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Is it right, that regardless of the existence of the

already elaborated algebra of logic, the specific al-

gebra of switching networks should be considered as

a utopia?

Paul Ehrenfest, 1910

Abstract

A switch, mechanical or electrical, is a fundamental building element of digital systems. The theory of

switching networks, or simply circuits, dates back to Shannon’s thesis (1937), where he employed Boolean

algebra for reasoning about the functionality of switching networks, and graph theory for describing and

manipulating their structure. Following this classic approach, one can deduce functionality from a given

structure via analysis, and create a structure implementing a specified functionality via synthesis. The use of

two mathematical languages leads to a ‘language barrier’ – whenever a circuit description is changed in one

language, it is necessary to translate the change into the other one to keep both descriptions synchronised. For

example, having amended a circuit structure one cannot be certain that the circuit functionality has not been

broken, and vice versa.

This work presents a unified algebra of switching networks. Its elements are circuits rather than just

Boolean functions (as in Boolean algebra) or vertices/edges (as in graph theory). This unified approach allows

one to express both the functionality and structure of switching networks in the same mathematical language,

thus removing the language barrier. It also brings in new methods of circuit composition that are of high

importance for modern system design and development, which heavily rely on the reuse of components and

interfaces. In this paper we demonstrate how to use the algebra to formally transform circuits, reason about

their properties, and even solve equations whose ‘unknowns’ are circuits.

1 Introduction

The dawn of computer engineering was marked by manual design at the level of basic switching elements,
such as electromechanical relays. The elements were large and expensive by today’s standards, thus each
one had to be accounted for. Prior to the seminal work by Shannon [34], the design of relay networks was a
trial and error process on graphs and required a great deal of ingenuity. Shannon demonstrated that Boolean
algebra could be used to reason about the functionality of relay networks and described the first analysis and
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synthesis methods [34][35] that liberated designers from routine exploration of possible network structures.
Huffman [18], Hohn and Schissler [16], as well as many other researchers, contributed to the theory of switching
networks over the next decades.

Relays were very unreliable due to mechanical switching, therefore the issue of network reliability was
very important at that time. Switching networks were built to mitigate the uncertainty of individual relays by
providing structural redundancy; it became clear that having only the functional specification of a network in
terms of a system of Boolean equations was not enough and other, non-functional, requirements had to be
considered. The advent of more reliable switching elements, such as vacuum tubes and transistors, changed the
course of switching theory, however. The research activity shifted towards the automation of very-large-scale
integrated (VLSI) circuits [6][7][23][33].

As semiconductor technology marched forward, the cost of manufacturing a single transistor rapidly
dropped and became negligible. During that time, manual low-level design was abandoned, and engineers
began thinking and designing systems in terms of higher-level components (first logic gates, then arithmetic
units, and now even whole IP cores!) and their configurations rather than in terms of transistors and electrical
circuits. Nowadays, switching networks are hidden under multiple layers of abstraction and are no longer syn-
thesised directly; instead, they are structurally put together to allow as much component reuse as possible and
to avoid extremely expensive re-design, verification and test.

1.1 Motivation

This work is motivated by the return of the uncertainty related challenges and new requirements to switching
networks imposed by emerging technologies and design styles:

Uncertainty & energy. A consequence of the shrinking size of a transistor is the growing uncertainty of its
characteristics, which leads to lower reliability and shorter life-span of large transistor networks [5]. Individual
reliability as well as collective energy consumption of transistors are dominant problems that cannot be solved
at the level of system components. Once again designers are forced to consider non-functional aspects of basic
switching elements and their networks [2].

In addition to environmental and intrinsic uncertainties, designers of secure electronics often introduce in-

tended uncertainty in the systems in order to randomise their timing and power characteristics thereby reducing
their vulnerability to Differential Power Analysis attacks [32].

New technologies. Novel switching technologies bring new non-functional phenomena into consideration.
For example, carbon nanotubes [37] can potentially replace conventional transistors for technologies beyond
10nm, but nanotube networks are very sensitive to noise and nanotube imperfections, thus requiring synthesis
of so-called ‘immune’ networks. Another example is nano-electro-mechanical (NEM) relays [21][22] that can
achieve zero power leakage and have other unique characteristics. However, in addition to electrical delays,
NEM relays exhibit (much longer) mechanical delays and a lot of effort is currently being dedicated to the
synthesis of custom switching networks, where all mechanical delays occur concurrently [36].

Multimodality. Modern microelectronic systems are expected to support a number of different operating
modes in order to be adaptive to dynamically changing environmental conditions, such as temperature, supply
voltage [29], and energy availability [43][42]. The design of such systems requires methods for composing
sets of modes (functionalities) under certain structural constraints on the resulting switching network, e.g., its
size. This is difficult to achieve using standard design methodologies providing poor support for functional
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composition.
To sum up, there is a need for methodologies for formal reasoning about non-functional properties of switch-

ing networks (reliability, timing, and energy). Such methodologies must support both structural and functional
composition and be scalable enough to cope with the size of today’s switching networks.

1.2 State-of-the-art and beyond

Existing formalisms for modelling structural and functional aspects of switching networks can be divided into
two groups.

Structural formalisms. Graphs are a very natural representation for switching networks. Hence, many
hardware description languages (HDLs) were developed to describe circuit structure by hierarchical graphs.
The two most popular HDLs are Verilog [9] and VHDL [20]; they are convenient for structural composition
of circuits and provide support for abstraction, encapsulation and reuse. Unfortunately, they lack a precise
formal semantics, thus most properties can only be checked through simulation. Balsa [1] and Tangram [38]
provide a methodology for structural composition of handshake components, component-level optimisation,
and compilation of the result into circuits. However, these languages separate specification of components and
their actual circuit implementation, and one cannot use them to reason about switch-level circuit properties.

