and latency reduction are not considerable, these results are

achieved in an automated manner, thus promising greater results for more complex projects.

Additionally, a special environment with a small buck capacitor is used to identify extra

optimization capabilities. The small capacitance ensured that only one charge cycle is needed

for the output voltage to reach the threshold value. As a result it is possible to eliminate scenario

in the original STG (see Figure 3.16b).

Optimized models are synthesized using PETRIFY and compared against the original model.

Results, reported in abstract units, are summarized in the Table 3.1.

43

44

Chapter 4. Model generation

Automated model generation is a relatively new research field [33] and has multiple areas

of application, such as simulation models for physical systems, biochemical processes, and

manufacturing. The abstract models produced by LEMA’s model generator are intended to be

used in system-level simulations to verify properties such as connectivity between the digital

and analog circuits [24] or for use in formal verification [44]. These models are therefore

designed to abstract unnecessary details in order to make the model generation and simulation

computationally feasible.

The construction of a buck converter model, described in the previous chapter, revealed a

number of limitations in the existing model generation module within LEMA. Due to these

limitations, the automatically generated models did not reflect all necessary features of the

original simulation traces and had to be manually improved, which rendered the application

of the flow less appealing. Specifically, the existing algorithm produces overfit models, which

do not demonstrate correct behavior, when used with a different control module. Furthermore,

the algorithm operates on the explicitly specified discretization thresholds, which requires extra

foresight from the designer and undermines the automated aspect of the design flow. In this

chapter, the underlying issues of the existing model generation approach are analyzed, and an

improved model generation framework is presented. As evidenced in Chapter 5, the proposed

method is capable of producing more general models than the existing method, while requiring

less user input.

4.1 ModelGen: existing approach

LEMA’s models generator does not attempt to maintain transistor-level accuracy of the orig-

inal circuit but rather model ranges of parameters and conditions using non-determinism [43].

The resulting abstract models are to be used for system-level verification to check interaction

between the digital and analog circuits. For example, one of the possible verification goals is to

test the negative feedback loop of the system. Specifically, the model generator trades precision

for system scale and model size.

45

The model generator constructs an LPN model from a set of simulation traces. However,

the quality of the model is directly related to the simulations used to create it. Consequently,

depending on the dataset provided, the model may not exhibit the full behavior of the system.

In this case, there is a possibility that a failing behavior, present in the original system, is not

included in the generated model. To overcome this problem the generator can interpolate data

and produce general models via a functional approach [10].

A high-level representation of the current model generator is given in Algorithm 4.1. The

algorithm operates on a existing LPN N and a set of system variables V . Every variable v ∈ V

is a pair �c,Σ�, where c specifies variable type and Σ : (σi)
N
i=1 is a simulation trace, defined as

a finite sequence of data points, where every data point, σi, is a pair �τ,υ� with τ being the

timestamp1 and υ being the point value. In addition, the algorithm requires a set of parameters

par, subsets of which are used in the internal functions.

The model generation operation can be summarized into two stages: discretization of sim-

ulation data or data binning, and model generation based on the obtained bins. The algorithm

begins with the detection of discrete-like signals to report a set of variables X ⊆V , which can be

used to approximate the original signals by discrete transitions. The next step is the generation

of thresholds Θ for the given data set, based on the user provided parameters. These thresholds

are used to assign data points into bins B, which associate every data point with a state vector.

Once the data has been discretized the algorithm proceeds to further process variables and

update the LPN. For every variable, depending on the variable type, values Δ, that approximate

the generated bins, and bins durations, Τ, are calculated. This information is used to expand

the LPN with additional places and transitions. After all the variables have been processed the

LPN is updated with auxiliary transitions, called pseudo-transitions.

The following sections provide a description and analysis of the algorithm functions.

4.1.1 Data binning

The purpose of the data binning is to assign each data point of a simulation trace to a bin,

which can be approximated with either a discrete value or a linear function, using ranges of

rates. To achieve this, the discretization algorithm automatically detects digital-like signals and

calculates rates for continuous ones.

Before the simulation data can be used to create an LPN it needs to be compactly represented

as a finite set of discrete states to reduce the analysis complexity. The current discretization

method relies on grouping data points using a set of thresholds [45]. These thresholds can
1It is implied that time ordering of the data points follows element ordering in the region.

46

Algorithm 4.1 Model generation algorithm.
1: function GENERATEMODEL(N,V, par)
2: Input:
3: N: existing LPN or nothing
4: V : set of system variables
5: par: a set of parameters
6: Output:
7: N: updated LPN or new LPN
8:
9: Θ := GenerateThresholds(V, par)

10: B := AssignBins(V,Θ)
11: X := DetectDMV(V, par)
12: Δ := /0,T := /0
13: //Calculate variables values in bins
14: for v ∈V do
15: if v ∈ X then
16: Δ := Δ∪ CalculateValues(v,B,Θ, par)
17: else
18: Δ := Δ∪ CalculateRates(v,B,Θ, par)
19: end if
20: T := {T}∪ CalculateDurations(v,B)
21: end for
22: N := UpdateLPN(N,V,B,Δ,T,Θ)
23: N := InsertPseudoTransitions(N,V,B,Θ)

return N

be either manually provided by the user or determined automatically via one of the two cost

functions, located within the GenerateThresholds function. The two supported cost functions

produce models whose data points are evenly distributed across the bins and bins whose rates

span a minimal distance [43].

47

buck

R
_l
o
a
d

PMOS

VC
IL

Figure 4.1: Analog part of a buck converter.

t

P
M
O
S

Pon

Poff

V1

V0

I0

I1

Region

I L
V
C

B
in

Figure 4.2: Threshold discretization.

To illustrate the process of the threshold based data discretization consider the analog part

of the Buck converter, as shown in Figure 4.1. A portion of the simulation waveform, displayed

in Figure 4.2, shows how the thresholds {θ I
1,θ

V
1 ,θ P

1 } effectively group data points into distinct

regions: {I0, I1,V0,V1,Po f f ,Pon}. A region, ξ : �θl,θh�, is defined as a pair of thresholds θl

48

t

P
M
O
S

Pon

Poff

V1

V0

I L
V
C

B
in

I0

I1

Region

(a) Size increase.

t

P
M
O
S

Pon

Poff

V1

V0

I L
V
C

B
in

I0

I1

Region

(b) Precision loss.

Figure 4.3: Threshold discretization problems.

and θh
2. For any given timestamp the superposition of these regions forms a unique state vec-

tor, called the bin. The data points are assigned to the corresponding bins by the AssignBins

function [43].

The threshold based discretization method has a number of disadvantages. The model com-

plexity and precision depend on the total number of thresholds and selecting quality thresholds

can become a tedious and error prone task. While LEMA partly automates the process of pick-

ing optimal threshold the designer has to provide the total number of desired regions. This can

potentially lead to the model size increase or loss of accuracy.

Furthermore, since regions are coupled together to form bins, selecting sub-optimal thresh-

olds for one signal can affect other signals. For example, threshold based discretization of the

inductor current in a buck converter leads to the data points from one charge cycle being as-

signed to several bins. The data points from the second charging cycle, while having the same

rate, are being assigned to two different bins �I0, V1, Pon� and �I1, V1, Pon�, as shown in Fig-

ure 4.3a. This results in the model size increase. On the other hand, if thresholds are not placed

correctly, as illustrated in Figure 4.3b, data points with different rates might end up in the same

bin, �I0, V1, Po f f �, which leads to wide ranges of rates and decreases model accuracy.

2Low and high thresholds can be specified as negative and positive infinity respectively.

49

4.1.2 Detecting discrete multivalued variables

To reduce the potential space-state of the resulting model, digital-like signals are detected

and modeled discretely. A variable, representing a digital signal, is defined as a discrete multi-

valued (DMV) variable. Intuitively, a DMV variable is characterized as a variable, which ap-

proximates the original signal, using a finite set of constant values.

The detection of the DMV variables is handled by the DetectDMV function [43]. The

function iterates over data points of a signal, associated with the variable, to determine stable

regions. A region is considered stable if two conditions are satisfied:

• All of the region data points are located within ε neighborhood of each other: ∀σi,σ j ∈
σ : |σi(υ)−σ j(υ)| < ε;

• Region duration exceeds minimal stable time τmin: (σ|σ |(τ)−σ1(τ)) ≥ τmin.

A variable is reported as a DMV variable if the sum of durations of all stable regions, located

within the signal, exceeds a threshold specified as rstable ∗T , where rstable is the stability ratio

and T is the total duration of the signal. The tuple �ε,τmin,rstable� forms a subset of the parame-

ters par, required by the DetectDMV function. The same parameters as well as DMV detection

criteria are used by the CalculateValues function to calculate values of DMV variables in each

bin [10].

The main issue with the described method is that it relies on absolute values to determine

DMV variables. To visualize this problem consider the PMOS signal, introduced earlier, that

experiences transient behavior as illustrated in Figure 4.4. Depending on the ε parameter the

second charging cycle can be considered an unstable region resulting in PMOS being treated as

an analog signal. However, increasing the ε bound may affect DMV analysis of other signals

and lead to originally analog signals be identified as discrete-signals. Furthermore, similar

problem exists with the τmin parameter, which can either result in transient regions be treated as

stable if the value is too low or stable regions considered as transient if the value is too high.

Picking the optimal parameters may depend on the particular waveform and require the designer

extensive understanding of the discretization algorithm, which can undermine the idea of the

automated model generation.

4.1.3 Calculating ranges of rates

LPNs model analog signals in a piece-wise linear manner, approximating continuously vary-

ing signals with ranges of rates. After the bins have been assigned to each data point, the rates of

50

t
P
M
O
S

Pon

Poff

Figure 4.4: PMOS signal with transient.

all bins are calculated for each signal using the function CalculateRates [43]. A sliding window

technique is used to smooth out transient pulses and other effects created by threshold edges.

The size of the window, ws, is one of the parameters par, used in the model generation. Ef-

fectively, this method calculates the first derivative of every point assigned to a bin and reports

maximum and minimum values of the derivatives as boundaries for bin rates.

4.1.4 LPN synthesis

Once input waveforms have been processed and raw data has been split into bins, the LPN

construction process begins. Every bin is represented as a unique place in the generated model.

Places are connected to each other via a set of transitions with enabling conditions representing

either i) the threshold that is being crossed in the move of an analog signal from one bin to

another or ii) the change in the value of a digital signal.

A summarized representation of the LPN synthesis process is given in Algorithm 4.2. The

function UpdateLPN iterates over all data points of all signals to detect changes in bin assign-

ments and update LPN N with additional places and transitions. Originally, the algorithm would

add a new place for any individual bin, however that results in the generated models being too

restrictive and able to produce only the behavior observed in the original waveform. To simplify

the model and allow it to exhibit more general behavior the notion of care variables [39, 10]

has been introduced. A new state in the model is created only when there has been a change in

a variable, marked as a care variable.

If the current variable is marked as a care variable, the algorithm proceeds to find data points

that have different bin assignments. The AddPlace function creates a place corresponding to

the new bin and adds it to the LPN, provided the place a place with the given bin does not

exist. The GetEnablingCondition function returns the enabling condition for a transition based

on the bin assignments of the variables, marked as input, in its postset place. Finally, the

AddTransition function creates a new transition if a transition does not exist between the given

preset and postset places with the given enabling condition, and updates the transition with the

new assignments if it already exists. The function uses values, Δ, and durations, Τ, calculated

51

by the CalculateDurations function, during data discretization step. Once all the signals have

been processed the MergeTransitions function simplifies the LPN by merging transitions with

similar enabling conditions and assignments.

Algorithm 4.2 LPN synthesis algorithm.
1: function UPDATELPN(N,V,B,Δ,T,Θ)
2: Input:
3: N: existing LPN or nothing
4: V : set of system variables
5: B: a set of data bins
6: Δ: a set of bin valus
7: T : a set of bin durations
8: Θ: a set of generated thresholds
9: Output:

10: N: updated LPN or new LPN
11: //Iterate over system variables marked as care variable
12: for all v ∈V do
13: if v ∈V (Care) then
14: b� := /0
15: //Iterate over variable data points and create a new place on bin change
16: for all σ ∈ v do
17: //Get data point bin
18: b := B(σ)
19: if b� �= /0∧b �= b� then
20: N := AddPlace(N,V,b)
21: en := GetEnablingCondition(V (input),b,Θ)
22: N := AddTransition(N,b,b�,en,Δ,T)
23: end if
24: b� := b
25: end for
26: end if
27: end for
28: N := MergeTransitions(N)
29: return N

To prevent the model from reaching states of undefined behavior the model generator has

the capability to add additional pseudo-regions [43] via the InsertPseudoTransitions functions,

which sets rates of continuous variables to zero. This feature is used for modeling certain types

of systems, such as voltage supply rails, in order to not exceed given system constraints. An-

other useful feature of the existing model generator is the ability to interpolate input signals [38].

As a result, it is possible to generate models, which can react to new input conditions, without

the necessity to run additional simulations.

While the introduction of care variables and interpolation has helped, the model generator

still has difficulties with producing more general models. For example, as demonstrated in

Figure 4.5 all regions from the data bins are used in the LPN transition guard conditions to

52

Bin Order LPN Transitions

...
Figure 4.5: Bin to transitions translation.

determine the range of rates for the output signal. The bin �I0, V0, Pon� translates into transition

with the same name, where every signal is checked against their respective thresholds. Such

creation method of LPN transitions not only limits control over model fitness, as there are no

means to specify how much information from the provided data set should be used in the model

creation, but also might lead to resulting models being too restrictive.

4.2 ModelGen: proposed approach

The analysis of the model generation algorithm identified a number of problems related

to the data discretization and LPN synthesis. To address these issues, a new algorithm has

been developed [23]. A high-level flow diagram of the method is presented in Figure 4.6. The

proposed approach seeks to improve the data binning by changing the discretization method

as well as provide means of control over model fitness via the new algorithm, which has been

called rule mining.

The flow starts with the discretization of the simulation data and the grouping of data points

into discrete states. If necessary, the states can be filtered to reduce the amount of noise in the

system. Afterwards, the states are analyzed to create a set of data rules. The data rules, which

describe simulation data patterns, are used in the new LPN synthesis module.

The described flow is organized as a number of separate processing stages. While every

stage operates and produces different data types, most stages share the same architecture. As

53

Discretization

Filtering

LPN
Synthesis

Rule
Mining

LPN
Model

Simulation
Data

States

Data
Rules

Simulation
Data

Init.
Conditions

Figure 4.6: ModelGen flow.

described in Algorithm 4.3, a stage contains a set of data processors, which implement algo-

rithms for processing input data, and a data manager, which governs the order in which the

processors are applied. Additionally, every processor has a cost function to evaluate the pro-

cessing cost of the data. For every element in the input data set, the main algorithm collects

processing costs associated with the data processors of the stage, lines 5-10. It is possible that

some of the processors are not applicable to certain data sets, which is indicated by their cost

function returning a negative number. Afterwards, the data manager sorts the list of the pro-

cessors based on their cost. The actual sorting order depends on the implementation of the

Sort3 function. The function GetProcessor returns the first processor of the sorted processor

list, which is used to handle the data. If none of the processors can deal with the data, then

the algorithm ends abruptly and reports an empty set, which should be treated as an error. The

successfully processed data is grouped in the output data set.

