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Abstract

With continued advancement in semiconductor manufacturing tech-

nologies, process variations become more and more severe. These

variations not only impair circuit performance but may also cause po-

tential hazards in integrated circuits (IC). Asynchronous IC design,

which does not rely on the use of an explicit clock, is more robust to

process variations compared to synchronous design and is suggested

to be a promising design approach in deep-submicron age, especially

for low-power or harsh environment applications.

However, the correctness of asynchronous circuits is also becoming

challenged by the shrinking technology. The increased wire delays

compared to gate delays and threshold variations could bring glitches

into the circuit.

This work proposes a method to generate a set of su�cient timing

constraints for a given speed-independent circuit to work correctly

when the isochronic fork timing assumption is lifted into a weaker

timing assumption. The complexity of the entire process is polyno-

mial to the number of gates. The generated timing constraints are

relative orderings between the transition events at the input of each

gate and the circuit is guaranteed to work correctly by ful�lling these

constraints under the timing assumption.

The benchmarks show that both the number of total constraints and

the constraints that are only needed to eliminate strong adversary

paths are reduced by around 40% compared to those suggested in the

current literature, thus claiming the weakest formally proved condi-

tions.
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Chapter 1

Introduction

As the process shrinks, the traditional synchronous design faces great challenges.

Meanwhile, the asynchronous design exhibits advantages in many important as-

pects, such as the tolerance to process variation and reduced power consumption.

This chapter brie�y compares the advantages and disadvantages of synchronous

and asynchronous designs to illustrate why the asynchronous design suggests a

promising design approach in the near future.

1.1 Synchronous and asynchronous circuits

Digital circuits can be partitioned into combinational logic, in which the output

signals depend only on the current input signals, and sequential logic, in which

the output depends both on current input and the past history of inputs(state

of the circuit). Sequential logic is combinational logic with storage components

(latches).

1



1.1 Synchronous and asynchronous circuits

In synchronous circuits all latches change according to the same periodic global

signal, called the clock. Inputs to latches must be stable before clock events arrive

and all latches change simultaneously when the clock events arrive. Clock is used

to synchronize the data transferring between combinational logic blocks and �lter

out unexpected transient events (called glitches) before the circuit becomes stable.

In contrast, asynchronous circuits do not use the clock. Operation on one latch

is triggered by the events coming from its controller, which communicates with

other controllers by handshake protocols.

...
...

... ...

...

Controller

       1CLK

R1

R2

R3

R4
CL1

CL2

CL3

CL4

...

R1
CL1

R2 CL2

R3 CL3

R4 R4

(a) (b)

Controller

       2

Controller

       4

Controller

       3

Req

Ack

Req

Ack

Req

Ack

Figure 1.1: A synchronous circuit and the equivalent asynchronous cir-

cuit -

The schematic diagram of a synchronous circuit is shown in the diagram (a)

in Figure 1.1 with the schematic diagram of the equivalent asynchronous circuit

shown in diagram (b). In the synchronous circuit, four registers (R1-R4) are con-

trolled by the clock signal (CLK). The clock cycle period must be greater than

the worst delay of all combinational logic blocks in the circuit and all combina-

tional logic blocks (CL1-CL4) will be synchronized by the end of each clock cycle.

However, in the asynchronous circuit, the clock is not used. The transformations

2



1.1 Synchronous and asynchronous circuits

on the data are synchronized by the handshake signals. Request (Req) will be

sent to the controller of the sink of the data from the source controller when the

data from the source is ready and the acknowledge (Ack) will be sent back to

indicate the completion of the operation.

Thanks to the Moore's law[1], the complexity of the integrated circuit dou-

bles every 18 months. Nowadays, a single chip could contain more than one

billion transistors. Certain problems, which were not quite severe in the last few

decades, are becoming critical today or will be critical in the near future. The

synchronous design, which introduces a global clock to mask glitches and divide

the combinational and sequential logics, has been the mainstream in the digital

integrated circuit community. However, the weakness of synchronous design is

exposed when the semiconductor technology shrinks.