Functional formalisms. Many high-level formalisms are targeted at modelling functional (or behavioural)
system properties: Petri Nets [11][31], various process algebras (CSP [14], π-calculus [24], DI algebra [19]),
Causal Nets [39], Concurrent Kleene Algebra [15], and many others. They excel at modelling high-level pro-
cesses, resource allocation conflicts, causality and concurrency; however, they are not well-suited for modelling
low-level switching networks of real-life size. For example, a practically important task of checking two cir-
cuits for equivalence may be very hard or even undecidable if the networks are represented with Petri Nets [13].
For this reason, functionality of switching networks is still modelled using Boolean connectivity matrices, as
first suggested by Shannon [34] back in 1937 and further elucidated by Hohn et al. [16] and Bryant [6]. This
approach is inherently inefficient, because an n×n Boolean matrix is required to describe the functionality of a
network with n nodes. Furthermore, a Boolean connectivity matrix can only describe a circuit’s functionality;
all its structural properties are lost.

There is a clear separation between the above groups: the former is concerned with structural or implement-

ation properties, while the latter is targeted at the specification. One can translate between the languages from
different groups via analysis and synthesis, but these operations are non-trivial and time-consuming. A key
objective of this work is to remove this language barrier.

In this paper we present a new algebra of switching networks that provides a mathematical instrument for
reasoning about structural and functional properties of networks of interconnected Boolean switches. A network
is represented by an algebraic expression, and the axioms of the algebra ensure that any permissible rewriting of
the expression preserves the network functionality; the network structure, however, can be changed arbitrarily,
thereby allowing exploration of the non-functional design space. The problem of analysis therefore corresponds
to rewriting a given expression into a certain normal form, while the problem of synthesis translates to that of
simplifying an expression subject to a set of non-functional constraints.

We start by giving a background on switching networks and Boolean algebra in Section 2. The algebra of
switching networks is then defined axiomatically in Section 3. Algebraic analysis and synthesis of switching
networks are illustrated by examples in Sections 4 and 5.
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2 Switching networks

This section introduces switching networks, our graphical notation, and principles of Shannon’s Boolean ana-
lysis [34].

(a) fa = 1 (b) fb = 0

x

(c) fc = x

x y

(d) fd = x∧ y

x

y
(e) fe = x∨ y

x

(f) Simplified (c)

Figure 1: Switching networks and their connectivity functions

Structurally, switching networks [34] consist of nodes and switches that establish (resp., break) an electrical
connection between two nodes when being ON (resp., OFF). Fig. 1 shows several networks and their connectiv-

ity functions1 that evaluate to 1 when the nodes are connected. The first two networks correspond to the basic
cases when a switch is always ON (the connectivity function fa = 1) and always OFF ( fb = 0). The next case
has the simplest non-trivial connectivity function fc = x, where signal x controls the switch. A series connection
of two switches yields fd = x∧ y, where the Boolean operator x∧ y represents the logical proposition ‘x and y’:
the nodes are connected only when both switches are ON. The last example is a parallel connection of two
switches that yields fe = x∨ y, where the Boolean operator x∨ y represents the logical proposition ‘x or y’. We
will further represent switches by simple edges annotated with connectivity functions, see Fig. 1(f).

Using this natural Boolean interpretation of switching networks, one can write algebraic expressions corres-
ponding to connectivity functions between any pair of nodes in a given network, thus performing its Boolean

analysis. The inverse task of finding a switching network realising a giving set of connectivity functions is
called synthesis. See [16] for an extensive review of these two fundamental concepts.

Separation of the structure (represented graphically by a switching network itself) and the functionality (cap-
tured by systems of Boolean equations) leads to an inability to formally reason about the functional correctness
of structural transformations. For example, consider the two networks shown in Fig. 2(a). The leftmost network
is just a switch with connectivity function fab = x. The rightmost network is an ingenious transformation of
the former aimed at increasing its reliability. Assume that any switch can fail, i.e., become permanently ON

or OFF, with a certain probability p. Then, in order for the transformed network to fail, at least two switches
must fail – a much more rare event happening with a probability proportional to p2. The transformed network
has the same connectivity function f ′ab = (x∧ x)∨ (x∧ x) = x, thus the networks are functionally equivalent.
However, the only way to prove the correctness of this simple structural transformation is to compute the con-
nectivity functions and compare them. This is a time-consuming task that cannot be routinely performed for
modern networks comprising billions of switches. Moreover, there is no efficient procedure for proving that the
transformed network has higher reliability.

Figure 2(b) demonstrates another example of the same problem — the famous delta-wye transforma-

tion [34], which preserves the pairwise connectivity functions between the nodes a, b and c, but reduces the
overall structural complexity of the network.

The aim of this paper is to develop a formal approach for reasoning about structural transformations that
preserve the functionality of a switching network. The next section introduces the approach, while Section 4
demonstrates its application to the examples discussed above.

1The function of connectivity is also known under the names of hindrance function [35] and transmission function [18].

NCL-EEE-MSD-TR-2012-178, Newcastle University 4



Andrey Mokhov: An Algebra of Switching Networks

a bx a b
x x

xx

(a) Increasing network reliability

a

b c

x

y z

a

b cy   z

x   zx   y

(b) Delta-wye transformation

Figure 2: Examples of functionally equivalent transformations

3 Algebra

In this section we present a new algebra of switching networks that is built on the formalisms of Conditional

Partial Order Graphs [25][30] and Parameterised Graphs [27] and inherits their key principle: it achieves a
compact representation of multiple graphs by overlaying them in a graph annotated with Boolean conditions.
Graphs with conditions were historically used to represent switching networks [6][34], but structural operations
on such graphs were never axiomatised and the functional correctness of each structural transformation had to
be proved in an ad hoc manner, not suitable for automation.