The main motivation for creating such an architecture is to decouple algorithms, that process

data, from algorithms that control data flow. The existing model generator has been designed

in an ad hoc manner, which complicates introduction of new features. The new project aims

not only to address issues, described in the previous sections, but also provide a convenient and

modular framework for model generation. The addition of the cost function serves as a metric

for comparing various algorithms and choosing the one that suits best for the current data set.

4.2.1 Discretization

The purpose of the discretization stage is similar to the data binning, that is grouping of

simulation data points for further analysis by the LPN generation modules. However, in contrast

to binning the proposed approach does not entangle data points from different signals. The new

discretization methods operate on each signal individually and produce a number of discrete

states. Formally, a state, s, can be defined as a tuple �v, id,τstart ,τend,Ω� where:

3Unless specified otherwise, the default data manager sorts data in the ascending order.

54

Algorithm 4.3 Stage processing algorithm.
1: function PROCESSDATA(Input)
2: Out put := /0
3: for all in ∈ Input do
4: ProcessCostSet := /0
5: for all processor ∈ DataProcessors do
6: cost := processor.ProcessCost(in)
7: if cost > 0 then
8: ProcessCostSet := ProcessCostSet ∪{�processor,cost�}
9: end if

10: end for
11: DataManager.Sort(ProcessCostSet)
12: sortedProcessor := DataManager.GetProcessor()
13: Out := sortedProcessor.ProcessData(in)
14: if Out = /0 then
15: return /0
16: end if
17: Out put := Out put ∪{Out}
18: end for
19: return Out put

• v is a system variable repsenting the original signal;

• id is a unique identification symbol;

• τstart and τend are timestamps, indicating the beginning and end of the state respectively,

• Ω is a tuple, defining state values4.

To better illustrate the difference between bins and states, consider Figure 4.7 as an example.

The signal PMOS is represented as a sequence of states: P0
on → P1

off → P2
on → P3

off, where the

state name with the subscript, which represents a unique identification symbol, is analogous to

the bin, while the superscript determines the state order.

Furthermore, every state contains additional parameters for approximating data points. Ex-

tra parameters depend on the type of approximation being used. For example, it is convenient to

approximate the PMOS signal as a DMV variable with two boundary values, encapsulating all

the data points from the range. Alternatively, the signal ILcan be approximated in a piece-wise

linear manner, which means that the state will contain information on ranges of rate.

In addition to the threshold based discretization, the new methods, based on the data clus-

terization [61], have been added. This has allowed the method to eliminate descretization prob-

lems, described in the previous sections, as well as provide finer control over model precision.

4This tuple depends on the state type. Most of the states define this tuple as
�

bl ,bh

�
, where bl is the low

boundary, such as a threshold or rate, and bh is the upper boundary. Certain states, describing ideal digital signals,
require only a single value.

55

The following sections detail algorithms used in the data processors of this stage. All of the

discretization processors operate on a system variable v : �Name,Type,Σ�, which contains a

symbolic name, signal type: {input,out put}, and data points from the simulation trace.

t

P
M
O
S

I L
V
C

Figure 4.7: Derivative discretization.

4.2.1.1 Unique values discretization

The most simple and straightforward discretization method is based on grouping data points

by their values. Certain data sets can have ideal discrete signals that do not contain any noise

or transient, like PMOS signal in Figure 4.7. As a result it is possible to use computationally

inexpensive discretization methods.

The algorithm is split between the module’s cost and data processing functions and assumes

that the cost function is used first to determine the possibility of applying the algorithm and

the resulting processing price. The cost function, described in Algorithm 4.4, converts the

input sequence of data points into a set and checks if the resulting set size exceeds a specified

threshold of MAX_UNIQUE. This parameter is needed to avoid applying this algorithm to

analog signals, where every data point can have a unique value. In order to calculate the final

cost, the function discretizes5 the input data to obtain a sequence of states and uses it to generate

5While it is not shown in the cost function, all output results are cached in module’s internal variables to
minimize the amount of calculations.

56

a new signal. The function GenerateSignal iterates over all points of the input signal, finds the

appropriate state according to the state and point timestamps, and creates a new data point,

based on the state value. The generated signal is compared against the original one via the

CompareSignals function, which measures the difference between signals as the sum of relative

differences between every point in the original signal and the corresponding point with the same

timestamp in the generated signal. The relative difference between the two points is calculated

according to the following formula: |Poriginal .v−Pgenerated .v|
|Poriginal .v| . The calculated difference multiplied

by the module base cost is reported as the resulting cost of this data processor.

Algorithm 4.4 Unique values cost function.
1: function PROCESSCOST(v)
2: uniqueValues := /0
3: //Iterate over all data points of a variable and find the number of points with unique

values
4: for all point ∈ v.Σ do
5: if point.v /∈ uniqueValues then
6: uniqueValues := uniqueValues∪{point.v}
7: end if
8: end for
9: //Check if number of unique states exceeds specified threshold

10: if |uniqueValues| > MAX_UNIQUE then
11: return −1
12: end if
13: states := ProcessData(v)
14: generatedSignal := GenerateSignal(v.Σ,states)
15: di f f erence := CompareSignals(v.Σ,generatedSignal)
16: return di f f erence∗BASE_COST

If this algorithm is selected for the data discretization, then the data points are converted

into the states according to the Algorithm 4.5. The method iterates over all points of the signal

to detect sequences of points with the same value and creates new states via the StateIdeal

function. This function6 requires a system variable v, state timestamps τstart and τend , and a

state value. The produced states are grouped together in a sequence, which is returned as the

result of this method.

4.2.1.2 Data values clusterization

The new version of the algorithm for handling DMV variables utilizes agglomerative clus-

tering method [61] to circumvent the necessity for specifying multiple stability parameters by

the designer. The data clusterization technique requires only coefficient of variation (CV) to au-

6Note, that state identification number id is generated by the function, using the provided state value.

57

Algorithm 4.5 Unique values process function.
1: function PROCESSDATA(v)
2: Out putStates := /0
3: σprev := v.Σ(1)
4: //Find continous sequences of data points with the same value and form new states
5: for all i ∈ [2, |v.Σ|] do
6: σcur := v.Σ(i)
7: if σcur.v = σprev.v∧ i �= |v.Σ| then
8: continue
9: end if

10: τstart := σprev.τ
11: τend := σcur.τ
12: state := StateIdeal(v,τstart ,τend,σprev.v)
13: Out putStates := Out putStates∪ state
14: σprev := σcur
15: end for
16: Out putStates := Out putStates∪StateIdeal(v,σprev.τ,σcur.τ,σcur.v)
17: return Out putStates

Figure 4.8: Dendrogram of data values.

tomatically detect stable regions in data, which is a more universal characteristic for describing

data, than a set of threshold constants.

In a similar manner, the operation of the algorithm is split between the cost and the data

processing functions of the discretization module. The method, described in the Algorithm 4.6,

starts by constructing a dendrogram from the provided data points and performing a layer search

to determine a set of clusters, where each cluster has the relative standard deviation of data

points below the specified CV parameter.

The illustration of this approach is provided in Figure 4.8. The creation of a dendrogram

begins with transforming the input data points into singletons, clusters that contain only one

point. At every step the function FormDendrogram iterates over all clusters to combine two

58

closest ones, according to the euclidean distance7. The initial singletons with values 0.1, 0.13,

0.16, 0.92, and 0.96 are analyzed to determine the pair with the closest distance to each other.

This results in the first cluster with the value 0.115, connecting singletons 0.1 and 0.13, to be

created. The newly created cluster and the rest of the singletons are analyzed again to find the

best pair for merging. This iterative process repeats until only one cluster, called the root, is

left.

Once the data is processed and the dendrogram is formed, a set of clusters is selected, where

relative size of every cluster is below CV. Relative size of a cluster is calculated as 2|max−min
max+min |,

where max and min are maximum and minimum values located in a cluster. For example, the

root cluster 0.454 has the relative size of 1.623 rounded up, which means that data variation

for this cluster exceeds 100%. The LayerSearch function performs a breadth-first search on the

dendrogram to find a layer, consisting of clusters conforming to the specified CV. Effectively, a

layer is a set of clusters equidistant from the root cluster. As a result clusters 0.13 and 0.94 are

located in the same layer L3, while clusters 0.115 and 0.94 are located in the different layers L2

and L3, though being graphically present on the same horizontal level.

t

P
M
O
S

(a) Stable clusters.
t

P
M
O
S

(b) Transient clusters.

Figure 4.9: PMOS signal data clusterization.

The clusterization algorithm is applied to the discretization of a DMV signal. Figure 4.9a

demonstrates how data points representing logical 0 and 1, are grouped into two clusters of

stable values. However, clusterization also creates clusters for transient points as shown in

Figure 4.9b, which can lead to an excessive amount of states created. To cope with the transient

regions the algorithm performs preliminary discretization of the data via the CreateOutputStates

function. The FindStableRegions function relies on the adaptive low pass filter, described in

Section 4.2.2.1, to remove transient states and related transient regions. If the total number

of stable regions after filtration does not exceed the specified limit, the function proceeds by

discretizing data once more to calculate the discretization error and report it as the metric cost

of this method.
7Note that for better handling of ranges of rates negative and positive values are grouped into different clusters.

59

Algorithm 4.6 Data values clusterization cost function.
1: function PROCESSCOST(v)
2: root := FormDendrogram(v.Σ)
3: stabilityRegions := LayerSearch(root,CV)
4: states := CreateOut putStates(v,v.Σ,stabilityRegions)
5: stabilityRegions := FindStableRegions(states,stabilityRegions)
6: if |stabilityRegions| > MAX_UNIQUE then
7: return −1
8: end if
9: states := CreateOut putStates(v,stabilityRegions)

10: generatedSignal := GenerateSignal(v.Σ,states)
11: di f f erence := CompareSignals(v.Σ,generatedSignal)
12: return di f f erence∗BASE_COST

If the cost function reports a positive value and the algorithm is selected by the data manager

the module converts data points into states using values of stable regions, calculated earlier. The

ProcessData function relies on CreateOutputStates function to produce the output states. This

function, shown in Algorithm 4.7, iterates over all data points and picks a stable region with the

value closest to the point. Using this data, the algorithm creates DMV states and puts them into

an array. Finally, the output states are compressed via the MergeEntries function. This function

finds states with the same id, that are located next to each other, and combines them to produce

one state of longer duration. Note that transient points are also discretized, and it is the purpose

of the filtering stage to detect and remove them.

4.2.1.3 Derivative clusterization

To enable finer control over ranges of rates for analog signals, similar clusterization tech-

nique is used. The data processing method from the previous section is adopted to group data

points, based on their first derivative value (as opposed to fixed thresholds), as described in

Algorithm 4.8.

Initially, the cost function checks if the data is marked as input, as this method can only

be applied to the output variables. Afterwards, the CalculateFirstDerivative function calculates

rate for every data point. These rates are subsequently partitioned by the clustering algorithm

into a dendrogram and a suitable set of clusters is found, whose relative size conforms with the

coefficient of variation. If the number of clusters exceeds the specified threshold the function

report a negative number, indicating an error. Otherwise, the function returns the resulting cost

of the operation in manner similar to previously described methods.

The operation of the data processing function is similar to that, described in the previous sec-

60

Algorithm 4.7 CreateOutputStates function.
1: function CREATEOUTPUTSTATES(v,data,stabilityRegions)
2: Input:
3: v: system variable
4: data: data points to create states
5: stabilityRegions: a set of data bins
6: Output:
7: out putStates: resulting data states
8: out putStates := /0
9: //Iterate over all data points and create a new state for every point

10: for all i ∈ [1, |data|] do
11: //Find the closest cluster to the current data point
12: cluster := GetClosestCluster(data(i),stabilityRegions)
13: τstart ,τend := data.τ
14: if i �= |data| then
15: τend := data(i+1).τ
16: end if
17: state := StateDMV (v,τstart ,τend,cluster.min,cluster.max)
18: out putStates := out putStates∪{state}
19: end for
20: //Merge similar states
21: out putStates := MergeEntries(out putStates)
22: return out putStates

Algorithm 4.8 Derivative clusterization cost function.
1: function PROCESSCOST(v)
2: if v.Type = input then
3: return −1
4: end if
5: derivData := CalculateFirstDerivative(v.Σ)
6: root := FormDendrogram(derivData)
7: stabilityRegions := LayerSearch(root,CV)
8: if |stabilityRegions| > MAX_UNIQUE then
9: return −1

10: end if
11: states := CreateOut putStates(v,derivData,stabilityRegions)
12: generatedSignal := GenerateSignal(v.Σ,states)
13: di f f erence := CompareSignals(v.Σ,generatedSignal)
14: return di f f erence∗BASE_COST

61

(a) Sub-optimal thresholds. (b) Adjusted thresholds.

Figure 4.10: Threshold discretization of a non-monotonic function.

tions, and reuses CreateOutputStates function, Algorithm 4.7, to produce output states. There

are two notable distinctions. The distance to the cluster center, line 12, is calculated for the

derivative instead of data point values:

distance := |region.center−derivData(i)|

Additionally, instead of a DMV state, line 17, this method produces states that approximate

signals via ranges of rates, which are derived from the cluster’s minimum and maximum values.

state := StateRange(v,τstart ,τend,cluster.min,cluster.max)

4.2.1.4 Threshold based discretization

One of the problems the threshold based discretization faces is determining discretization

thresholds for non-monotonic functions. It is not possible to retrieve full information about a

signal by just observing data points values and testing them against a set of thresholds. Part of

the information is encoded within the point’s rate, which is not possible to check directly using

LPN’s guard conditions. Furthermore, if thresholds are not selected carefully, it is possible to

have a situation, shown in Figure 4.10a , where increasing and decreasing parts of the function

are represented using the same thresholds, which essentially makes them indistinguishable from

each other.

To address this issue, the new discretization method determines monotonic parts of the func-

tion as described by Algorithm 4.9. The cost function of the module assigns every data point

a positive or a negative value, depending on the value of the first derivative. The ProcessData

function in line 5 reuses the function from the “unique values” discretization module and the

obtained states are filtered via the adaptive low pass filter. After that, the function iterates over

the original data points to find sequences of data points, which correspond to the same state.

These sequences are used to form a set of monotonic parts of the input signal and calculate the

cost of the operation.