Performance and power :

It is very costly to distribute a global clock signal on a multi-billion transistor

chip. Clock signal skews along the large distribution tree. As the number of

transistors increases and the delay of transistor decreases, the clock skew problem

becomes more and more severe. Additional area or clock magnitude needs to be

sacri�ced in order to guarantee the correctness of the circuit. In addition, the

power consumption related to the distribution clock signal consumes the largest

proportion in a synchronous circuit. Currently, up to 40% of total power is

consumed by the clock distribution network [2] and this situation becomes worse

as the complexity and the frequency of the circuit grows [3].

Meanwhile, although the clock could prevent glitches from causing errors in

synchronous circuits, glitches do dissipate energy. Glitches are useless transi-

3



1.1 Synchronous and asynchronous circuits

tions, which could propagate in the combinational logics and cause additional

transitions. As reported in [4], the power dissipation related to glitches in CMOS

technology consumes up to 15% of total power.

As the feature size of technology shrinks, the process variations become a

new important factor that in�uences the performance of digital circuits. In or-

der to get an acceptable yield, synchronous design needs to set its clock period

conservatively.

Unlike the synchronous design in which glitches could be �ltered out by the

clock, asynchronous circuits are usually vulnerable to glitches. The handshake

protocols cannot distinguish between a real transition and a glitch. Any glitch

could be considered by some logic as a premature transition and causes hazards.

Designers of asynchronous circuits usually put quite a lot of e�ort to avoid danger-

ous races in the circuit. This always results in that asynchronous design consumes

more area and e�orts compared to the synchronous design. Due to the simplicity,

synchronous design dominates the integrated circuit market during past decades.

But, as the mobile electronics devices become the mainstream of the consumer

electronics, the performance and energy dissipation become the two most con-

cerned aspects for industry designs. In contrast, the area now becomes a less

concerned aspect. All those above indicate that asynchronous circuits suggest a

promising design paradigm, which o�ers a high performance and low power con-

sumption solution in the coming decades for both the technical and commercial

reasons.

Modularity :

The circuit design trends to compose a powerful system by many small com-

4



1.1 Synchronous and asynchronous circuits

putational modules or intellectual property (IP) cores, which communicate with

each other through protocols to achieve higher energy e�ciency. Directly con-

necting multiple synchronous modules together is very di�cult if not impossible.

The asynchronous handshake suggests a promising approach to be the interface

protocol to connect sub-modules. As expected by ITRS [5], by 2022, up to 45%

signals of a design will be driven by handshake.

Without doubt, asynchronous circuits will attract more designers' attention in

the coming decades. The inherent request and acknowledgement mechanism can

avoid the clock skew and distribution problem. Also, this mechanism will auto-

matically shut down unused parts in a circuit and avoid generating the unneeded

transitions and thus reduces the power consumption. Di�erent modules could

be easily connected together under protocol based scheme. The strict glitch-free

requirement and the conservative delay assumption makes asynchronous circuits

have much stronger variation tolerance ability compared to the synchronous coun-

terpart.

However, the asynchronous design paradigm also meets challenges.

Without the clock to �lter out glitches, asynchronous circuits su�er from race

hazards[6], which means that circuits might exhibit glitches or even go into the

wrong state depending on di�erences in delay of elements in circuits. In or-

der to avoid race hazards, the synthesis of asynchronous circuits needs to ful�ll

additional requirements. These requirements make asynchronous circuits more

di�cult to design compared with synchronous circuits. Also, the automatic syn-

thesis of asynchronous circuits usually needs to explore the entire state space to

ful�ll the hazard-free requirement and optimize the logic. Asynchronous circuits

5



1.2 The data path and control path

usually exhibit highly concurrency among events. The computation complexity

is in the order of O(2n), with respect to the number of signals (n) in the circuit.

This makes asynchronous circuits hard to design even in moderate size.

Asynchronous circuit design paradigm does not have an entire design �ow

support. The EDA tool support for asynchronous design is poor, not only because

there is no uniformed design paradigm but also the real di�culty behind this

matter. Also, the asynchronous circuit is not only hard to design but also to test.

Due to the problems mentioned above, designing asynchronous circuit al-

ways requires experienced designers. Therefore, the time cost for designing asyn-

chronous circuit is usually much greater than for designing a synchronous one.