3.1 Undirected graphs

The structure of a switching network can be naturally represented by an undirected graph G = (V,E), where
vertices V correspond to nodes of the network, and edges E ⊆ V ×V model the states of switches connecting
the nodes. For a pair of nodes u,v ∈V , an unordered pair of vertices {u,v} belongs to the set of edges (denoted
as uv∈ E for short) if there is an ON switch between them, i.e., the nodes are connected. We assume that a node
is connected to itself, hence vv ∈ E for all v ∈V . If there is an OFF switch between nodes u,v ∈V or no switch
at all then the corresponding edge is missing, that is, uv /∈ E. We denote the empty graph ( /0, /0) by ε , and the
singleton graphs ({v},{{v,v}}) simply by v, for any v ∈ V , where V is a fixed universe of vertices.

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. Here V1 and V2, as well as E1 and E2, are not necessarily
disjoint. The following two operations on graphs are defined:

Overlay: G1 +G2
df
= (V1∪V2,E1∪E2)

Connection: G1 G2
df
= (V1∪V2,E1∪E2∪V1×V2)

An example in Fig. 3 illustrates these operations: G1 +G2 is a graph obtained by overlaying graphs G1 and G2,
i.e., it contains the union of their nodes and edges; G1 G2 contains the union plus the edges connecting
every node in G1 to every node in G2. Connection has higher precedence than overlay +. By combining
these operations one can construct expressions using the empty graph ε and the singleton graphs v as the basic
building elements. Any graph G = (V,E) can be constructed in this way, for example, by overlaying all of its
edges: G = ∑uv∈E u v. This is not the only way, nor is it the best one with respect to the size of the expression.
A natural question arises: given two expressions, how can we decide if they represent graphs that are equivalent
in some sense?

Semantically, two switching networks are functionally equivalent if they have the same set of nodes, and
the connectivity function for each pair of nodes in the first network equals that of the corresponding pair in
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b

c

a

(a) G1

db

c
(b) G2

db

c

a

(c) G1 +G2

db

c

a

(d) G1 G2

Figure 3: Operations on graphs (self-loops are not shown)

the second network. A more concise definition is that two networks represented by graphs G1 = (V1,E1) and
G2 = (V2,E2) are functionally equivalent if their transitive closures G∗1 = (V1,E∗1 ) and G∗2 = (V2,E∗2 ) coincide.
The networks in Fig. 3(c,d) are equivalent as their nodes are connected either directly or via intermediate nodes.
We call graphs with such equivalence relations transitive as in [27].

The equivalence relation is given by the following set of axioms:

• + is commutative and associative:

– p+q = q+ p,

– (p+q)+ r = p+(q+ r).

• is commutative: p q = q p.

• The empty graph ε is an identity of : p ε = p.

• distributes over +: p (q+ r) = p q+ p r.

• Decomposition: (p q) r = p q+ p r+q r.

• Closure: if q 6= ε then (p q) r = p q+q r.

Using the closure axiom in combination with decomposition, one can expand any graph to its transitive closure,
or reduce it to its transitive reduction (by removing all transitive edges). This ensures that graph equality is
defined modulo transitivity. Note that the condition q 6= ε is necessary, as otherwise

a+b = a ε + ε b = (a ε) b = a b,

which is clearly undesirable.
One can observe that if we drop the axioms of decomposition and closure, the remaining axioms are true

in arithmetic, where + and stand for addition and multiplication, respectively. Hence, undirected transitive
graphs can be viewed as numbers equipped with two additional axioms.

One can easily check that all the axioms are satisfied at the semantic level of undirected graphs and switching
networks, thus the algebra is sound. Completeness follows from the existence of the canonical form introduced
in the next section. Minimality of the set of axioms can be proved by enumerating the fixed-size models of
the algebra with the help of the ALG tool [3]: it turns out that removing any of the axioms leads to a different
number of non-isomorphic models of a particular size, implying that all the axioms are necessary. Hence the
following result holds.
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Proposition 1 (Soundness, Minimality and Completeness). The set of axioms of the algebra of transitive un-

directed graphs is sound, minimal and complete.

Several useful theorems can be derived from the axioms through equational reasoning.

Proposition 2. The following theorems hold:

• is associative: (p q) r = p (q r)

• ε is an identity of +: p+ ε = p

• + is idempotent: p+ p = p

• absorption: p+ p q = p q

Proof. We prove the first theorem and leave the others as an exercise for the reader (see the Appendix):

(p q) r = (decomposition)
p q+ p r+q r = (commutativity of +, )
q r+q p+ r p = (decomposition)

(q r) p = (commutativity of )
p (q r).

Remark 3. Since ε is a left and right identity of + and , there can be no other identities for these operations.
Interestingly, unlike many other algebras, the two main operations have the same identity.

Now, equipped with the necessary mathematical toolkit, we can come back to the question of deciding
equivalence of two given expressions L and R. One possible way would be to compute the transitive closures
of the graphs specified by the expressions and directly compare them. However, this procedure has quadratic
time and space complexity O(|L|2 + |R|2), where |e| denotes the size of an expression e in terms of the count of
singleton graphs that appear in it. The quadratic cost arises because a graph specified by an expression e may
have O(|e|2) edges, e.g., expression (a+ b+ c) (d + e+ f ) has size 3+ 3 = 6, but describes the graph with
3×3 = 9 edges. Below we propose a more efficient solution.

Proposition 4. Equality of expressions L and R can be decided in linear time and space O(|L|+ |R|).