62

Algorithm 4.9 Threshold discretization cost function.
1: function PROCESSCOST(v)
2: //For every data point determine data sign
3: dataSigns := AssignDataSign(v.Σ)
4: //Create a collection of states
5: signStates := ProcessData(dataSigns)
6: //Remove noisy states
7: signStates := FilterData(signStates)
8: monotonicData,monotonicPart := /0
9: i := 1

10: for all point ∈ v.Σ do
11: if point.τ ∈ [signStates(i).τstart ,signStates(i).τend] then
12: //Data points within the current sign state timestamps form monotonic part
13: monotonicPart := monotonicPart ∪{point.v}
14: else
15: //Add monotonic part to the collection of monotonic data
16: monotonicData := monotonicData∪monotonicPart
17: monotonicPart := /0
18: i := i+1
19: end if
20: end for
21: monotonicData := monotonicData∪monotonicPart
22: //Store monotonic data internally to be used in Algorithm 4.10
23: StoreMonotonicData(monotonicData)
24: return |monotonicData| ∗NUM_GROUPS∗BASE_COST

63

The set of monotonic pieces is stored internally in the module8 and used by the data pro-

cessing function, described in Algorithm 4.10. The function iterates over monotonic pieces and

calculates thresholds via the CalculateThresholds function. This function distributes data points

equally among the specified number of groups and calculates minimum and maximum value for

each group as shown in Figure 4.11a. In this example data points are allocated between the two

groups, which results in four thresholds being created. The obtained thresholds are then sorted

in ascending order, and the thresholds that lie within the certain tolerance to each other are

merged together by the FilterThresholds, as illustrated in Figure 4.11b. The algorithm proceeds

by iterating over the data points to find the two thresholds that encapsulate the point value and

creating states for every individual data point. After that the resulting states are compressed via

the MergeEntries function, introduced earlier.

Algorithm 4.10 Threshold discretization process function.
1: function PROCESSDATA(v)
2: thresholds := /0
3: //Get monotonic data calculated in Algorithm 4.9
4: monotonicData := GetMonotonicData()
5: //Calculate discretization thresholds for monotonic data points
6: for all monotonicPart ∈ monotonicData do
7: partT hresholds := CalculateT hresholds(monotonicPart,NUM_GROUPS)
8: thresholds := thresholds∪ partT hresholds
9: end for

10: //Merge close thresholds and sort in ascending order
11: thresholds := FilterT hresholds(thresholds)
12: out putStates := /0
13: for all i ∈ [1, |v.Σ|] do
14: τstart ,τend := v.Σ(i).τ
15: if i �= |v.Σ| then
16: τend := v.Σ(i+1).τ
17: end if
18: //Find two thresholds that encapsulate the current data point
19: for all j ∈ [1, |thresholds|−1] do
20: if v.Σ(i) ≥ thresholds(i)∧ v.Σ(i) ≤ thresholds(i+1) then
21: lowB := thresholds(j)
22: upB := thresholds(j +1)
23: state := StateT hresholds(v,τstart ,τend, lowB,upB)
24: out putStates := out putStates∪{state}
25: break
26: end if
27: end for
28: end for
29: MergeEntries(out putStates)
30: return Out putStates

8Transfer of monotonic data is handled by the GetMonotonicData function.

64

(a) Before merge. (b) After merge.

Figure 4.11: Threshold discretization of a monotonic function.

While this does not solve the problem with the non-monotonic functions completely, it

allows for it to be handled by encoding signal behavior as a sequence of states. For exam-

ple, applying this method to the waveform in Figure 4.10b introduces a new threshold T h3,

which transforms the waveform into a sequence of states: S1[T h1,T h3] → S2[T h3,T h2] →
S1[T h1,T h3]. As a result, the information about the signal behavior is encoded as sequences

of states. It is important to note that this method is only used during the rule mining stage, when

analog data is partitioned into smaller pieces. This provides a finer control over the number of

thresholds produced, and, consequently, helps in reducing the model complexity.

4.2.2 Filtering

After the analog waveform has been transformed into a sequence of discrete states, it be-

comes possible to generate an LPN model of the system. However, such a model is likely to

contain a lot of extra information due to "noisy" states. These relatively short-lived states ob-

scure the important behavior of the system and are usually caused by the noise in the original

analog signal. Thus, to reduce the model complexity and improve the state space analysis,

filtering techniques are used in the model generator.

4.2.2.1 Adaptive low pass filter

Even a simple low pass filter can help to reduce the model complexity by removing small

duration states. However, selecting the appropriate duration cut-off point can be a challenging

task. An improperly chosen threshold can either result in noise states being present in the output

or stable states being removed, as shown in Figure 4.12a. While it is possible to manually select

the optimal threshold on a case-by-case basis this defeats the purpose of the process automation.

65

Duration

State

C
u
t-
o
ff

Noise Stable

(a) Fixed cut-off duration.

Duration

State

C
u
t-
o
ff

(b) Adaptive cut-off duration.

Figure 4.12: State duration histogram.

The adaptive low pass filter attempts to automatically determine the optimal cut-off point.

The cost function, described in Algorithm 4.11, serves as a metric function to indicate the effi-

ciency and feasibility of the algorithm application. The function transforms input states into a

sequence of state durations and calculates the total duration of the state trace. Afterwards the

clusterization technique is used to group input states by their duration and find such a composi-

tion of clusters, where relative duration (RD) of any cluster, calculated as Durationcluster
Durationtotal

, does not

exceed the specified threshold. The obtained set of clusters is analyzed to determine the clus-

ter with maximum total duration. The minimum duration in that cluster is used as the cut-off

threshold to filter out input states.

The data clusterization naturally places noise states and stable states into different clusters,

while the relative duration metric partitions clusters in such a way as to create a single cluster,

which represents the majority of the stable states. Figure 4.12b illustrates how this approach

produces three clusters with the cluster Clcenter containing most of the stable states. Choosing

the leftmost state with the smallest duration in that cluster as the cut-off value preserves all of

the states in that cluster as well as states with longer duration in Clright , while removing any

66

Algorithm 4.11 Low pass filter cost function.
1: function PROCESSCOST(states,v)
2: stateDurations := CalculateStateDurations(states)
3: totalDuration := ∑|stateDurations|

i=1 stateDurations(i)
4: root := FormDendrogram(stateDurations)
5: durationClusters := LayerSearch(root, totalDuration∗RD)
6: clMaxDuration := GetMaxDurationCluster(durationClusters)
7: cutO f f Duration := clMaxDuration.min
8: //Remove states with duration below the threshold
9: f ilteredStates := /0

10: for all state ∈ states do
11: duration := state.τend − state.τstart
12: if duration ≥ cutO f f Duration then
13: f ilteredStates := f ilteredStates∪{state}
14: end if
15: end for
16: f ilteredStates := CorrectStates(states, f ilteredStates)
17: precisionLoss := PrecisionLoss(states, f ilteredStates,v)

18: return
precisionLoss

|states|− | f ilteredStates|

noise states from the cluster Clle f t .

After the noise states are removed, it is important to redistribute their duration between sta-

ble states and avoid any discontinuities in the state trace. The processing method of the filtering

module relies on the CorrectStates function, explained in Algorithm 4.12. The algorithm it-

erates over the original input states to determine noise states that were removed. The missing

states, located between stable states, are used to increase the duration of the current stable state.

Finally, since it is possible that noise states separated two stable states with the same identifica-

tion number, the MergeEntries function is used to merge any similar consecutive states.

The filtered states are used to generate a signal and compare it against the original signal,

as demonstrated by Algorithm 4.13. The existing CompareSignals function is used to calculate

the precision loss, incurred by the state removal. Note, that the simulation data is only used

to provide a time reference, when generating a signal. The normalized precision loss per state

removed is used to evaluate the method efficiency. The resulting states are stored internally in

the module, so the data processing function does not perform any calculations and only retrieves

the requested information.

4.2.2.2 Pattern based filter

While the low pass filter can improve the quality of the resulting models, it does not dis-

tinguish noisy states from short-duration states that are a meaningful part of the output signal.

67

Algorithm 4.12 Correct states function.
1: function CORRECTSTATES(originalStates, f ilteredStates)
2: noiseStates := /0
3: correctedStates := /0
4: index := 0
5: for all state ∈ originalStates do
6: correctedState := f ilteredStates(index)
7: //If the state is stable its duration is increased by the duration of noise states
8: if state = correctedState then
9: IncreaseDuration(correctedState,noiseStates)

10: correctedStates := correctedStates∪{state}
11: index := index+1
12: else
13: noiseStates := noiseStates∪{state}
14: end if
15: end for
16: MergeEntries(correctedStates)
17: return correctedStates

Algorithm 4.13 Precision loss.
1: function PRECISIONLOSS(originalStates, f ilteredStates,v)
2: signalOriginal := GenerateSignal(v.Σ,originalStates)
3: signalFiltered := GenerateSignal(v.Σ, f ilteredStates)
4: return CompareSignals(signalOriginal,generatedSignal)

For example, consider a sequence of states, shown in Figure 4.13a9. The sequence consists

of the recurring state pattern: {S1,S2}, interrupted the by long duration state S3. The duration

histogram in Figure 4.13b illustrates that the adaptive low pass filter, described in the previous

section, potentially can remove states S2, that form part of the data pattern.

In order to overcome this problem, the pattern-based filter has been developed. The filter

cost function, described in Algorithm 4.14, operates as a sliding window to determine the dom-

inant state pattern in a window. The function calculates the window size as the percentage of

the overall number of input states. For every state in the window, the function extracts state

identification symbols, line 9. The set of these numbers essentially serves as an alphabet to

create patterns via the ExpandPatterns function, Algorithm 4.15.

The ExpandPatterns function is effectively a function, which creates all possible words up

to the size PATTERN_SIZE, from the given alphabet. The method starts by creating a set of

patterns of size one, line 4. After that, the function expands the current set of patterns by adding

additional state id to every pattern, line 14 and the newly created patterns are saved for the next

9The length of the rectangle represents state duration.

68

Algorithm 4.14 Pattern filter cost function.
1: function PROCESSCOST(states,v)
2: windowSize := �|states| ∗WINDOW_RAT IO�
3: f ilteredStates := /0
4: for all i ∈ [1, |states|] do
5: lowB := Max(0, i−windowSize/2)
6: upB := Min(|states|, i+windowSize/2)
7: //Extract states unique identification numbers
8: stateIds := /0
9: for all j ∈ [lowB,upB] do

10: if states(j).id /∈ stateIds then
11: stateIds := stateIds∪{state(j).id}
12: end if
13: end for
14: //Create all possible state patterns
15: windowPatterns := ExpandPatterns(stateIds)
16: maxPattern := /0
17: maxWeight := −1
18: //Determine dominant pattern in current window
19: for all pattern ∈ windowPatterns do
20: patternWeight := GetPatternWeight(pattern,states, lowB,upB)
21: if patternWeight > maxWeight then
22: maxWeight := patternDuration
23: maxPattern := pattern
24: end if
25: end for
26: //Preserve states that are part of the dominant pattern
27: if states(i).id ∈ maxPattern then
28: f ilteredStates := f ilteredStates∪ state(i)
29: end if
30: end for
31: f ilteredStates := CorrectStates(states, f ilteredStates)
32: precisionLoss := PrecisionLoss(states, f ilteredStates,v)

33: return
precisionLoss

|states|− | f ilteredStates|

69

(a) State sequence.

Duration

State

C
u
t-
o
ff

(b) State histogram.

Figure 4.13: Low pass filter problem.

iteration. The function stops when the pattern size reaches the specified limit. For example,

extracting state id numbers from Figure 4.13a yields alphabet: {1,2,3}. Given the pattern size

limit as 2 the resulting patterns returned by this function are {”1”, ”2”, ”3”, ”12”, ”13”, ”21”,

”23”, ”31”, ”32”}10.

Once all patterns are created the algorithm calculates weight for every pattern in the win-

dow, line 19, and chooses the pattern with the biggest weight. The function GetPatternWeight,

explained in Algorithm 4.16, sums up duration of those states in the given window, that conform

to the current pattern. The duration of the pattern in combination with the pattern size are used

in the Weight metric function, which calculates the cost according to the following formula:

duration∗BASE−size, where BASE is one of the parameters specified by the designer.

If the current state is part of the biggest pattern, it is preserved, otherwise it is removed from

the state trace. The resulting cost of the method is also based on calculating the precision loss

per state removed. The filtered states are stored internally and retrieved by the data processing

function of the module.

4.2.3 Rule mining

Before the new model generator can construct an LPN model, it has to determine how much

of the information, maintained within the original data set, is necessary to reliably describe the

behavior of the system. Furthermore, due to expressiveness of LPNs, there are various possible

methods to define the relationship between input and output signals. The proposed approach to

10While it is not shown in the algorithm, this function also performs minimization of the resulting patterns.
Patterns, consisting of single id, such as ”11”, are removed from the result.

70

Algorithm 4.15 Expand patterns function.
1: function EXPANDPATTERNS(stateIds)
2: curPatterns := /0
3: //Create patterns of length 1 first
4: for all id ∈ stateIds do
5: curPatterns := curPatterns∪{�id�}
6: end for
7: allPatterns := curPatterns
8: size := 1
9: while size ≤ PAT T ERN_SIZE do

10: nextPatterns := /0
11: for all pattern ∈ curPatterns do
12: //Expand existing patterns by adding state ids to every pattern
13: for all id ∈ stateIds do
14: nextPatterns := nextPatterns∪{�pattern, id�}
15: end for
16: end for
17: curPatterns := nextPatterns
18: allPatterns := allPatterns∪ curPatterns
19: size := size+1
20: end while
21: return allPatterns

Algorithm 4.16 Pattern weight function.
1: function GETPATTERNWEIGHT(pattern,states, lowB,upB)
2: totalDuration := 0
3: curId := 1
4: prevId := 1
5: for all state ∈ [states(lowB),states(upB)] do
6: duration := state.τend − state.τstart
7: //Check if current state is part of the pattern
8: if state.id = pattern(curId) then
9: totalDuration := totalDuration+duration

10: prevId := curId
11: curId := (curId +1) mod |pattern|+1
12: continue
13: end if
14: if state.id = pattern(prevId) then
15: totalDuration := totalDuration+duration
16: end if
17: end for
18: return Weight(|pattern|, totalDuration)

71

achieve this goal is by mining the rules - relations between the control state sequences and the

output states11. The method of rule mining is designed to extract a minimal set of such rules

that form a surjection from sequences of control states to the output states.

In contrast to the previously discussed processing stages the Rule Mining stage requires a

few intermediate steps and overrides the stage ProcessData function, shown in Algorithm 4.3.

As described in Algorithm 4.17, initially the stage processes a set of system variables V and

a set of state sequences S to create a set of rules. After that, the algorithm iteratively detects

conflicts between patterns and resolves them.

Algorithm 4.17 Data rule mining stage.
1: function RULEMINING(V,S)
2: Input:
3: V : a set of system variables
4: S: a set of state sequences
5: Output:
6: rules: a set of data rules
7: rules := ExtractDataRules(V,S)
8: while con f licts := DetectCon f licts(rules) do
9: rules := ResolveCon f licts(con f licts)

10: end while
11: return rules

4.2.3.1 Extracting data rules

The extraction of the rules, as shown in Algorithm 4.18, begins with the processing of the

simulation data to determine a set of signals that was not discretized. The function GetNonDis-

cretizedData, described in Algorithm 4.19, iterates over all system variables and probes the first

state of every state trace to check, if the variable and the state name match. This serves as an in-

dication that this signal was discretized. In case of a mismatch, the system variable is preserved

and is used later to form data patterns.