Nowadays, the semiconductor technology goes into deep sub-micron age and

the design trends to many-core, low power, environment variation robust and

process variation tolerance applications. These requirements just meet the char-

acteristics of asynchronous circuits.

1.2 The data path and control path

A circuit is typically partitioned into two main parts, the data path and the

control path. The data path usually includes the units to process the data, e.g.

adders and the units for storage and communication e.g. registers. The control

path usually provides signals that control the data path to work properly, e.g. op-

eration codes and the clock signal. In Figure 1.1, the control of the two circuits

includes the clock (CLK) and asynchronous controllers; the datapath includes

registers and the combinational logic. This thesis focuses on controllers in asyn-

6



1.3 Signi�cance of the thesis

chronous circuits (like the controllers 1-4 in diagram (b) in Figure 1.1. Circuits

discussed in this thesis refer to the control circuits if not speci�ed otherwise.

1.3 Signi�cance of the thesis

Among all asynchronous design paradigms, delay-insensitive circuits, which could

tolerate arbitrarily large delay variations on both gates and wires, show the

strongest process variation tolerance ability. However, delay-insensitive circuits

have been proved to be quite limited that only a very small set of speci�cations

have a delay-insensitive implementation[7]. This also indicates that for almost all

useful speci�cations, the implementations should contain some timing assump-

tions in them. Speed-independent circuits, which only take the isochronic fork

timing assumption, are supposed to be the paradigm that imposes the weakest

timing assumption. Speed-independent circuits could work correctly under many

harsh situations, e.g. VDD variations and the gate delay variations. However, the

other variations like the threshold variation could still cause speed-independent

circuits to malfunction.

Speed-independent circuits suggest a good starting point to correctly imple-

ment circuit under unprecedented variations. Unlike the design paradigms that

introduce the real time information in synthesis, speed-independent circuits only

compare the arriving orders of events. They therefore redress only those timing

issues needed to guarantee the required orders. This is desirable in the deep sub-

micron age. The delay variations are quite large that estimating the exact time

is di�cult and unreliable in the deep submicron age. However, orders between

7



1.3 Signi�cance of the thesis

two events are much easier to predict and �x. Currently, most layout tools does

not directly support relative timing constraints. This is because the synchronous

design is widely adopted by the industry and synchronous tool is well developed

where the numerical delay is used. However, the layout tool for the asynchronous

design that supports the relative timing constraints could be developed as the

asynchronous design becomes more and more important.

The veri�cation of the timing ful�llment is a very di�cult and time consuming

task. The time complexity usually reaches the exponential or even double expo-

nential order with respect to the number of signals in a circuit. This is hardly

acceptable even for a moderate scale circuit.

This thesis proposes an e�cient method to verify and re-synthesize speed-

independent circuits. It takes a reasonably weaker timing assumption compared

to the isochronic fork timing assumption and then introduces a series of algo-

rithms to verify circuit and generate a set of su�cient timing constraints to

guarantee the correctness of the circuit. The generated timing constraints could

always be ful�lled.

The main contributions of this thesis are:

1) It corrects some wrong conclusions given by previous researchers about the

weakest timing assumption in speed-independent circuits.

2) It introduces a hazard checking criterion for speed-independent circuits

when the isochronic fork timing assumption is relaxed.

3) Most importantly, this thesis proposes a method utilizing properties of the

speed-independent circuit to do the timing veri�cation in polynomial time. This

method divides the entire veri�cation problem into smaller sub-problems and thus

8
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avoids exploring the full state space.

The limitation of this thesis is that in the point 3) mentioned above, one

operation "projecting a Petri Net on a subset of transitions" is needed. However,

this is an open question for general Petri Nets. Thus, the input signal transition

graph to this technique (one kind of Petri Net) is limited to a free-choice Net,

where Hack's algorithm[8] could apply.

1.4 Organization of thesis

This thesis is organized as follows:

Chapter 1 brie�y introduces the synchronous and asynchronous design and

presents the signi�cance of this thesis.

Chapter 2 de�nes the terms used in asynchronous community and introduces

di�erent asynchronous design paradigms.