Proof. First, all occurrences of ε in both expressions are eliminated by the identity rules (unless one of the
expressions is equal to ε , in which case we can immediately decide the equality). This preprocessing has linear
complexity O(|L|+ |R|). Then we use the following key observation:

(p q) r = (associativity, commutativity of )
(p r) q = (closure; here r 6= ε)

p r+ r q = (commutativity of )
p r+q r = (distributivity)
(p+q) r.
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That is, the closure axiom allows us to replace any nested occurrences of connection with overlay +. By
successively applying this rule to all the nested ’s we can eventually reduce each expression to an overlay of
the following terms

(a1 +a2 + ...) (b1 +b2 + ...) (c1 + c2 + ...) ...

where ai, bi, ci, etc. are singleton graphs. Each such term represents a connected component within the specified
graph. We further transform each term into the following chain of singletons

a1 a2 +a2 a3 + ...+an b1 +b1 b2 + ...

using the closure and distributivity axioms (here n stands for the number of singletons ai in the first clause). Note
that after the transformations the size of the expression is at most doubled. At this point one can use, for example,
the depth-first search (DFS) [10] to identify all the connected components of the graph represented by the
resulting expression. As all the brackets have been removed, there is no quadratic blow-up of the graph size – the
number of its vertices and arcs is bounded by the size of the original expression |VL|+ |EL|= O(|L|) (similarly
for R). Therefore, two DFS procedures combined will take linear time and space O(|L|+ |R|). Comparison of
the obtained sets of components is trivially linear.

We can conclude that the algebra provides a very compact and efficient way of representing and manipulat-
ing graphs: by operating on algebraic expressions we implicitly operate on graphs of potentially quadratic size.
This allows us to avoid the disadvantages associated with connectivity matrices. An alert reader may notice that
this is similar to representing a Boolean function by Boolean formulas instead of truth tables: the former are
much more efficient in practice than the latter [41].

Example 5. Let us prove that the graphs in Figures 3(c,d) are equivalent. The two expressions are:

G1 = (a b+b c)+(b c+b d)

G2 = (a b+b c) (b c+b d)

By opening the brackets and dropping the repeated term b c using the rule of idempotence we can simplify
G1 into:

a b+b c+b d.

G2 can be simplified by following the steps described in the proof of Proposition 4:

(a b+b c) (b c+b d) = (nested ’s)
(a+b+b+ c) (b+ c+b+d) = (idemp., comm.)

(a+b+ c) (b+ c+d) = (chaining)
a b+b c+ c b+b c+ c d = (idemp., comm.)

a b+b c+ c d.

Now we can use DFS to check that both expressions specify graphs with the same connected component
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{a,b,c,d}. Alternatively, we can complete the equational proof as follows:

G1 =

a b+b c+b d = (distributivity)
a b+b (c+d) = (nested )
a b+b (c d) = (assoc., comm.)
a b+ c (b d) = (nested )
a b+ c (b+d) = (distrib., comm.)

a b+b c+ c d = G2.

Performing all these algebraic manipulations by hand is a tedious and error-prone process. We are currently
implementing a prototype domain-specific language (DSL) in Haskell [17] which automates algebraic specific-
ation, analysis and synthesis of switching networks.

3.2 Families of graphs

Let us come back to Fig. 1. Clearly, we can represent the first and the second networks by expressions a b

and a+b, resp., where a and b correspond to the two nodes. But how can we represent the other networks?
An undirected graph can only describe a particular static arrangement of switches. To capture the ability

of a switch to change its state, we need a way to represent families of graphs. The network shown in Fig. 1(c)
can be considered a family of two graphs: depending on the value of the controlling signal x the resulting
network connectivity is equivalent to either a b or a+b. To describe graph families we extend the algebra of
undirected graphs with additional condition operations:

Condition: [1]G df
= G and [0]G df

= ε

The unary condition operations can either preserve a graph (true condition [1]) or nullify it (false condition [0]).
These operations are not particularly useful until one considers replacing a Boolean constant 0 or 1 with a
Boolean variable or a predicate, say, x, resulting in an expression [x]G, whose value depends on the value of a
parameter x. This subtle conceptual step (which is akin going from arithmetic to algebraic expressions) brings
up a new algebra with interesting properties, capable of describing both the functionality and structure of a
switching network.

The algebra of switching networks2 is
〈
N ,+, , [0], [1]

〉
, where N is a set of switching networks. To

define the equivalence relation we import the axioms from the algebra of undirected graphs and add the condition
operations axioms:

• condition: [1]p = p and [0]p = ε

One can prove the following theorems (see Appendix) by case analysis on the values of Boolean parameters x

and y:

• conditional ε: [x]ε = ε

2Following [27], a more precise term is the algebra of parameterised transitive undirected graphs, however, we find it overly verbose.
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• conditional overlay: [x](p+q) = [x]p+[x]q

• conditional connection: [x](p q) = [x]p [x]q

• AND-condition: [x∧ y]p = [x][y]p

• OR-condition: [x∨ y]p = [x]p+[y]p

Finally, for the sake of convenience a ternary operation called a switch is introduced as a combination of the
three basic operations:

p
x

q df
= p+q+[x](p q)

As the name suggests, the operation corresponds to a switch connecting two networks p and q, which is ON

when x = 1 and OFF when x = 0. We can consider p x q as a family of two graphs:

p
x

q =

p+q+[0](p q) = p+q if x = 0

p+q+[1](p q) = p q if x = 1

The above holds due to the condition axioms and the absorption rule p+ p q = p q (see Prop. 2).

Example 6. The following simple algebraic expressions represent the switching networks shown in Fig. 1:
Na = a b, Nb = a+b, Nc = a x b, Nd = a x∧y b, and Ne = a x∨y b.

4 Analysis

Any algebraic expression representing a switching network can be rewritten in the canonical form as stated by
the following proposition. Two expressions are equivalent if their canonical forms coincide. This also means
that one can demonstrate the equivalence of two expressions by rewriting one of them into the other.

Proposition 7 (Canonical form). Any expression can be rewritten in the following canonical form3:

(
∑
v∈V

[ fv]v

)
+

 ∑
u,v∈V
u<v

[ fuv](u v)

 ,

where:

1. V is a subset of singleton graphs that appear in the original expression;

2. for all v ∈V , fv are canonical forms of Boolean expressions and are distinct from 0;

3. for all u,v ∈ V , u < v, fuv are canonical forms of Boolean expressions such that fuv ⇒ fu ∧ fv (this

requirement ensures that a switch cannot appear without its nodes); we assume that nodes are totally

ordered by < and fuv = fvu for simplicity;

4. for all u,v,w ∈ V , fuv ∧ fvw⇒ fuw (the transitivity requirement, i.e., if nodes u and v are connected and

so are nodes v and w then nodes u and w must also be connected).
3We assume that nodes are ordered by <.
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Proof. We refer the reader to [27] where a very similar result is proved (in particular, see Prop. 5.1). Note a
subtle difference that in this paper a node is always considered to be connected to itself by a self-loop, hence
the use of < instead of ≤ in the canonical form.