A data pattern (DP) is a unique time-ordered sequence of all discrete input states that are

contained between the start and end of the previous state. An additional part of a pattern is a set

of data points from the continuous input signals. Effectively, a pattern samples and stores all

information from input signals, which precede the changes of an output state. This information

is interpreted as a triggering sequence to switch from one state to another. Formally, a pattern,

P, can be defined as a tuple �Out,States,Points,PreSet,PostSet� where:

• Out - an output state,
11Control state is a state originated from a control signal. Similarly, an output state is a state originated from an

output signal.

72

• States - a set of sequences of input states,

• Points - a set of sequences of input data points,

• PreSet - a set of patterns, which precede this state,

• PostSet - a set of patterns, which succeed this state.

Algorithm 4.18 Extract data rules function.
1: function EXTRACTDATARULES(V,S)
2: dataRules := /0
3: initialConditions := /0
4: VND := GetNonDiscretizedData(V,S)
5: for all outStates ∈ S do
6: prevState := outStates(1)
7: //Check if current sequence of states is marked as output
8: if prevState.Type �= Out put then
9: continue

10: end if
11: initialConditions := initialConditions∪{prevState}
12: //Iterate over output states to form data patterns
13: for all i ∈ [2, |outStates|] do
14: curState := outStates(i)
15: patternStates := GetStatePatterns(S \outStates, prevState)
16: if CURRENT _STAT E then
17: patternPoints := GetStatePoints(VND,curState)
18: else
19: patternPoints := GetStatePoints(VND, prevState)
20: end if
21: dataPattern := �curState, patternStates, patternPoints, /0, /0�
22: rulePattern := �curState, /0, /0, /0, /0�
23: curRule := �rulePattern,dataPattern�
24: dataRules(curState.Id) := dataRules(curState.Id)∪{curRule}
25: prevState := curState
26: end for
27: end for
28: return �initialConditions,dataRules�

In order to create the data patterns the method iterates over all state traces and picks those,

that originated from signals marked as output, line 8. The first state in the trace is stored as

initial condition, while the algorithm proceeds to iterate over all other states, including the

output states, and extract the state patterns and data points for them. This is achieved via

two functions: GetStatePatterns, Algorithm 4.21, and GetStatePoints, Algorithm 4.20. Both

functions are similar in operation as they detect states and data points that reside within the

time window of the specified state. While the pattern states always reside within the timestamps

73

of the previous output state, there is an option, governed by the CURRENT STATE parameter,

to select the data points either for the current or the previous output state. Depending on the

example the switch in the output state can be caused be an analog signal reaching a region at the

same time as the switch occurred. Alternatively, the switch is related to an analog signal going

through a series of regions, preceding the change in the output state.

Algorithm 4.19 Get non-discretized data function.
1: function GETNONDISCRETIZEDDATA(V,S)
2: data := /0
3: for all v ∈V do
4: for all s ∈ S do
5: if s(1).Name �= v.Name then
6: data := data∪{v}
7: end if
8: end for
9: end for

10: return data

While determining the appropriate data points is rather straightforward and requires one to

check, if the point timestamp is in between the start and end timestamps of the output state,

detecting the correct pattern states requires additional checks. A state is considered to be part

of the pattern, if it either started or ended during the time frame of the output state, as described

in line 5 of Algorithm 4.21. Consequently, it is possible to have the same state to be a part of

different data patterns. Finally, the previous state is added to the pattern and the entire pattern

is converted to set format.

Algorithm 4.20 Get state data points function.
1: function GETSTATEPOINTS(V,out)
2: patternPoints := /0
3: for all v ∈V do
4: points := /0
5: for all point ∈ v.Σ do
6: if point.τ ≥ out.τstart ∧ point.τ ≤ out.τend then
7: points := points∪{point}
8: end if
9: end for

10: patternPoints := patternPoints∪�v.Name,v.Type, points�
11: end for
12: return patternPoints

The set format is a convenient way of representing information about the system state. Con-

trary to a state trace, which only captures changes in states, a set of state contains informa-

tion about all system variables and is analogous to a node in a state graph. This difference

74

is best illustrated with Figure 4.7. For the output state I2
2 the corresponding trace of pattern

states is I1
1 → P1

o f f → P2
on. Converting this trace to the set format yields the following result:�

I1
1 ,P1

o f f

�
→

�
I1
1 ,P2

on

�
.

A list of data patterns extracted for the discretized signal of the inductor current in Figure 4.7

is provided below:

– I1
1 :

�
I0
0 ,P0

on

�
→

�
I0
0 ,P1

o f f

�
,

– I2
2 :

�
I1
1 ,P1

o f f

�
→

�
I1
1 ,P2

on

�
,

– I3
3 :

�
I2
2 ,P2

on

�
→

�
I2
2 ,P3

o f f

�
.

Every pattern captures the evolution of the system in the bin space between the changes of the

outputs. For example, the pattern for the output state I2
2 captures the system originally being

in the bin
�

I1
1 ,P1

o f f

�
, followed by the bin

�
I1
1 ,P2

on
�
, until the system finally reaches the bin

�
I2
2 ,P2

on
�
. Note, that no pattern is created for the state I0

0 , as this is the initial state of the system.

Algorithm 4.21 Get state patterns function.
1: function GETSTATEPATTERNS(S,out)
2: patternStates := /0
3: for all inStates ∈ S \outStates do
4: for all in ∈ inStates do
5: if in.τstart > out.τstart ∧ in.τstart ≤ out.τend ∨

in.τend > out.τstart ∧ in.τend ≤ out.τend then
6: patternStates := patternStates∪{in}
7: end if
8: end for
9: end for

10: patternStates := out ∪ patternStates
11: patternStates := ConvertToSetFormat(patternStates)
12: return patternStates

Once the pattern data points and states are extracted a data pattern is formed, as show in

line 21 of Algorithm 4.18. Additionally, a rule pattern (RP) is created for the same output state,

but without any data points or state patterns. The combination of all data and rule patterns

leading to the output state with the same identification symbols forms a mapping function,

called a data rule (DR). Thus, an initialized rule consists of an output state and a set of pattern

pairs, where one pattern is called a DP, as it has been extracted from the simulation data, and

the other one is a RP, which is later used for model construction.

75

4.2.3.2 Conflict detection

After the rule extraction, all rule patterns are empty and must be filled with the data from

their complementary data patterns. The purpose of the next steps of the algorithm is to deter-

mine how much of the information within the data patterns is needed to make a combination of

all rule patterns a surjective function. To achieve this, the algorithm iteratively detects conflicts

between patterns and resolves them.

A conflict occurs when one of the patterns is a subsequence of another pattern. Thus, a con-

flict reports that one cannot determine which output state the input stimulus leads to. Detection

of conflicts is a two step process:

• Every RP of a rule is compared against every RP of every other rule.

• If an RP is not in conflict with any other RP, it is compared against every DP of every

other rule.

The detection of conflicts between patterns relies on comparing sequences of state sets. Thus, it

is necessary to define first how set comparison for states works. Given two sets, X and Y there

are several possible comparison outcomes12:

• Sets are equal, if both sets contain the same elements and have the same size. For exam-

ple, sets X :
�

A,B,C
�

and Y :
�

A,B,C
�

are equal.

• Sets are unique, if both sets contain at least one element not present in another set. For

example, sets X :
�

A,B,C
�

and Y :
�

A,B,D
�

are unique.

• One set is a subset of another set (with another set being the superset), if all of the ele-

ments of the smaller set are present in the larger set. For example, set X :
�

A,B
�

is the

subset of the set Y :
�

A,B,C
�

.

Sequences comparison produces the same results but uses a different set of rules. Specifically,

for two sequences α : (Xi)
N
i=1 and β : (Yj)

M
j=1 the comparison rules are as follows:

• Sequences are equal, if N = M,∀i = j|Compare(Xi,Yj) = equal. For example, sequences

α :
�

A
�
→

�
B
�

and β :
�

A
�
→

�
B
�

are equal, while sequences α :
�

B
�
→

�
A
�

and

β :
�

A
�
→

�
B
�

are not.

12Comparison between set elements is done by comparing state id.

76

• Sequences are unique, if either ∃i : ∀ j � i|Compare(Xi,Yj) = unique or

∃ j : ∀i � j|Compare(Xi,Yj) = unique. For example, sequences α :
�

A
�
→

�
B
�
→

�
C
�

and β :
�

A
�
→

�
D
�

are unique.

• Sequence α is a subset of sequence β , if both sequences are neither unique, nor equal, and

either: ∃i,∃ j � i|Compare(Xi,Yj) = superset or N < M,∀i = j|Compare(Xi,Yj) = equal.

For example, sequence α :
�

A
�
→

�
B
�

is a subset of sequence β :
�

A
�
→

�
B
�
→

�
C
�

.

Additionally, sequence α :
�

A
�
→

�
B
�

is a subset of sequence β :
�

A,B
�
.

The function DetectConflicts of Algorithm 4.3 returns a list of rule patterns, whose state pat-

tern was marked as equal or a subset. However, it is important to note that no comparison is

performed between the rule patterns, which have a dependency on each other. Before the com-

parison by set sequences takes place the conflict detection algorithm checks, if another RP is

present in the postset or preset of the current RP, and reports no conflict in that case.

Detected conflicts are filtered to remove duplicate reports for the same conflicting rule pat-

tern. Conflict resolution relies on a number of methods, each being applied in an order, deter-

mined by the associated cost function of the method. As such, the function ResolveConflicts

reuses existing stage architecture, explained in Algorithm 4.3, and every one of these methods

has a metric function and a data processing function in a manner similar to discretization and

filtering modules. The following sections cover a range of conflict resolution techniques.

4.2.3.3 Resolve by state set

This method attempts to solve a conflict by expanding existing state sets in a rule pattern

with additional states. Since a rule pattern is always a subset of its data pattern, the algorithm

only looks at the last set of states in RP and DP to create a set difference and pick a signal,

which states will be used to “grow” the RP. Once the signal is chosen the algorithm adds an

additional state to every state set in RP from their complementary state sets in DP. Furthermore,

when choosing a signal the method will prioritize input signals over output one and thus has

separate costs for adding states of input and output signals13.

This approach is best illustrated with the following example. Consider a data rule for an

output signal C, consisting of the data pattern with the pattern states DP :
�

A0
0,B

0
0,C

0
0

�
0
→

�
A1

1,B
0
0,C

0
0

�
1
→

�
A2

0,B
0
0,C

0
0

�
2
→

�
A2

0,B
1
1,C

0
0

�
3
, and a rule pattern with states RP :

�
A2

0

�
2
→

�
A2

0

�
3
. Applying this resolution method will add states B0

0 and B1
1 to sets 2 and 3 of the RP

13By default this method reports the lowest cost for adding input states and the highest cost (second to Resolve
by rule sequence method) for adding output states.

77

respectively and result in RP :
�

A2
0,B

0
0

�
2
→

�
A2

0,B
1
1

�
3
. Using this method once again will

transform the rule pattern into RP :
�

A2
0,B

0
0,C

0
0

�
2
→

�
A2

0,B
1
1,C

0
0

�
3
. After that, the application

of this method is impossible since all possible states have been added.

After the rule extraction, every RP is empty, so conflicts are reported for every rule pattern.

Application of this method to the list of extracted DP in Section 4.2.3.1 transforms empty RPs

into the following state:

– I1
1 :

�
P1

o f f

�
,

– I2
2 :

�
P2

on

�
,

– I3
3 :

�
P3

o f f

�
.

4.2.3.4 Resolve by set sequence

This resolution method adds additional state set sequences to a rule pattern in conflict. Note

that the algorithm does not add new states, but detects states of signals that are already present

in the sequence and adds states only for those signals. Only one set, preceding the last set in

the rule pattern, is added at a time. The cost of the method is calculated as the multiplication of

a base cost, set by the designer, and the resulting length of the pattern sequence. Additionally,

this method cannot be used on an empty state pattern

Applying this method to RP :
�

A2
0

�
2
→

�
A2

0

�
3
, introduced in the previous section, trans-

forms it into RP :
�

A1
1

�
1
→

�
A2

0

�
2
→

�
A2

0

�
3
. This method can be used once more to expand

the pattern and produce RP :
�

A0
0

�
0
→

�
A1

1

�
1
→

�
A2

0

�
2
→

�
A2

0

�
3
, which prevents further

application of this algorithm.

The rule patterns described in the previous section contain a number of conflicts. Specif-

ically, RP I1
1 :

�
P1

o f f

�
and I3

3 :
�

P3
o f f

�
are equal as both pattern contain the same output

state Po f f . Additionally, RP I2
2 :

�
P2

on

�
is a subset of DP I1

1 :
�

I0
0 ,P0

on

�
→

�
I0
0 ,P1

o f f

�
and

I3
3 :

�
I2
2 ,P2

on

�
→

�
I2
2 ,P3

o f f

�
, which means that state Pon can lead to any of the output states.

These conflicts can be partly solved by this method, which transforms RPs into the following

sequences:

– I1
1 :

�
P0

on

�
→

�
P1

o f f

�
,

– I2
2 :

�
P1

o f f

�
→

�
P2

on

�
,

– I3
3 :

�
P2

on

�
→

�
P3

o f f

�
.

This effectively solves all possible conflicts for RP I2
2 and makes it ready for LPN synthesis.

78

t

P
M
O
S

I L
V
C

(a) Pattern data points.
t
P
M
O
S

I L
V
C

(b) Additional states.

Figure 4.14: Dynamic data discretization.

4.2.3.5 Resolve by analog data

If there is any analog data available, the method discretizes the data by analyzing the set of

analog data points, associated with the conflicting pattern. For the data points located within

the timestamps of the output state only one additional state is created with thresholds calculated

as minimum and maximum values found among the analog data. For the data points preceeding

the output state the analysis algorithm uses the new threshold based discretization method,

described in Section 4.2.1.4, to create additional states and insert them into the data pattern.

Note, that the discretization does not affect other rules. Furthermore, since newly created states

can increase the amount of state set sequences in DP, the RP is reset and addition of new states

relies on previously discussed methods.

This method can be used to resolve conflicts between RP I1
1 and I3

3 . As illustrated in Fig-

ure 4.14a, each of these patterns contains a set of data points. The threshold discretization

algorithm can produce a variable number of states, depending on the provided settings. One

possible outcome is shown in Figure 4.14b, where two additional states per rule are created,

using the data points associated with the previous state. Note that extra states are added to non-

conflicting rules only. These states change DP I1
1 and I3

3 and the resulting list of DP is given

below:

79

– I1
1 :

�
I0
0 ,P0

on,V
0
0

�
→

�
I0
0 ,P0

on,V
1
1

�
→

�
I0
0 ,P1

o f f ,V
1
1

�
,

– I2
2 :

�
I1
1 ,P1

o f f

�
→

�
I1
1 ,P2

on

�
,

– I3
3 :

�
I2
2 ,P2

on,V
0
2

�
→

�
I2
2 ,P2

on,V
1
3

�
→

�
I2
2 ,P3

o f f ,V
1
3

�
.