The process of constructing the canonical form of an expression matches the process of Boolean analysis

of the corresponding network, in particular, the obtained matrix ( fuv) is called the switching matrix in classic
Boolean analysis [6][16]. Therefore, we claim that the algebra of switching networks allows one to perform
analysis of a network’s functionality in the same language that was used to describe its structure.

Before proceeding with an example of analysis, we add a new instrument into our mathematical toolkit.

4.1 Node contraction and partial equivalence

In many cases a relaxed notion of equivalence if useful; for example, to prove that the networks in Fig. 2 are
equivalent it is necessary to remove auxiliary nodes from one of the networks [8]. This subsection describes a
procedure, called node contraction, that performs such a removal and thereby establishes a relaxed notion of
equivalence, called partial equivalence.

Consider an expression s and a node t that may or may not appear in the expression. Node contraction

produces a new expression s′ which is free from t but preserves the connectivity functions for all pairs of
vertices u 6= t and v 6= t. This is formally denoted as: s′ = s\t.

Proposition 8 (Node contraction). Let s be an expression with the following canonical representation:

s =

(
∑
v∈V

[ fv]v

)
+

 ∑
u,v∈V
u<v

[ fuv](u v)

 ,

and t be a node not necessarily appearing in the expression. Then the node contraction s\t has the following

canonical form:

s\t =

(
∑

v∈V\{t}
[ fv]v

)
+

 ∑
u,v∈V\{t}

u<v

[ fuv](u v)

 .

In other words, all the terms corresponding to node t are dropped in s\t.

Proof. Let u 6= t and v 6= t be two nodes appearing in the expression s. Due to the transitivity requirement of
the canonical form, the connectivity function fuv captures all the paths, including those passing through node t.
Since fuv is preserved in the expression s\t, we can conclude that the connectivity between nodes u and v is not
affected by the node contraction.

Remark 9. One can see that node contraction is a confluent transformation, i.e., the order of contractions does
not matter:

s\t1\t2 = s\t2\t1.

This allows one to generalise node contraction to sets of nodes. For example, s\{t1, t2}= s\t1\t2.

Node contraction can be computed from the canonical form, but the following properties often provide
convenient shortcuts.
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Proposition 10. Let T be a non-empty set of nodes, and t 6= ε be an expression containing only nodes from the

set T . Let also p be an expression that is free from occurrences of nodes from the set T . Then the following

equalities hold:

1. t\T = ε

2. p\T = p

3. (p+ t)\T = p

4. (p t)\T = p p

5. (p x t)\T = p x p

Proof. (1) and (2) trivially follow from Prop. 8, since in the first case V = T , hence the whole expression is
contracted, and in the second case T ∩V = /0, hence p is not changed. (3) holds because t is disconnected from
the rest of the network, therefore it cannot provide any additional connectivity. To prove (4) we rewrite its left
part as follows:

(p t)\T = (idempotence, commutativity)
(p t + t p)\T = (closure, t 6= ε)
((p t) p)\T = (commutativity, associativity)
((p p) t)\T

Nodes in the subexpression p p form a fully connected graph regardless of the auxiliary nodes T . Therefore, t

can now be contracted by simply dropping it from the resulting expression as it will not contribute any additional
connectivity in the canonical form of p p.

Finally, (5) can be proved by case analysis on the value of Boolean parameter x: when x = 0 the result
follows from (3) and from equality p 0 p = p; when x = 1 the result follows from (4) and from equality
p 1 p = p p.

Given two networks p and q with sets of nodes Vp and Vq, resp., we say that p and q are partially equivalent

if and only if:
p\(Vp\Vq) = q\(Vq\Vp).

In other words, networks are partially equivalent if they are equivalent after contracting all but common
nodes Vp∩Vq.

4.2 Examples

First, consider the switching networks shown in Fig. 2(a). The rightmost network is a transformation of the left-
most one aimed at increasing reliability of a single switch by replacing it with four identical switches connected
in a bridge structure. The networks can be specified algebraically by expressions a x b and (a+b) x (t1+ t2),
resp., where T = {t1, t2} is the set of auxiliary nodes.

The networks are clearly not equivalent, because they have different sets of nodes. Our intention is to check
that the connectivity function between nodes a and b is the same in both networks, which can be achieved using
the node contraction transformation:
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((a+b) x (t1 + t2))\T = (Prop. 10)
(a+b) x (a+b) = (distributivity)

a x a+a x b+b x a+b x b = (closure, commutativity)
(a x a) x b+(b x b) x a = (any node v ∈V is connected to itself: v x v = v)

a x b+b x a = (idempotence, commutativity)
a x b

Therefore the networks are partially equivalent on the common set of nodes {a,b}.
Now consider the networks shown in Fig. 2(b), which represent the ‘delta’ ∆ and the ‘wye’ Y in the well-

known delta-wye transformation [34]. The rightmost network Y contains an auxiliary node, which will be
denoted as t; the leftmost network ∆ has no auxiliary nodes. Algebraic representations of the networks are
given below:

∆ = a x∧y b+a x∧z c+b y∧z c

Y = a x t +b y t + c z t

The canonical forms of the expressions are:

∆ = a+b+ c+[x∧ y](a b)+ [x∧ z](a c)+ [y∧ z](b c)

Y = a+b+ c+ t +[x](a t)+ [y](b t)+ [z](c t)+ [x∧ y](a b)+ [x∧ z](a c)+ [y∧ z](b c)

As one can now see ∆ = Y\t, hence the networks are equivalent after contracting the auxiliary node t.

Note that the original expressions ∆ = a x∧y b+ a x∧z c+ b y∧z c = and Y = a x t + b y t + c z t

perfectly capture the structure of the networks despite having the same functionality, and by using the algebraic
transformations one can transform one of them into another for the purpose of optimising a non-functional
criteria, such as, for example, the overall complexity of the network in terms of the number of switches, thereby
performing a form of synthesis. See Section 5 for further discussions on this topic.

4.3 Verification of non-functional properties

In the previous subsection we have verified that the switching networks in Fig. 2(a) are partially equivalent.
This, however, is a rather weak result. Indeed, one may demand a stronger verification outcome: can we prove
that the transformation achieves the intended property of increased network reliability?

The answer is positive. First, we need to express the required property in algebraic terms. In this example, by
‘increased reliability’ we mean that the network maintains the original functionality even if one of the switches
fails. Since the transformed network has left-to-right and top-to-bottom symmetry, it is sufficient to consider
only the case when the top-left switch has failed:

Nfailure = a
y

t1 + t1
x

b+a
x

t2 + t2
x

b.

The failed switch is modelled as a switch that is controlled by an unknown signal y, which may be a constant (0 if
the switch has become permanently open, and 1 if the switch has become permanently closed) or a variable that
is changing unpredictably and does not follow the proper control signal x (perhaps, due to a strong interference
with other parts of the circuit).
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Figure 4: NAND gate synthesis stages

Our goal therefore is to show that regardless of the value of y network Nfailure is partially equivalent to the
original network Noriginal = a x b. We can do that in three steps. First, subexpression a y t1 + t1 x b can be
rewritten as a y t1 + t1 x b+a x∧y b using the closure axiom. Similarly, subexpression a x t2 + t2 x b can
be rewritten as a x t2+t2 x b+a x b. Now one can observe that a x∧y b+a x b conveniently simplifies to
a x b due to the Boolean absorption law x∧y∨x = x. Therefore, after contracting nodes t1 and t2 the resulting
network becomes equivalent to Noriginal as required.

Having verified that the transformed network is capable of withstanding the failure of one switch, one may
ask what happens in case of more than a single failure. The algebraic approach can provide the answer. Let us
explicitly model all four possible failures:

Nuncertain = a
y1 t1 + t1

y2 b+a
y3 t2 + t2

y4 b.

We can now pose the question: what condition must be satisfied so that we have the equality Nuncertain\{t1, t2}=
Noriginal? By computing Nuncertain\{t1, t2} symbolically one can see that the sought condition is y1∧y2∨y3∧y4 =

x. An interesting consequence is that the transformed network can in some situations withstand failure of
three out of four switches! For example, if y1 = x (proper operation), y2 = 1 (permanently closed), y3 =

0 (permanently open) and y4 is uncertain (interference) then the network’s functionality is still maintained:
x∧1∨0∧ y4 = x.

To conclude, in this section we demonstrated that the algebra provides a unified mathematical language for
analysis of both functional and non-functional properties (such as reliability) of switching networks.

5 Synthesis

In this section we show how to synthesise switching networks with required properties using the algebra.

5.1 Synthesis of a NAND gate in CMOS technology

We demonstrate the algebraic synthesis on a transistor-level implementation of a NAND gate that given two
input signals a and b produces the output signal c connected to ground if condition a∧ b holds, and to Vdd
otherwise.
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Let nodes > and ⊥ denote the Vdd and ground power lines, resp. We need to connect one of these nodes to
the output as shown in Fig. 4(a,b). This can be abstractly expressed using the following system of equations:X =>+ c ⊥ if a∧b

X => c+⊥ if a∧b

That is, an unknown circuit X , which we would like to find, must connect c either to ⊥ or to > depending on
condition a∧b. Let us solve this system of equations.

A conditional statement ‘A = B if F’ can be algebraically expressed as [F ]A = [F ]B, hence we can rewrite
the system in the following way: [a∧b]X = [a∧b](>+ c ⊥)

[a∧b]X = [a∧b](> c+⊥)

By congruence, two equations A = B and C = D imply the equation A+C = B+D, therefore the system of
equations can be collapsed into a single equation:

[a∧b]X +[a∧b]X = [a∧b](>+ c ⊥)+ [a∧b](> c+⊥).

The result can be simplified by collapsing the left hand side to X due to condition rules and Boolean algebra:

[a∧b]X +[a∧b]X = [a∧b∨a∧b]X = [1]X = X

Simplification of the right hand side of the equation gives us the following result:

X = c
a∧b ⊥+ c

a∧b >.

We have found the unknown circuit X by simple algebraic manipulations, see the result in Fig. 4(c). Since in
the CMOS technology each switch can be controlled only by one signal (positive literals correspond to n-type
transistors, and negative ones correspond to p-type transistors), we have to refine the result by splitting the
switches into simpler ones. This requires an addition of a new auxiliary node t:

X = (c
a

t + t
b ⊥+ c

a >+ c
b >)\t.

See Fig. 4(d) for the final circuit, which matches the standard NAND gate implementation in the CMOS techno-
logy. One can automate the process of splitting complex switches into a network of n-type and p-type transistors
in the form of a rewrite rule. By checking that each step in the rule maintains the network equivalence in accord-
ance to the axioms of the algebra one can formally argue about the correctness of the rule in general (i.e., not
only for this specific network), which would be impossible to achieve without the presented algebraic approach
due to the aforementioned language barrier.

One can take the idea of using rewrite rules further and automate the synthesis of networks with various
specific non-functional properties. For example, it has been shown that symmetric transistor networks exhibit
much more predictable timing and power characteristics, which is especially valuable in the sub-threshold
design [2][4]. One can express the symmetric transformation of transistor networks using the algebra and
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apply it to our NAND gate example producing its symmetric 8-transistor version shown in Fig. 4(e). Many
structural transformations that are routinely used by designers can be efficiently and conveniently automated as
a collection of verified rewrite rules that can then be readily shared and reused by designers thereby increasing
their productivity.