Once the DP are expanded with new states, RP are reset and checked for conflicts once more.

The resulting RP after conflict resolution appear as14:

– I1
1 :

�
P1

o f f ,V
1
1

�
,

– I2
2 :

�
P1

o f f

�
→

�
P2

on

�
,

– I3
3 :

�
P3

o f fV
1
3

�
.

At this point all conflicts have been resolved and the rule patterns are ready to be exported to

the next stage.

4.2.3.6 Resolve by rule sequence

If the other methods fail, it is always possible to preserve the order of patterns, as they

appear in the simulation trace. The algorithm, operating on pairs of data rules, determines their

natural order via timestamps of the output state and adds the succeeding pattern to the postset

of its predecessor and the preceding pattern to the preset of its successor. Normally, this method

has the highest metric cost and ensures that conflict resolution cycle always ends.

The application of this method can be illustrated on a set of RP from Section 4.2.3.4. As-

suming that no analog data is present to expand the state space, the only way to resolve the

conflict between patterns I1
1 and I3

3 is by preserving their order. The rules preset and postset are

updated accordingly and the resulting RPs are presented below:

– I1
1 :

�
P0

on

�
→

�
P1

o f f

�
,PreSet :

�
/0
�
,PostSet :

�
I3
3

�
,

– I2
2 :

�
P1

o f f

�
→

�
P2

on

�
,PreSet :

�
/0
�
,PostSet :

�
/0
�

,

– I3
3 :

�
P2

on

�
→

�
P3

o f f

�
,PreSet :

�
I1
1

�
,PostSet :

�
/0
�

.

14Provided that “Resolve by state set” method picks Po f f state first.

80

Figure 4.15: Partial model.

4.2.4 LPN synthesis

The new algorithm has been streamlined while keeping the main features of the existing

model generator. The model generation process operates on the set of rules, extracted during the

previous step, and starts with the elimination of redundant rules, that overlap with each other.

Specifically, introduced conflict detection algorithm searches for rule pattern conflicts within

every data rule and eliminates those, that have empty preset and postset and whose pattern was

marked as equal or a subset. Note, that the eliminated rule updates the conflicting pattern with

the additional timing information.

Every data rule is transformed into an LPN independently of others and resembles a state

machine, which continuously checks input signals to determine, when to change the output

state. This process is split between several important steps.

Initial conditions.

Initial conditions are formed from the set of output states, that occurred at the start of the

state trace. Additionally, two extra variables, State and Reset, that govern the control flow of the

model are added. It is important to note that no initial conditions are created for input signals

and the generated model relies on other modules to properly set input variables.

Constructing partial models.

Every set of states in a sequence of state sets of a rule pattern is converted into a guard

condition. These guard conditions are used to form a set of LPN transitions. The LPN transition,

that originated from the last state set, is expanded with the delay information and assignment

condition, based on the output state of the data rule. For every transition in the data rule a place

81

Figure 4.16: Partial model with reset links.

is added, which connects current transition with its predecessor.

The partial model, obtained from the set of data rules in Section 4.2.3.5, is shown in Fig-

ure 4.15. Transitions I1 set and I3 set for the data rules I1
1 and I3

3 , respectively, have guard

conditions that wait for the transistor to close and voltage over the capacitor to reach a speci-

fied threshold to set the lower and upper boundaries of the inductor current rate. Additionally,

a special variable State is used to prevent models from reassigning output state continuously,

thus live-locking the model. Data rule I2
2 , operating on only one input signal, is represented as

a sequence of transitions, which effectively detects the rising edge of the PMOS signal. The

delay value is calculated as the difference between the output state start timestamp and the start

timestamp with the maximum value in the final state set. Note that delay information from the

eliminated rules is used to create delay ranges. Since in this example every rule is unique only

single delays are present.

Adding reset links.

The next step is the addition of reset links for all intermediate places in sequences of tran-

sitions, as illustrated in Figure 4.16. The purpose of the reset links is to revert the state of

the detection sequence. For example, a token being present in place p5 means that the model

has the potential to change the output state via transition I2 set. However, if transition I1 set or

I3 set fires first it will invalidate any condition checks made by the sequence of transitions. The

82

Figure 4.17: Complete model.

transition I2 reset will move token back to the initial place p4 thus resetting the model. Further-

more, to avoid potential race conditions and concurrency between reset transitions and normal

transitions, all reset transitions are marked as persistent-enabled transitions and have higher

priority over other transitions. This effectively means, that if a reset transition is enabled, it will

stay enabled regardless of signal changes, while the increased priority ensures that this type of

transition will fire before any other enabled transition.

Additionally, the synthesis algorithm adds an intermediate place and a transition, which

sets the reset variable to the the initial value, to every partial model. In essence, the Reset

variable experiences a pulse, which indicates that the output state has changed and other partial

models have to be reset. The set transition, which performs the state assignment, sets this

variable to reset other parts of an LPN model. This approach as well as the ability of LPNs to

transfer information between transitions via system variables help in minimizing the amount of

connections in the model and improve the model analysis by the designer.

Connecting partial models.

Finally, partial models are connected, enclosed and initialized with tokens. If a data rule

has empty postset and preset, then the synthesis algorithm connects the last transition to the

first place in the model as shown in Figure 4.17, forming a loop. The resulting model of the

system not only captures the behavior observed in the simulation trace, but it also is capable of

83

Figure 4.18: Connected model with rule dependency.

producing new behaviors thereby generalizing the simulation trace.

Alternatively, if a data rule has a dependency on another rule, the model generator connects

the partial models according to their rule preset and postset conditions. First, for every rule

in the postset a place is added to the partial model and connected to the last transition postset.

If the rule preset is not empty, then a dummy transition without guard checks or assignments

is created and connected to the preset of the partial model initial place. Afterwards, the new

places are connected to the corresponding transition in another model as indicated by the data

rule postset.

Finally, the combined partial models are enclosed to form a loop. If the model contains

multiple transitions without a postset, then the algorithm connects additional places to every

such transition. After that the transition serving as a connection between these places and all

initial places without a preset is inserted into the model. If there is only one transition without

a postset present, then no additional places are created and a connection is formed between this

transition and all initial places.

The operation of this algorithm can be illustrated with a partial model, constructed for

the data rules I1
1 and I3

3 , obtained in Section 4.2.3.6. As shown in Figure 4.18 an additional

place, p6, is added to partial model, derived from the rule I1
1 . At the same time a transition

I12 connection is added to the model for the data rule I3
3 . Combined together these elements

form a connective bridge between partial models and ensure that only one model is active at a

time. As a result the output state I1, produced by the model, always precedes the output state I3

in the same fashion as it was observed in the simulation trace.

84

4.3 Conclusion

Advantages of formal verification are offset by the difficulties in the generating of good

system models. Furthermore, creation of abstract models requires substantial knowledge of

formal methods. To address these issues a number of automated model generation techniques

have been developed. The proposed flow presents an improvement to the existing method,

which generates models from a set of simulation traces. This methodology seeks to provide a

finer control over ranges of rates as well as an overall model structure. The following chapter

covers a number of case studies and further illustrates the operation of the new model generator.

85

86

Chapter 5. Case Studies

The methodology described in the previous chapter was implemented as a stand-alone

framework in Java. The tool utilizes a command line interface to generate an LPN from a

single simulation trace. This chapter focuses on additional examples and explanation of the

developed methodology. The first section covers a number of simple digital circuits to illustrate

the operation of the rule mining. The subsequent sections detail the model generation process

for the AMS systems, such as the C-element example, introduced in Chapter 3.

5.1 Digital circuits

While the main focus of the model generator is directed towards the AMS systems the main

idea behind the rule mining is related to describing digital circuits in one of the register transfer

level (RTL) languages. The following examples show how the conflict resolution methods, such

as resolve by state set or resolve by set sequence, can be used to create models for combinational

or sequential circuits.

5.1.1 Or element

An OR element is a good example of a digital control module, which can illustrate how the

rule mining can create abstract models for combinational circuits. The simulation waveforms,

illustrated in Figure 5.1, were used in the model generation process. The signals A and B are

inputs, while the signal C is the output. Note that the OR element reacts to the input changes

without a delay.

All of the signals of the provided waveform were discretized with the unique values dis-

cretization method to produce a set of state traces. Due to the ideal nature of the waveform no

filtering was needed and the obtained model is shown in Figure 5.2. The model is composed of

4 individual LPNs, expressing 4 possible combinations of the input signals. While the part of

the guard condition that represents the input variables A and B is self-explanatory, the purpose

of the C_STATE needs further clarification.

On the one hand this variable serves as a live-lock prevention mechanism. For example,

87

0 2 4 6 8 10 12 14 16 18 20
0

1

Time(µS)
A

(a) Input A.

0 2 4 6 8 10 12 14 16 18 20
0

1

Time(µS)

B

(b) Input B.

0 2 4 6 8 10 12 14 16 18 20
0

1

Time(µS)

C

(c) Output C.

Figure 5.1: Or element waveforms.

when transition T_C0 fires it changes the value of this variable to value, associated with the

identification number1 of the output state. Once the LPN has returned to the initial state this

variable will invalidate the guard condition and prevent the transition from firing.

On the other hand the C_STATE variable is also used to resolve rule pattern conflicts dur-

ing rule mining. The rule mining algorithm operates on the assumption that any information,

located within a data pattern, is important and may lead to the output change. As a result an

RP, while not in conflict with other RPs, might be in conflict with their respective DPs. For

example, one of the rule patterns for the output state 0, C4
0 :

�
A4

0,B
3
0

�
2, is in conflict with the

data pattern C1
1 :

�
A0

0,B
0
0,C

0
0

�
→

�
A4

0,B
1
1,C

0
0

�
. To resolve this conflict the RP is expanded with

the previous state C4
0 :

�
A4

0,B
3
0,C

1
1

�
, which is encoded as the C_STATE variable during the LPN

synthesis process. While in this case it is possible to use the values of the output variable C

directly there is no method to do that for analog signals. As such a separate variable is used to

store the output state explicitly.

5.1.2 Flip-flop

In contrast to the combinational circuits sequential circuits, such as a flip-flop, require a

different approach for model generation. Specifically, to capture the timing relation between

input and output signals during the rule mining stage a higher priority is given to the resolve by

set sequence method. The simulation waveforms, presented in Figure 5.3, are used to illustrate

1Note that the value of the identification number is different from the value of the C variable due to the usage
of the hash function.

2The subscript represents the state identification number and is the same as the value of the variable. The
superscript determines the state order and is derived from the state starting timestamp.

88

Figure 5.2: Or element model.

89

the process of model creation for the flip-flop circuit. The rising edge of the clk signal triggers

the flip-flop to assign the value of the in signal to the out signal. The clock signal has a period

of 20 time units, while the input signal alternates between 0 and 1 with a random delay between

5 and 50 time units.

0 20 40 60 80 100 120 140 160 180 200
0

1

Time(µS)

cl
k

(a) Clock.

0 20 40 60 80 100 120 140 160 180 200
0

1

Time(µS)

in

(b) Input.

0 20 40 60 80 100 120 140 160 180 200
0

1

Time(µS)

ou
t

(c) Output.

Figure 5.3: Flip-flop waveforms.

Initially, the rule mining method attempts to resolve conflicts between empty RPs by adding

the last state of the input signals from DPs. This results in the following RPs being created:

– out70
0 :

�
clk70

1 , in68
0

�
,

– out170
0 :

�
clk170

1 , in168
0

�
,

– out50
1 :

�
clk50

1 , in46
1

�
,

– out150
1 :

�
clk150

1 , in148
1

�
,

– out190
1 :

�
clk190

1 , in189
1

�
.

While there are no conflicts between RPs themselves, all of the RPs have conflicts with DPs

of another rule. For example, state set
�

clk1, in0

�
is located within DP for the output state

out50
1 . Unlike the previous example the output state is not used to resolve these conflicts as it

is assigned a higher metric cost. Instead the resolve by set sequence algorithm is used and it

transforms the RPs into:

– out70
0 :

�
clk60

0 , in68
0

�
→

�
clk70

1 , in68
0

�
,

– out170
0 :

�
clk160

0 , in168
0

�
→

�
clk170

1 , in168
0

�
,

90

– out50
1 :

�
clk40

0 , in46
1

�
→

�
clk50

1 , in46
1

�
,

– out150
1 :

�
clk140

0 , in148
1

�
→

�
clk150

1 , in148
1

�
,

– out190
1 :

�
clk180

0 , in189
1

�
→

�
clk190

1 , in189
1

�
.

Although the RPs capture the behavior of the original circuit the RPs out70
0 and out170

0 still have

a conflict with the DP of the rule out50
1 . In order to prevent the model generator from inserting

additional state set sequences and reduce the resulting model complexity a dependency on the

previous output state is added to resolve the conflicts. Which leads to the following RPs:

– out70
0 :

�
clk60

0 , in68
0 ,out50

1

�
→

�
clk70

1 , in68
0 ,out50

1

�
,

– out170
0 :

�
clk160

0 , in168
0 ,out150

1

�
→

�
clk170

1 , in168
0 ,out150

1

�
.

Finally, after all the conflicts are resolved the rules are minimized to remove the equivalent

rules and the LPN model is generated, as shown in Figure 5.4. The reset transitions T_out2 and

T_out6 play an important role in the model operation. Due to the random nature of the in signal

it is possible to have tokens in the places P_out1 and P_out4. While it is not possible for their

post-set transitions to become enabled simultaneously it is possible for the model to produce

incorrect behavior if the LPN is not reset after the output state change. For example, if no reset

transitions are present transition T_out1 can fire immediately after the input signal changes to

1 without checking the rising edge on the clock signal. In essence, reset transitions prevent the

model from accumulating history from the previous pattern checks.

It is also important to note that dependency on the output in this case is excessive and can

be safely removed from the final model. This dependency shows the importance of using good

quality data that not only shows the desired behavior of the system but also does not contain or

contains limited amount of undesired behaviors.

5.1.3 Frequency divider with adder

The final example in this section is the digital frequency divider. The divider, illustrated in

Figure 5.5, consists of a single flip-flop, which feeds itself through the inverting output. The

output of the divider and the original clock signal, connected through an inverter, are summed

up via an adder. The resulting waveforms are presented in Figure 5.6.

The main purpose of this example is to demonstrate how the model generator constructs an

LPN when insufficient amount of data to resolve conflicts is present in the data patterns. The

clock signal, f, is selected as the input, while the output of the adder, f_sum, is selected as the

91

Figure 5.4: Flip-flop model.

92

CLK Q

D Q

f f/2

finv
Adder

fsum

Flip-flop

A

B

C

Figure 5.5: Frequency divider with adder.

0 20 40 60 80 100 120 140 160 180 200
0

1

Time(µS)

f

(a) Clock.