5.2 Parameterised circuits

In this subsection we will discuss algebraic synthesis of parameterised circuits [29], which in addition to con-
ventional input/output interfaces (through which they exhibit the functionality to the environment) have a num-
ber of parametric inputs that are added to allow the selection of a particular implementation of the required
functionality in run-time. Such circuits are also often referred to as reconfigurable circuits [40][28]. The para-
meters that select a particular implementation of the circuit may come from various sources: i) some of them
can be statically pre-set during the product testing/binning stage on the basis of post-manufacturing information;
ii) others can be changed in run-time by a power management controller or by a system utility at the software
level; iii) it is also possible to use the parameters for the maintenance purposes, e.g., to reconfigure the system
taking into account the information about faults or transistor ageing effects, thus allowing for a graceful system
degradation.

A trivial way of synthesising such circuits is to directly include all the required implementations as separate
blocks, connect their inputs via wire forks, and then choose the outputs of the currently selected implementation
by a multiplexer. This trivial solution is easy to implement and has the benefit of reusing existing implementa-
tions. However, it is often the case that the implementations are similar to each other, which can be exploited by
merging certain parts of different implementations in order to reduce the overall area and power consumption
overheads.

Two examples of parameterised transistor networks are shown in Fig. 5. In particular, Fig. 5(b,c,d) show
standard static CMOS implementations of an AND gate, a C-element [2] and an OR gate, while Fig. 5(a,e)
show optimised parameterised networks implementing parameterised C/AND and C/OR elements [29]. The
latter networks have the additional input p which can activate a particular network functionality. As one can
see, the parameterised networks reuse common parts of the constituent functionalities (for example, the output
inverter is reused).

One can synthesise these optimised switching networks using the algebraic approach. The key idea is to
represent the required functionality as an overlay of simpler blocks. If algebraic expressions AND, OR, and C

stand for the switching networks implementing AND gate, OR gate and C-element, resp., then the following
expressions will represent the sought parameterised elements controlled by parameter p:

C/AND = [p]AND+[p]C

C/OR = [p]OR+[p]C

By using the rules of the algebra one can factor out common terms occurring in these parameterised expres-
sions thereby performing optimisation of the resulting switching networks. This is particularly relevant for
new transistor technologies, such as double-gate transistors, that support fine-grain reconfiguration via polarity

control [12].
Generalising the above approach one can represent parameterised networks controlled by more than one

parameter. An example of such a network can be found in [40] which describes a configurable transistor

NCL-EEE-MSD-TR-2012-178, Newcastle University 16



Andrey Mokhov: An Algebra of Switching Networks

of the PAnDA architecture, which connects seven transistors M0−M6 of varying physical characteristics in
parallel so that they can be independently activated by reconfiguration bits b0−b6 (see Fig. 6 of [40]) thereby
achieving fine-grain adaptability and resilience to the effects of intrinsic variability, as well as fault tolerance.
This transistor arrangement can be algebraically captured by the expression

∑
0≤k≤6

[bk]Mk.

The ideas discussed in this subsection are further elaborated below in more high-level settings.

5.3 Structural composition

In this subsection we show how to structurally compose switching networks. We will use the notation supported
by our tool for algebraic circuit specification, analysis and synthesis.

Circuits are first-class values in our Haskell-based DSL, therefore we can easily create functions that ma-
nipulate circuits. For example, a function that given three signals a, b, and c constructs a CMOS NAND gate
can be defined4 as follows:

NAND a b c = [ a ∧ b ](> + c ⊥)

+ [¬(a ∧ b)](> c + ⊥)

To demonstrate structural composition, let us also define the inverter gate function:

INV a b = [a](> + b ⊥) + [¬a](> b + ⊥)

Now one can create a circuit implementing the AND gate functionality in CMOS by calling the above
functions and overlaying the results:

AND_gate = NAND a b t + INV t c

This particular implementation uses signals a and b as the inputs of the AND gate, signal c as its output, and
signal t as an intermediate result. We can also compose functions (instead of circuits) to obtain a more reusable
implementation:

AND a b c t = NAND a b t + INV t c

Now we can call the function AND whenever we need to instantiate a CMOS AND gate with a particular
combination of input and output signals. Note that the implementation details are hidden and one can operate
on high-level components like AND_gate without dealing with individual switches directly. This is similar
to Verilog and VHDL hardware description languages, but the difference is that at any point of the design
process we know exactly not only the current structure of the circuit, but also its functionality, because they
are inseparable. In Verilog or VHDL, once a circuit is designed it is necessary to perform its analysis in order

4The actual syntax is slightly different due to technical reasons (e.g., unary operations are not well supported in Haskell). We decided
to stick to the mathematical notation used in this paper not to confuse the reader.
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Figure 5: Transistor-level implementations of specialised and parametrised gates

to be sure that the circuit functionality satisfies the specification. The algebraic approach to hardware design
eliminates this step completely: one can start with an abstract specification of the functionality and then keep
refining the implementation by following the rules of the algebra until the result satisfies all the structural
constraints of a particular technology, as shown in Figure 4.

5.4 Functional composition

One particularly unique and useful feature of the algebra is functional compositionality. Consider two systems A

and B, which may potentially be very complex and contain billions of switches. As elaborated in the previous
subsection, we already know that their structural composition C can be expressed simply as overlay C = A+B:
if the systems have common interface signals, they will be ‘glued’ together as shown in Fig. 3(c). While this
type of composition is usually handled well by other methods, our approach also allows one to perform the
functional composition of systems, which is a lot more difficult to handle efficiently.