0 20 40 60 80 100 120 140 160 180 200
0

1

Time(µS)

f/2

(b) Clock/2.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

Time(µS)

f_
su
m

(c) Clock sum.

Figure 5.6: Frequency divider waveforms.

output. In a manner similar to the flip-flop example, the initial set of conflicts is resolved by

adding the final state of the input signal to every RP. Note that due to many RP being similar

only RP with timestamps between 0 and 50 time units are listed below:

– f _sum10
0 :

�
f 10

1

�
,

– f _sum50
0 :

�
f 50

1

�
,

– f _sum20
1 :

�
f 20

0

�
,

– f _sum40
2 :

�
f 40

0

�
.

As states for both rising and falling edges are present in all DPs of these RPs a new set of

conflicts is detected and the resolve by state set method is used to add a dependency on the

previous output state to the RPs. This method is selected over the resolve by set sequence

method due to having lower metric cost. This adjustment is necessary in this case as it helps to

minimize the resulting complexity of the model. The update RPs are:

– f _sum10
0 :

�
f _sum0

1, f 10
1

�
,

93

– f _sum50
0 :

�
f _sum50

2 , f 50
1

�
,

– f _sum20
1 :

�
f _sum10

0 , f 20
0

�
,

– f _sum40
2 :

�
f _sum20

1 , f 40
0

�
.

At this point only RPs f _sum10
0 and f _sum40

2 have conflicts as they are subsets of each others

DP 3:

– f _sum10
0 :

�
f _sum0

1, f 0
0

�
→

�
f _sum0

1, f 10
1

�
,

– f _sum40
2 :

�
f _sum20

1 , f 20
0

�
→

�
f _sum20

1 , f 30
1

�
→

�
f _sum20

1 , f 40
0

�
.

The conflict resolution attempts to resolve these conflicts by extending the set sequences, how-

ever this does not help to solve this problem as the DP f _sum10
0 is a subset of the DP f _sum40

2 .

As a final resort the resolve by rule sequence method is used to form a causal dependency

between these two rules, transforming RPs into the following list:

– f _sum10
0 :

�
f _sum0

1, f 0
0

�
→

�
f _sum0

1, f 10
1

�
,PreSet :

�
/0
�
,PostSet :

�
f _sum40

2

�
,

– f _sum50
0 :

�
f _sum50

2 , f 50
1

�
,

– f _sum20
1 :

�
f _sum10

0 , f 20
0

�
,

– f _sum40
2 :

�
f _sum20

1 , f 30
1

�
→

�
f _sum20

1 , f 40
0

�
,PreSet :

�
f _sum10

0

�
,PostSet :

�
/0
�

.

The resulting model is shown in Figure 5.7. The LPN models for the RPs f _sum50
0 and f _sum20

1

are constructed similarly to the previous examples. The RPs f _sum10
0 and f _sum40

2 are com-

posed into a single LPN, which controls the order in which these states can appear in the state

graph.

It is important to note that the obtained model does not correctly produce the behavior of

the original system. The RP f _sum10
0 is an anomaly as it appears only once at the beginning of

the simulation trace. However, the model generator does not have a mechanism to detect and

handle such anomalies and treats them as a possible data pattern. This results in this pattern

appearing in the simulation trace, presented in Figure 5.8, more than once. Although this can

be viewed as a disadvantage of the new approach this example highlights the main principle of

the model generator to create general models, which can produce new behavior.

3Conflicting parts are marked by blue and red colors.

94

Figure 5.7: Frequency divider model.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

Time(µS)

f_
su
m

Figure 5.8: Frequency divider model waveform.

95

RC1

RC2

A2D1

A2D2

C

Figure 5.9: C-element modules.

5.2 C-element example

The C-element is a digital block widely used in asynchronous circuits. The C-element

changes its value to logical zero, if both inputs are zero, and logical one, if both inputs are one.

Otherwise it retains the previous value. While there are multiple implementations and specifi-

cations of this component the one used in this example is defined by the STG in Figure 3.1c

in Chapter 3. This specification assumes that inputs do not flip randomly but hold their value

between the output changes. Furthermore, the C-element used in this example has an invert-

ing output, embedded into the specification. Although, it is possible to use a separate inverter,

provided it has a negligible delay, it would also increase the model complexity. The output of

the C-element is connected to the two RC circuits with different delay constants. Effectively,

the RC circuits, acting as an analog environment for the C-element, force the inputs to change

their value, once the capacitor is fully charged or discharged. The purpose of this example is to

demonstrate model generator’s ability to create LPN models for analog systems and show that

the new approach is capable of producing more general models that can be reused.

An important step in constructing a system model is the decomposition of the model into

individual components. While it is possible to create a model of the entire system, it might limit

the reusability of the resulting model. As such every component is modeled individually, which

allows to convert the original STG into the LPN format without any additional modifications.

To connect the converted STG with the analog modules explicit A2D components are used, as

shown in Figure 5.9. The simulation waveforms, presented in Figures 5.10 and 5.11, are used

to create models for the RC circuits and the A2D converters.

5.2.1 Analog to digital converter

An analog to digital converter takes an analog input and discretizes it to be used by a digital

component. Two A2D converter models for the inputs A and B are created separately by select-

96

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

Time(µS)

C
ap

ac
ito

r
vo

lta
ge

(V
) rc1 rc2

Figure 5.10: RC circuit waveform.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

A

(a) Input A.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

B

(b) Input B.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

C

(c) Output C.

Figure 5.11: C-element waveform.

ing the variable A or B as the output and the variable RC1 or RC2 as the input respectively. The

outputs, being ideal signals, are discretized with the unique values discretization method. The

analog inputs are not discretized initially but instead partitioned into smaller bits and discretized

during rule mining stage. As the output change is directly cause by the analog signal reaching

threshold boundaries the threshold based discretization method is not used. Instead the data

points within the time stamps of the output states are grouped together to produce a single state

with thresholds selected as the minimum and maximum values.

The resulting model for one of the A2D converters is shown in Figure 5.12. The model is

organized in a similar manner to the model of an OR element. The input variable RC1 is used

to determine the thresholds4 for assigning the output.

4Note that the values are upscaled by a factor of 10000.

97

Figure 5.12: RC1 to A A2D converter.

t

C
R
C
2

R
C
2

RP

Figure 5.13: RC circuit binning.

5.2.2 RC circuit

An RC circuit is a simple example of an analog system. In order to create an efficient and

general model of this system not only the output of the C-element is selected as input, but also

the output of the RC circuit is selected as both input and output. This allows the model generator

to use additional information of the analog signal to determine switching conditions.

The algorithm automatically determines that the C signal is best approximated as a DMV

signal as it only has 2 distinct values. On the other hand the RC signal, set as the output is

approximated via ranges of rates. For that the first derivative is calculated and clustering is

used to group derivative values. For example, using the provided coefficient of variation the

RC2 is approximated via two states with ranges [11, 15] and [6, 11], as shown in Figure 5.13.

Note, that the RC2 signal set as input is discretized later on as the analog data is partitioned into

smaller pieces.

98

Figure 5.14: Improved RC2 model.

Once the data is discretized it is possible to form the rule patterns, which describe relations

between input states and an output state. In this case the patterns for both output states RC2rate
1

and RC2rate
2 are identical and consist of the same state C1. As a result it is not possible to

distinguish them and assign the output state properly, based only on observation of the signal

C. To cope with that the analog signal RC2 is discretized using a set of thresholds to produce

additional pattern states RC21 and RC22. This expands the existing patterns and allows to

distinguish the output states. In a similar manner, RPs for the decreasing part of the waveform

are created.

The obtained rule patterns are transformed into an LPN, shown in Figure 5.14, and resemble

a state machine, which continuously checks input signals to determine, when to change the

output state. For example, transitions T_rc2_4 and T_rc2_6 check that the signal C is high

and RC2 is within its respective thresholds to assign the RC2 rate accordingly. In contrast

the original model, demonstrated in Figure 5.16, is composed of several transitions in a closed

99

Figure 5.15: Pseudo transitions.

loop form, which iteratively check input conditions and assign the output rate accordingly to

approximate the original waveform in a piece-wise linear manner.

Due to the rate variance it is possible for the output voltage to reach values not originally

observed in the simulation trace. For example, for the provided input voltage the capacitor

voltage level is valid in the range between 0 and 5V. To prevent the model from experiencing the

undesired behavior a number of pseudo transitions, as described in [43], were added manually

to the model. These transitions, shown in Figure 5.15, set the rate to 0, if the voltage rises too

high or drops too low. More information about pseudo transitions and how the process of their

generation can be automated is available in the next chapter.

Both models were compared against each other and the results of the simulation for the C-

element example are presented in Figure 5.17. The models produce similar waveforms for the

data set, that was used to generate them. While the original model yields adequate results on

the provided data set, it is not general enough and has limited potential for reusability.

If the control module is switched to an OR element, presented earlier, the original model

starts to produce inadequate results. As demonstrated in Figure 5.18, the original model fails

to change the rate of an RC circuit appropriately when the signal C switches, which effectively

means that the model continues to charge or discharge the capacitor when it should be discharg-

100

Figure 5.16: Original RC2 model.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

Time(µS)

C
ap

ac
ito

r
V

ol
ta

ge
(V

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

C

rc1 rc2

(a) Original model.

rc1 rc2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

Time(µS)

C
ap

ac
ito

r
V

ol
ta

ge
(V

)

(b) Improved model.

Figure 5.17: C-element simulation results.

101

rc1 rc2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

Time(µS)

C
ap

ac
ito

r
V

ol
ta

ge
(V

)

(a) Original model.

rc1 rc2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

Time(µS)

C
ap

ac
ito

r
V

ol
ta

ge
(V

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

Time(µS)

C

(b) Improved model.

Figure 5.18: Or-element simulation results.

ing or charging instead. The improved model does not show this issue and produces a more

realistic waveform.

5.2.3 C-element

While it is possible to convert the STG specification directly to the LPN format to use for

whole system simulation or verification the new model generator is also capable of synthesizing

control model from a simulation trace. The original data set was used to form a model of the

C-element, as illustrated in Figure 5.19.

5.3 Memristor

The memristor is a two-terminal passive element, that combines the behavior of a mem-

ory and a resistor [51]. The resistance of the device depends on the magnitude, direction and

duration of the voltage applied across its terminals. If the voltage is turned off the memris-

102

Figure 5.19: C-element LPN model.

Rm Rc

Vin Vout

Figure 5.20: Memristor circuit.

tor preserves the resistance value, which allows it to operate as a data storage. Furthermore,

not only a memristor has a high endurance of 1012 cycles [14], but also multi-value data can be

stored in a single device, leading to power and area improvements over the CMOS memory [15].

An equivalent memristor tuning circuit [15] consists of an input voltage source, a memristor

and a resistor, connected in series, as shown in Figure 5.20. The memristor Rm and the resistor

Rc form a voltage divider, which allows to measure the resistance of the memristor as a voltage

drop over its terminals. The value of the voltage drop Vd = Vout −Vin is used by the control

circuit, which alternates the input voltage between positive and negative value to adjust the

resistance of the memristor.

The simulation waveforms, presented in Figure 5.21, are used to create the model of a

memristor. In a manner, similar to the previous example, the model is partitioned between the

three modules:

• Control module, which samples the voltage drop and assigns the input voltage accord-

ingly.

103

0 5 10 15 20 25 30 35 40
-10

0

10

Time(nS)

In
pu

t v
ol

ta
ge

(V
)

(a) Input voltage.

0 5 10 15 20 25 30 35 40
-10

-5

0

5

10

Time(nS)

V
ol

ta
ge

 d
ro

p(
V

)

(b) Voltage drop.

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

Time(nS)

R
es
is
ta
nc
e(
Ω
)

(c) Memristor resistance.

Figure 5.21: Memristor waveforms.

• Memristor’s resistance, which generates the resistance curve based on the input voltage

and resistance.

• Voltage drop, which produces the voltage drop based on the resistance of the memristor.

5.3.1 Control

As the main focus of this example is directed towards the memristor model the control

LPN was generated from the simulation trace and does not represent the actual control circuit,

created by Bunnam et al. The control model, as shown in Figure 5.22, consists of two separate

LPNs. Effectively, these LPNs resemble an A2D converter model as they wait for the voltage

drop to reach threshold values of 6000 and -1800 mV to assign the input voltage -10 or 10 V

respectively.

104

Figure 5.22: Memristor control model.

5.3.2 Resistance

The resistance model is constructed similarly to the RC model. The input voltage is selected

as the input while the resistance is selected as both the input and the output. To reduce the

model size the coefficient of variation in derivative clusterization method is set to 100%, which

results in 3 unique states being created per increasing and decreasing areas of the waveform.

Additionally, the upper threshold bound in transitions T_Resistance10 and T_Resistance4 and

the lower threshold bound in transitions T_Resistance6 and T_Resistance2 were removed to

ensure the correct model behavior. Due to the rate variation it is possible for the model to

reach values not originally present in the waveform, which may lead to a deadlock. While it

is possible to circumvent this problem by adding the pseudo transitions the main intention of

this example is to shown how a potentially unbounded model can be controlled via an analog

feedback loop. The resulting model is presented in Figure 5.23.

5.3.3 Voltage drop

The voltage drop signal is an unusual signal as it behaves as both an analog and a digital

signal. While the input voltage is constant the signal is steadily increasing as a reaction to

the memristor’s resistance change. However, as the input voltage changes from one value into

another the signal also experiences a rapid shift in its value. As a result the derivative based

discretization method produces a short duration state with near infinite rate. Normally this state

would be filtered out but in this case this state contains an important information about the signal

behavior. Consequently, directly applying the model generator is not feasible. Nevertheless two

possible solutions to this problem are provided below.

Sample model

The direct method of creating an LPN model for an analog device is by explicitly specifying

105

Figure 5.23: Memristor resistance model.

106

Figure 5.24: Memristor voltage drop sample model.

the transfer function of the component, as shown in Figure 5.24. The assignment condition of an

LPN allows to assign a value to a variable as a function of input variables and constants. Every

time unit the transition t1 calculates the voltage drop according to the formula Vd = Vin∗Rm
Rm+Rc

.

The value is also multiplied by a thousand for compatibility with the other models. While this

model can produce accurate results it is best used only in simulation as it can lead to a state

space explosion.

Hybrid FSM model

To alleviate the problem with state explosion a hybrid approach is used. The main idea of

this approach is to use the model generator to generate separate models for continuous parts of

the waveform and then bridge them together via an LPN that mimics the discrete behavior of

the signal. To create a model of the voltage drop signal the original waveform is partitioned into

two pieces: one, when input voltage is high and one, when it is low. In a general case two LPN

models will have to be created for these parts, however it is possible to exploit the symmetry of

the waveform and create an LPN model only for one part.

The resulting model is shown in Figure 5.25. Transitions T_VoltageDrop0, T_VoltageDrop2

and T_VoltageDrop4 assign the rate of the signal according to the input resistance. The discrete

behavior of the system is produced by the transitions t_shift_pos and t_shift_neg, which assign

the voltage drop to the negative of itself only when a change in the input voltage occurs. Addi-

tionally, after the voltage shift occurs the rate of the voltage drop signal is set to 0. This is an

important operation as it it ensures that the model operates within the threshold boundaries set

for the resistance.