For example, if one wants to describe a system C that delivers functionality A under a certain condition x, and
functionality B under the opposite condition x then the solution can be algebraically expressed as C = [x]A+[x]B.
This has already been demonstrated in synthesis of a NAND gate and parameterised networks. Importantly, if
the two functionalities are similar, one can simplify the resulting expression by factoring out common terms.
For instance, [x]A+[x]A= [x∨x]A= A, i.e. if the functionalities coincide then one can algebraically prove it and
remove the condition x, as well as the redundant copy of A, altogether. Typically, if A and B are functionalities
that a system delivers in two operating modes then they have a lot in common. It is crucial to detect such
similarities in order to design efficient multimodal systems; to achieve that we can adopt existing methods for
finding similarities in graphs and families of graphs, e.g., [26].

Finally, the axiomatic definition of switching network equivalence allows a designer to substitute a part
of an expression A with an equivalent part B without any additional checks of the resulting system’s global
properties. As long as the local equivalence A = B holds, it is guaranteed that the rest of the system is not
affected by the substitution. Algebraic compositionality opens the way for new methodologies and techniques
for system optimisation in various aspects, such as latency, power consumption, reliability, etc. by performing
local provable transformations of an expression representing an entire system.
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6 Conclusions

This paper discusses the glorious past of the theory of switching networks, whose roots can be traced back to
the beginning of the 20th century. Today, the theory forms the backbone of any computation system, however, it
is hidden by multiple layers of abstraction and largely forgotten; little or no development is going on at present
for it is believed that all the useful facts about switching networks have already been discovered.

This work is an attempt to revive the old theory by introducing a new mathematical construct – an algebra
of switching networks – that unifies the notions of function and structure of a computation system that were
always separated. The algebra is specified axiomatically, and the soundness, minimality and completeness of
the resulting sets of axioms are proved. The transformations required for algebraic analysis and synthesis of
switching networks are developed and demonstrated on a set of examples.

The future work includes the development of a scalable software support tool capable of handling switch-
ing networks consisting of billions of switches, as well as the application of the presented techniques in other
areas, where modelling conditional connectivity is important, for example, in the analysis of protein-protein
interactions in large-scale biological networks. The most promising direction for automation is via automated

theorem proving software that is capable of proving mathematical statements within a given theory. Although
theorem proving is undecidable in the general case, the axioms of the proposed theory of switching networks
allow efficient equality checking as has been demonstrated in Section 4. Efficient verification of more com-
plex non-functional properties, e.g., related to reliability or to energy constraints, requires further algorithmic
research.
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Appendix

Proof of the equalities not involving conditions from Subsection 3.1:

• ε is an identity of +: p+ ε = p

• + is idempotent: p+ p = p

• absorption: p+ p q = p q

Proof. First we prove an auxiliary equality, called reduced decomposition or r-decomposition: p = p+ p+ ε .

p = ( -identity)
p ε ε = (decomposition)

p ε + p ε + ε ε = ( -identity)
p+ p+ ε

Now the equality p+ ε = p can be proved as follows:

p = (r-decomposition)
p+ p+ ε = (r-decomposition)

p+ p+(ε + ε + ε) = (+-commutativity)
(p+ ε)+(p+ ε)+ ε = (r-decomposition)

p+ ε

The idempotence of + can be proved as follows:

p = (r-decomposition)
p+ p+ ε = (+-identity)

p+ p

Absorption is proved as follows:

p+(p q) = ( -identity)
(p ε)+(p q) = (distributivity)

p (ε +q) = (+-identity)
p q

Proof of the equalities involving conditions from Subsection 3.2:

• Conditional ε: [x]ε = ε

• Conditional overlay: [x](p+q) = [x]p+[x]q

• Conditional sequence: [x](p q) = [x]p [x]q

• AND-condition: [x∧ y]p = [x][y]p
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• OR-condition: [x∨ y]p = [x]p+[y]p

Proof. First, suppose the value of x is 0 (*). Then:
Conditional ε:

[x]ε = (*)
[0]ε = (false condition)

ε

Conditional overlay:
[x](p+q) = (*)
[0](p+q) = (false condition)

ε = (+-identity)
ε + ε = (false condition)

[0]p+[0]q = (*)
[x]p+[x]q

Conditional sequence:
[x](p q) = (*)
[0](p q) = (false condition)

ε = ( -identity)
ε ε = (false condition)

[0]p [0]q = (*)
[x]p [x]q

AND-condition:
[x∧ y]p = (*)
[0∧ y]p = (Boolean algebra)

[0]p = (false condition)
ε = (false condition)

[0][y]p = (*)
[x][y]p

OR-condition:
[x∨ y]p = (*)
[0∨ y]p = (Boolean algebra)

[y]p = (false condition)
ε +[y]p = (+-identity)

[0]p+[y]p = (*)
[x]p+[y]p

Now, suppose the value of x is 1 (**). Then:
Conditional ε:

[x]ε = (**)
[1]ε = (true condition)

ε
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Conditional overlay:
[x](p+q) = (**)
[1](p+q) = (true condition)

p+q = (true condition)
[1]p+[1]q = (**)
[x]p+[x]q

Conditional sequence:
[x](p q) = (**)
[1](p q) = (true condition)

p q = (true condition)
[1]p [1]q = (**)
[x]p [x]q

AND-condition:
[x∧ y]p = (**)
[1∧ y]p = (Boolean algebra)

[y]p = (true condition)
[1][y]p = (**)
[x][y]p

OR-condition:
[x∨ y]p = (**)
[1∨ y]p = (Boolean algebra)

[1]p

The value of y under the current assignment of variables is either 0 or 1, so we consider the two possible cases:
if the value of y is 0 (#) then

[1]p = (+-identity)
[1]p+ ε = (false condition)

[1]p+[0]p = (**)
[x]p+[0]p = (#)
[x]p+[y]p

if the value of y is 1 (##) then

[1]p = (+-idempotence)
[1]p+[1]p = (**)
[x]p+[1]p = (##)
[x]p+[y]p

In all the possible cases the equalities hold.
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