Due to the resistance rate variance it is possible for the resistance to be either above (7920)

or below (1280) the observed threshold. Effectively, this means that the operation of the model

is undefined in these areas. The simulation trace for the generated model is given in Figure 5.26.

107

Figure 5.25: Memristor voltage drop state model.

108

0 10 20 30 40 50 60
-20

-10

0

10

20

Time(nS)

In
pu

t v
ol

ta
ge

(V
)

(a) Input voltage.

0 10 20 30 40 50 60
-10

-5

0

5

10

Time(nS)

V
ol

ta
ge

 d
ro

p(
V

)

(b) Voltage drop.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

Time(nS)

R
es
is
ta
nc
e(
Ω
)

(c) Memristor resistance.

Figure 5.26: Memristor simulation results.

109

110

Chapter 6. Conclusions

While neither asynchronous circuits nor formal verification of mixed-signal systems are

brand new, the intertwining of these research areas opens new opportunities for AMS design-

ers. The reliance on well-established and developed tools is appealing for the adoption of the

described flow by industrial companies. Furthermore, automated model generation is a rela-

tively new research field [33] and has multiple areas of application. The novel concepts and

ideas introduced in the model generation framework can be used not only in electrical engineer-

ing, but also in cyber-physical systems, biochemical processes, and manufacturing.

6.1 Summary

This dissertation describes a new AMS design flow combining asynchronous circuit design

methods, supported by the tool WORKCRAFT, and AMS formal verification, supported by the

tool LEMA. As demonstrated in Chapter 2, asynchronous circuits have a clear advantages over

the traditional synchronous ones. The automated and formal design approach makes the appli-

cation of this methodology feasible in an industrial environment. The AMS formal verification,

described in Chapter 3, serves as an extension to the existing simulation based verification

methods via the means of model generation. The proposed design flow not only combines the

existing tools, enhancing the design process of AMS systems, but also extends it by providing

possibilities to automatically identify optimization opportunities for the digital control circuit.

Additionally, the model generation, based on the LPN formalism, can help in speeding up the

design process by reusing models, obtained from the previous system, as well as establish a

common design specification framework, suitable for analog and digital engineers. The new

model generation approach, explained in Chapter 4, improves the existing method by utilizing

data clusterization and process mining techniques. The models, produced by the new model

generator, are capable of producing correct behavior, when used with a different control mod-

ule, as shown in Chapter 5 with the C-element example.

111

6.2 Future work

A number of additional improvements to the developed model generation framework are

considered. The following sections detail usage of additional clustering methods, evaluation of

a model fitness, and enhancements to the rule mining algorithm.

6.2.1 Additional clusterization methods

The new model generation framework relies heavily on clusterization for discretization and

filtering of data. While the currently employed agglomerative clustering method is effective,

the cubic time complexity of the algorithm makes it slow and inefficient for even medium data

sets. A number of additional clustering methods can be used to alleviate this problem.

6.2.1.1 K-Means clustering

K-means clustering [48] is a well known data clustering algorithm. The algorithm requires

the user to explicitly specify the number of clusters to use and initializes these clusters with

randomly chosen center points from the data set. After that all the data points are distributed

between the closest clusters, according to a metric function, and the clusters centers are recal-

culated. The algorithm proceeds to iterate between distributing the data points and adjusting

clusters’ centers until their values reach a steady value.

This clustering method features linear time complexity when using Lloyd’s algorithm [47].

While in general case predicting the number of clusters requires good understanding of the

data set, detecting the number of clusters for certain signals, such as DMV signals, is rather

straightforward. Furthermore, this method can useful to limit the number of unique output

states produces and thus provide explicit means of control over model complexity.

6.2.1.2 DBScan

A good alternative to the K-means clustering algorithm is DBScan [26]. DBScan begins

with an arbitrary starting data point that has not been visited. If there is a sufficient number

of data points, specified by the minPts parameter, within the ε neighborhood of this point, the

current data point becomes the first point in the new cluster. Otherwise, the point is labeled as

noise, but can still become the part of the cluster. In both cases the point is marked as visited.

The first point in the cluster is used to add additional data points, residing within ε distance.

This process is repeated for all newly added data points to the cluster group. If no more points

112

model
generation

fitness complexity

generalization precision

Figure 6.1: Quality dimensions for model generation.

can be added the algorithm selects a new unvisited data point and repeats the process of creating

a cluster group.

While this method does not require the designer to explicitly specify the number of cluster

groups, the algorithm requires to define parameters of cluster such as the minimum number of

points and distance between the data points. As a result this algorithm cannot be used on a broad

set of examples using the same parameters and therefore is less flexible than agglomerative

clustering.

6.2.1.3 Sliding window and bottom-up

The sliding window and bottom-up (SWAB) [34] algorithm algorithm keeps a small buffer,

sufficient to create 5-6 data segments, and applies the Bottom-Up algorithm to group the data.

The data, corresponding to the leftmost segment, is removed from the buffer and more data

points are read in. The number of the data points read in depends on the structure of the data

and is determined by a sliding window function. This process repeats until no data is available.

Effectively, the SWAB algorithm creates a semi-global view of the data using a sliding

window technique and refines the segmented data via the Bottom-Up algorithm. The algorithm

can be seen as operating on a continuum between the two extremes of Sliding Windows and

Bottom-Up. Although the algorithm does not help to minimize the computational complexity it

requires only a small constant amount of memory.

6.2.2 Evaluating generated models

The goal of process mining and, consequently, model generation is producing process mod-

els by considering only operational records [13]. While the traditional process mining deals

with discrete event logs, discretization of analog data adds another degree of complexity and

variation to the model generation process. In return this affects the measurements for evaluating

the obtained models.

113

As shown in Figure 6.1 there are four quality dimensions used to describe the results of

discovery techniques:

• Fitness. Replay fitness characterizes the ability of the model to reproduce the behavior of

the original simulation trace. There are two possible methods to measure the fitness of the

obtained model. The first method relies on calculating the cross-correlation between the

original output signal and the output signal produced by the model given the same input

stimulus. However, when generating the output signal extra care for selecting rates and

delays on transitions is needed as those can effect the resulting waveform. The second

method operates on untimed sequences of states. As the original waveform is discretized

it is transformed into a sequence of states, or, essentially, an event log, which is used

to create a model. As a result it is possible to analyze the state graph, produced by the

model, and extract the sequence of the output states to compare it against the original

sequence.

• Complexity. The complexity dimension effectively describes the model’s structure and

size and is directly related to how good a model can be perceived by a human. While

there is no uniform metric for estimating a complexity of a model, it can be calculated as

the total number of nodes, such as places and transitions, and interconnections between

them.

• Precision. Precision quantifies the fraction of the behavior of the model not seen in the

original waveform. For example, a simple model, as shown in Figure 6.2, can produce the

original waveform for the variable V. However, this model can also produce any arbitrary

waveform without any restrictions, which makes this model not very useful. Existing

methodologies for estimating a model precision, described in [13, 6], are best suited for

models with a lot of concurrency. Models, produced by the new model generator, gener-

ally have only one transition enabled at a time due to guard conditions, hence application

of these methodologies is not optimal. One possible solution, at least for analog signals,

is to measure precision as the relation between the original signal and the generated signal

ranges. Furthermore, since precision metric is essentially an indication of how much a

model can deviate from an acceptable behavior it is possible to impose a hard limit on

this deviation via model properties.

• Generalization. Finally, the generalization metric assesses the extent to which a model

can reproduce future behavior of a system. In the case of AMS systems this means that

114

Figure 6.2: Imprecise model.

models of an analog environment can be reused with a different control module as was

demonstrated in the C-element example. There is no reliable universal method for mea-

suring this metric. However, a similar approach, employed in machine-learning, can be

used. A large enough set of simulation traces can be split in two parts: one, that is used

to generate the model, and another, used to test the model.

Estimating a model fitness is a difficult, yet crucial problem. Not only it is necessary to have

a method of comparing models, produced by the new model generator, against the models

of the existing one, but is also important to evaluate the resulting models to guide the model

generation process. While there are multiple dimensions to the model optimization, the most

critical components of a metric function are:

• Fitness. The model must produce the behavior of the original system.

• Precision. The model must stay within specified bounds.

• Complexity. The model must be compact and human readable.

6.2.3 Improving rule mining

The new model generator features a number of complex methods containing dozens of in-

ternal parameters. These parameters affect not only the operation of any particular algorithm

but also determine the order and applicability of algorithms. For example, the order in which

conflict resolution methods are used in the rule mining stage is determined by a metric function

of each method. Currently the metric cost is defined explicitly by a designer, which requires

some intuition and understanding of how LPN models are synthesized. However, the ultimate

goal of this work is to provide automated means for model generation, which means that the

new framework has to determine “knobs” for optimal operation by itself.

Evaluation of a model fitness, discussed in the previous section, can provide the necessary

feedback and help in improving the rule mining process. Specifically, the improved rule mining

algorithm can construct a number of models by applying conflict resolution methods in different

115

Figure 6.3: Branch and bound tree graph.

order and then chose the model with the best fitness score. Effectively, this means that the

rule mining module has to perform state space search to determine the ideal combination of

parameters values. A couple of methods for efficient state space search are provided below. It

is important to note that model score depends only on the model complexity as both fitness and

precision metrics can be approximated as binary values, indicating that the resulting model is

operational.

6.2.3.1 Branch and bound

Branch and bound [40] is an algorithm design paradigm for optimization problems. The

goal of the algorithm is to find a candidate solution that minimizes or maximizes the value of

a real-valued function by means of state space search. The state space is organized as a rooted

tree. A branch and bound algorithm explores branches of this tree, which represent a subset of

the complete solution, and discards those that exceed estimated bounds on the optimal solution.

For resolving pattern conflicts the rule mining stage employs greedy algorithm, which picks

the resolution method with the lowest metric cost. This can result in a suboptimal model being

generated. Figure 6.3 illustrates how branch and bound algorithm can be used to address this

problem. The tree graph for the rule pattern I1 of the inductor current model, discussed in

Chapter 4, represents transformations of the rule pattern after application of different conflict

resolution methods:

• Resolve by state set (CRsset) has a cost of 5 for adding an input state and cost 10 for

adding an output state to the patter,

• Resolve by set sequence (CRsseq) has a cost of 7 per sequence added,

• Resolve by analog data (CRadata) has a cost of 4 for adding new states to the data pattern,

116

• Resolve by rule sequence (CRrseq) has a cost of 20.

Initially, an upper bound on the potential solution is found. This is achieved by applying the

CRsset twice, which results in the rule pattern I1 :
�

Po f f , I0

�
1, marked by an orange line, with

a score of 15. This value is used to make branching decisions and prevent the rule mining

algorithm from exploring solutions with worse score. As a result application of the CRrseq

method to the RP I1 :
�

Po f f

�
, marked by a red line, does not take place as the obtained RP

has higher score than the established limit. However, it is possible to use methods CRsseq and

CRadata as neither exceeds the upper bound. Exploring the branch for the RP I1 :
�

Pon → Po f f

�

reports no improvements over the solution found so far. The branch for the RP I1 :
�

Po f f

�

after application of the method CRadata
2 contains an optimal solution I1 :

�
Po f f ,V1

�
,marked

by green line.

6.2.3.2 Genetic algorithm

A genetic algorithm [50] is a heuristic search algorithm inspired by the evolutionary pro-

cesses found in nature. The main idea of a genetic algorithm is to select the fittest individuals

from a population and produce offspring, which inherit characteristics of their parents and are

used in the next generation. There are five main phases of a genetic algorithm:

• Initial population. The first phase is the creation of a set of individual solutions to

the problem, called population. An individual is characterized by a set of parameters,

called genes. Effectively, various parameters of the rule mining algorithm, such as the

metric cost of conflict resolution methods, can be formulated as a genetic code of a single

individual.

• Fitness function. The fitness function evaluates each individual in a population and as-

signs a fitness score it. The probability that an individual will be selected for reproduction

depends on this metric. Calculating a fitness score for a set of rule patterns can be done

by combining the costs of all used conflict resolution algorithms, used to create these rule

patterns. Alternatively, it is possible to use a more sophisticated scoring approach based

on calculation of the fitness of the resulting model.

• Selection. After the evaluation of individuals it is necessary to select the fittest individuals

and let them pass their genes to the next generation.

1This RP has no conflicts with other RPs or DPs and can be used for model generation.
2This method does not change the RP as it only adds new states to its DP.

117

(a) Initial population. (b) Crossover.

(c) Mutation.

Figure 6.4: Genetic algorithm for rule mining.

• Crossover. Every pair of the fittest individuals exchanges genes to create offspring. The

crossover point determines the number of genes that can be exchanged.

• Mutation. Finally, the genes of certain new offspring can be subject to a mutation with a

low random probability. This effectively means that parameters, representing the mutated

genes, are assigned a new random value.

The described algorithm can be used to improve the rule mining stage and automatically find

the optimal parameter values, as described in Figure 6.4. The initial population is formed by

creating a set of individual solutions. Every individual is represented by its genetic code, com-

prising of a vector of metric costs of conflict resolution methods. These metric costs are selected

arbitrarily or using a heuristic. After that every individual is used to generate an LPN model,

which is evaluated via a fitness function, and several individuals with highest fitness score a se-

lected to produce offspring. This is a two step process. Every pair of “parents” exchange genes

until a selected crossover point, as illustrated in Figure 6.4b. For example, in this case the most

fit individuals A1 and A2 are produce children A5 and A6 by swapping parameters for methods

CRsset and CRsseq. Afterwards, a random mutation happens in children, as shown in Figure 6.4c,

which causes parameters CRsseq and CRadata to be assigned new random values. Finally, the off-

spring are added to the population to be used for model generation. This process repeats until

the population has converged, which means that offspring do not produce significantly different

results from their previous generation.

118

6.2.4 Pseudo-transitions

Due to the piece-wise linear approximation it is possible for the analog signals, produced by

an LPN model, to reach values not present in the original simulation trace. In certain cases this

can be an undesired behavior as it can violate physical principles of the system. For example,

the voltage on a capacitor in the C-element example cannot exceed the supply voltage. This

effectively means that this analog signal is only allowed to operate within specific boundaries.

To cope with this problem a similar approach to pseudo-regions [43] can be used.

At the first step the operational boundaries of an analog signal have to be found. This can

be achieved by calculating minimum and maximum values, located in a simulation waveform.

After that a new variable, PSEUDO_STATE, is added to the generated LPN model. This variable

represents in which region the analog is located and takes the following values:

• 0 means that the signal is in between specified low and upper boundaries,

• 1 means that the signal is below than the low boundary,

• 2 means that the signal is higher than the upper boundary.

This variable is added as an additional check to a guard condition of all transitions in the model

with the exception of reset transitions. For the transitions that lead to the assignment of positive

rates this variable is checked against the value of 2, while for negative rates this variable is

checked against the value of 1. Additionally, three LPNs are added to the model that set this

variable to the appropriate value and also set the rate of the signal to 0, if it exceeds one of the

boundaries. This effectively means that if the signal reaches upper boundary its rate is set to 0

and only transitions that can set rate to a negative value can be enabled. The illustration of this

approach is given in Figure 5.14 in Chapter 5

6.2.5 Annotating STG with timing information

The final improvement to the described methodology is the annotation of an STG specifica-

tion with the timing information. The goal of the AMS design flow, presented in Chapter 3, is

to test the control module, formulated as an STG, under an analog environment. Although, an

STG can be automatically converted into an LPN to be used for formal verification, the resulting

model is missing critical delay information that can affect the operation of the control module.

This information can be extracted from a circuit implementation and used to infuse the LPN

model with additional delays on transitions.

119

120

Bibliography

[1] Modeling coilcraft rf inductors. http://www.ing.unp.edu.ar/electronica/

asignaturas/ee016/anexo/l-coilcraft-pspice.pdf.

[2] ATACS – Automated Timed Asynchronous Circuit Synthesis. http://www.async.ece.

utah.edu/ATACS/.

[3] LEMA homepage. http://www.async.ece.utah.edu/LEMA/.

[4] PETRIFY homepage. http://www.cs.upc.edu/~jordicf/petrify/.

[5] WORKCRAFT homepage. http://workcraft.org/.

[6] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen, and

Wil M. P. van der Aalst. Alignment based precision checking. In Marcello La Rosa and

Pnina Soffer, editors, Business Process Management Workshops, pages 137–149, Berlin,

Heidelberg, 2013. Springer Berlin Heidelberg.

[7] M. Althoff, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li, and L. Pileggi. Formal verification

of phase-locked loops using reachability analysis and continuization. Commun. ACM,

56(10):97–104, 2013.

[8] J. Audi. Navigating the path to a successful ic switching regulator design. Tutorial at Int.

Solid-State Circuits Conference (ISSCC).

[9] D. Baba. Benefits of a multiphase buck converter. Analog Applications Jorunal, High

Performance Analog Products, Texas Instruments, pages 1–8, 2012.

[10] S. Batchu. Automatic extraction of behavioral models from simulations of analog/mixed-

signal (AMS) circuits. Master’s thesis, University of Utah, 2010.

[11] J. Beaumont, A. Mokhov, D. Sokolov, and A. Yakovlev. High-level asynchronous concepts

at the interface between analog and digital worlds. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 37(1):61–74, Jan 2018.

121

[12] W. Belluomini, C. J. Myers, and H. P. Hofstee. Verification of delayed-reset domino

circuits using ATACS. In Advanced Research in Asynchronous Circuits and Sys-

tems (ASYNC), pages 3–12, 1999.

[13] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. On the

role of fitness, precision, generalization and simplicity in process discovery. In Robert

Meersman, Hervé Panetto, Tharam Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xiaofang

Zhou, Siani Pearson, Alois Ferscha, Sonia Bergamaschi, and Isabel F. Cruz, editors, On

the Move to Meaningful Internet Systems: OTM 2012, pages 305–322, Berlin, Heidelberg,

2012. Springer Berlin Heidelberg.

[14] T. Bunnam, A. Soltan, D. Sokolov, and A. Yakovlev. Pulse controlled memristor-based

delay element. In 2017 27th International Symposium on Power and Timing Modeling,

Optimization and Simulation (PATMOS), pages 1–8, Sept 2017.

[15] T. Bunnam, A. Soltan, D. Sokolov, and A. Yakovlev. An excitation time model for general-

purpose memristance tuning circuit. In 2018 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 1–5, May 2018.

[16] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifications. PhD

thesis, Massachusetts Institute of Technology, 1987.

[17] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a

tool for manipulating concurrent specifications and synthesis of asynchronous controllers.

IEICE Transactions on information and Systems, 80(3):315–325, 1997.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavango, and A. Yakovlev. Logic synthe-

sis of asynchronous controllers and interfaces. Springer-Verlag Berlin Heidelberg, 2002.

[19] A. d. Gennaro, P. Stankaitis, and A. Mokhov. A heuristic algorithm for deriving compact

models of processor instruction sets. In 2015 15th International Conference on Applica-

tion of Concurrency to System Design, pages 100–109, June 2015.

[20] René David and Hassane Alla. Timed Hybrid Petri Nets, chapter 6, pages 231–294.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[21] W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and L. C. Paulson. Formal verification

of analog designs using MetiTarski. In Proc. Formal Methods in Computer-Aided Design,

pages 93–100, 2009.

122

[22] V. Dubikhin, C. Myers, D. Sokolov, I. Syranidis, and A. Yakovlev. Advances in formal

methods for the design of analog/mixed-signal systems. In Proc. Design Automation Con-

ference (DAC), 2017.

[23] V. Dubikhin, D. Sokolov, C. J. Myers, A. Mokhov, and A. Yakovlev. Model discovery

for analog/mixed-signal circuits. In FAC 2017; Frontiers in Analog CAD, pages 1–6, July

2017.

[24] V. Dubikhin, D. Sokolov, A. Yakovlev, and C. J. Myers. Design of mixed-signal systems

with asynchronous control. IEEE Design & Test, 33(5):44–55, 2016.

[25] D. A. Edwards and W. B. Toms. Design, automation and test for asynchronous circuits

and systems. Technical report, Information Society Technologies, 2004.

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algo-

rithm for discovering clusters a density-based algorithm for discovering clusters in large

spatial databases with noise. In Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996.

[27] A. Fisher. Efficient, sound formal verification for analog/mixed-signal circuits. PhD thesis,

University of Utah, 2015.

[28] A. N. Fisher, S. Batchu, K. Jones, D. Kulkarni, S. Little, D. Walter, and C. J. Myers.

LEMA: A tool for the formal verification of digitally-intensive analog/mixed-signal cir-

cuits. In Proc. International Midwest Symposium on Circuits and Systems (MWSCAS),

pages 1017–1020, 2014.

[29] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying analog oscillator circuits using

forward/backward abstraction refinement. In Proc. Design, Automation & Test in Eu-

rope (DATE), pages 257–262, 2006.

[30] G. Frehse, C. Le Guernic, A. Donze, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-

rard, T. Dang, and O. Maler. SPACEEX: Scalable verification of hybrid systems. In

G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification, volume 6806 of

LNCS, pages 379–395. Springer, 2011.

[31] D. Grabowski, C. Grimm, and E. Barke. Semi-symbolic modeling and simulation of

circuits and systems. In Proc. International Symposium on Circuits and Systems (ISCAS),

pages 983–986, 2006.

123

[32] M. R. Greenstreet and S. Yang. Verifying start-up conditions for a ring oscillator. In Proc.

ACM Great Lakes Symposium on VLSI (GLSVLSI), pages 201–206, 2008.

[33] Y Huang, A Verbraeck, and M Seck. Graph transformation based simulation model gen-

eration. Journal of Simulation, 10(4):283–309, 2016.

[34] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for segmenting time

series. In Proceedings 2001 IEEE International Conference on Data Mining, pages 289–

296, Nov 2001.

[35] V. Khomenko. A usable reachability analyser. Technical report, Newcastle University,

2009.

[36] D. J. Kinniment. Synchronization and arbitration in digital systems. Wiley, 2008.

[37] S. Kowalewski, M. Garavello, H. GuÃ c�guen, G. Herberich, R. Langerak, B. Piccoli,

J. W. Polderman, and C. Weise. Hybrid automata, chapter 3, pages 57–86. Cambridge

University Press, 2009.

[38] D. Kulkarni. Improved model generation and property specification for analog/mixed-

signal circuits. Master’s thesis, University of Utah, 2013.

[39] Dhanashree Kulkarni, Satish Batchu, and Chris Myers. Improved model generation of ams

circuits for formal verification. In 2011 Virtual Worldwide Forum for PhD Researchers in

Electronic Design Automation, 2011.

[40] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Oper. Res.,

14(4):699–719, August 1966.

[41] C. Le Guernic and A. Girard. Reachability analysis of hybrid systems using support func-

tions. In A. Bouajjani and O. Maler, editors, Computer Aided Verification, volume 5643

of LNCS, pages 540–554. Springer, 2009.

[42] B. C. Lim, J. E. Jang, J. Mao, J. Kim, and M. Horowitz. Digital analog design: Enabling

mixed-signal system validation. IEEE Design & Test, 32(1):44–52, 2015.

[43] S. Little. Efficient modeling and verification of analog/mixed-signal circuits using labeled

hybrid petri nets. PhD thesis, University of Utah, 2008.

124

[44] S. Little, D. Walter, C. J. Myers, R. Thacker, S. Batchu, and T. Yoneda. Verification

of analog/mixed-signal circuits using labeled hybrid Petri nets. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 30(4):617–630, 2011.

[45] Scott Little, David Walter, Kevin Jones, Chris Myers, and Alper Sen. Analog/mixed-signal

circuit verification using models generated from simulation traces. International Journal

of Foundations of Computer Science, 21(02):191–210, 2010.

[46] D. Lloyd and R. Illman. Scan insertion and atpg for c-gate based asynchronous designs.

Synopsys User Group (SNUG), 2014.

[47] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,

28(2):129–137, March 1982.

[48] J. MacQueen. Some methods for classification and analysis of multivariate observations.

In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-

ity, Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of California

Press.

[49] I. B. Makhlouf and S. Kowalewski. Networked cooperative platoon of vehicles for testing

methods and verification tools. In G. Frehse and M. Althoff, editors, Proc. Int. Workshop

on Applied veRification for Continuous and Hybrid Systems (ARCH), volume 34 of EPiC

Ser. in Comp., pages 37–42, 2015.

[50] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,

USA, 1998.

[51] S. P. Mohanty. Memristor: From basics to deployment. IEEE Potentials, 32(3):34–39,

May 2013.

[52] A. Mokhov, V. Khomenko, D. Sokolov, and A. Yakovlev. Opportunistic merge element. In

2015 21st IEEE International Symposium on Asynchronous Circuits and Systems, pages

116–123, May 2015.

[53] R. Narayanan, B. Akbarpour, M. Zaki, S. Tahar, and L. Paulso. Formal verification of

analog circuits in the presence of noise and process variation. In Proc. Design, Automation

& Test in Europe (DATE), pages 1309–1312, 2010.

125

[54] L. V. Nguyen and T. T. Johnson. Benchmark: DC-to-DC switched-mode power converters

(buck converters, boost converters, and buck-boost converters). In G. Frehse and M. Al-

thoff, editors, Proc. International Workshop on Applied veRification for Continuous and

Hybrid Systems (ARCH), volume 34 of EPiC Series in Computing, pages 19–24, 2015.

[55] S. M. Nowick and M. Singh. Asynchronous design - part 2: Systems and methodologies.

IEEE Design Test, 32(3):19–28, June 2015.

[56] D. Perry and H. Foster. Applied formal verification: For digital circuit design. Electronic

Engineering. McGraw-Hill, 2005.

[57] Ed Petrus. Trends in analog/mixed-signal design tools. http://www.isqed.org/

English/Archives/2013/keynotes/Ed_Petrus_Trends_In_Analog_Mixed_

Signal_Design_Tools_ISQED2013.pdf, 2013.

[58] I. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov, and A. Yakovlev. Automated verification of

asynchronous circuits using circuit petri nets. In 2008 14th IEEE International Symposium

on Asynchronous Circuits and Systems, pages 161–170, April 2008.

[59] Abraham Pressman. Switching Power Supply Design. McGraw-Hill, Inc., New York, NY,

USA, 2 edition, 1998.

[60] C. Radojicic and C. Grimm. Formal verification of mixed-signal designs using extended

affine arithmetic. In Proc. PhD Research in Microelectronics and Electronics (PRIME),

2016.

[61] Lior Rokach and Oded Maimon. Clustering Methods, pages 321–352. Springer US,

Boston, MA, 2005.

[62] D. Sokolov, A. de Gennaro, and A. Mokhov. Reconfigurable asynchronous pipelines:

From formal models to silicon. In 2018 Design, Automation Test in Europe Conference

Exhibition (DATE), pages 1562–1567, March 2018.

[63] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev. Benefits

of asynchronous control for analog electronics: multiphase buck case study. In Proc.

Design, Automation & Test in Europe (DATE), 2017.

[64] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd. Design and veri-

fication of speed-independent multiphase buck controller. In Proc. IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC), pages 29–36, 2015.

126

[65] D. Sokolov, A. Mokhov, A. Yakovlev, and D. Lloyd. Towards asynchronous power man-

agement. In Proc. IEEE Faible Tension Faible Consommation(FTFC), 2014.

[66] Danil Sokolov, Victor Khomenko, and Andrey Mokhov. Workcraft : Ten years later. 2016.

[67] J. Sparso and S. Furber. Principles of Asynchronous Circuit Design. Springer Us, 2013.

[68] S. Steinhorst and L. Hedrich. Improving verification coverage of analog circuit blocks by

state space-guided transient simulation. In Proc. International Symposium on Circuits and

Systems (ISCAS), pages 645–648, 2010.

[69] M. Tadeusiewicz and S. Halgas. A method for finding multiple DC operating points of

short channel CMOS circuits. Circuits, Systems, and Signal Processing, 32(5):2457–2468,

2013.

[70] S. K. Tiwary, A. Gupta, J. R. Phillips, C. Pinello, and R. Zlatanovici. First steps towards

SAT-based formal analog verification. In Proc. International Conference on Computer-

Aided Design (ICCAD), pages 1–8, 2009.

[71] T. Towers. Practical design problems in transistor DC/DC converters and DC/AC inverters.

Proc. IEE, 1959.

[72] Stephen H. Unger. Asynchronous Sequential Switching Circuit. Krieger Publishing Co.,

Inc., Melbourne, FL, USA, 1983.

[73] D. Walter, S. Little, C. J. Myers, N. Seegmiller, and T. Yoneda. Verification of

analog/mixed-signal circuits using symbolic methods. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(12):2223–2235, 2008.

[74] C. Yan and M. R. Greenstreet. Circuit level verification of a high-speed toggle. In Proc.

Formal Methods in Computer Aided Design (FMCAD), pages 199–206, 2007.

[75] C. Yan and M. R. Greenstreet. Formal verification of an arbiter circuit. In Proc. IEEE

International Symposium on Asynchronous Circuits and Systems (ASYNC), pages 165–

175, 2010.

[76] M. H. Zaki, I. M Mitchell, and M. R. Greenstreet. DC operating point analysis – a formal

approach. In Proc. Frontiers in Analog CAD (FAC), 2009.

[77] M. H. Zaki, S. Tahar, and G. Bois. Formal verification of analog and mixed signal designs:

A survey. Microelectron. J., 39(12):1395–1404, 2008.

127

[78] M. Zwolinski and D. A. Crutchley. Using evolutionary and hybrid algorithms for DC

operating point analysis of nonlinear circuits. In Proc. of Congress on Evolutionary Com-

putation (CEC), pages 753–758, 2002.

128