Chapter 3 introduces the related descriptions and models of speed-independent

circuits, which will be used in the following chapters and explains why speed-

independent circuits are adopted by this thesis among asynchronous design paradigms.

Chapter 4 investigates the possible situations that could cause failures of the

isochronic fork and discusses the technology trends that a�ect these situations.

Also, related research is overviewed in this chapter.

Chapter 5 presents the main method for hazard checking when the funda-

mental timing assumption of speed-independent circuits is relaxed.

Chapter 6 analyzes one complex problem, the OR-causality, which may occur

during the hazard checking process presented in Chapter 5 in detail and proposes

9



1.5 Publications

a technique to solve this problem.

Chapter 7 presents the benchmark results of the method. This chapter com-

pares the tightness of the generated timing constraints with similar research. Also

one design example is presented in detail to demonstrate the proposed method

and to show the penalty introduced by eliminating the potential hazards.

Chapter 8 concludes the thesis and discusses the possible ways to break

the limitations of the proposed method to make it suitable for broader range of

speci�cations.

1.5 Publications

The main results of the thesis have been published in the following paper:

• "Relative Timing Applied to Asynchronous Circuit Synthesis and Decom-

position" (19th UK Asynchronous Forum)

• "Conditions and Techniques for Correctness of SI/QDI Circuits Under Large

Variability" (21st UK Asynchronous Forum)

• "Redressing timing issues for speed-independent circuits in deep submicron

age" (DATE'11)
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Chapter 2

Background

This chapter gives the de�nitions of basic elements and concepts of a digital

circuit and also introduces popular asynchronous design paradigms.

2.1 Gate

Gates are basic elements in a circuit. In this thesis, a gate is de�ned as an n

inputs and one output boolean variable. If the inputs contain its output variable,

the gate is sequential, otherwise it is combinational. For every gate there is an

associated logic function f to compute it.

The de�nition of logic function in [9] is adopted.

A logic function f with n input variables is a mapping f : {0, 1}n 7→ {0, 1},

where {0, 1}n is a binary vector over its input variables called input state. The

set of input states that maps to ′1′ is the on-set of f , while that maps to ′0′ is its

o�-set .
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2.1 Gate

A literal is a variable x or its complement x. A cube c is a set of literals

on di�erent variables, which means that literal x cannot appear multiple times

and x and x cannot appear simultaneously in a cube. A cube c represents the

vertexes corresponding to the boolean product of its literals. A cube c′ is covered

by another cube c′′ if c′′ ⊆ c′, denoted by c′ ⊑ c′′.

A cube is an implicant of a logic function f if it does not cover any vectors in

o�-set of f . An implicant of f is called a prime implicant if it cannot be covered

by any other implicants of f . A cover U is a set of cubes, which represents the

boolean sum of its cubes. A cover U is an on-set cover of logic function f if each

cube in U is an implicant of f and each vertex in f is covered by at least one cube

in U . A cover D is an o�-set cover of logic function f if D is an on-set cover of f ,

where f is a logic function obtained by exchanging the on-set and o�-set of f . A

cover U is a prime cover of logic function f if all its cubes are prime implicants of

f . A cube c is redundant in a cover D of logic function f , if D\c is still a cover of

f . A cover D is redundant for f if at least one cube in it is redundant, otherwise

it is irredundant. An irredundant prime cover of logic function f is denoted by

f↑ and an irredundant prime cover of f if denoted by f↓. Each cube in f↑ and f↓

is called a clause. The notation fa↑ and fa↓ is used if f computes gate a.

a
b

c

Figure 2.1: A logic gate -
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2.2 Delay models and types

An example of a gate a is shown in Figure 2.1, the gate a is a sequential gate.

Its inputs are a, b and c. fa↑ = a · b+ c and fa↓ = a · c+ b · c.

2.2 Delay models and types

Delay is an inherent property of all electronic components. For simplicity, in

digital circuits, the delays are usually abstracted out of the component and are

denoted as separated elements. The original components are then assumed to be

instantaneous. The property of delay is depicted by a separated delay element.

For di�erent designs and circumstances, di�erent delays are used [6].

A delay element is a pure delay if the delay only shifts every transition for a

given magnitude.

A delay element is an inertial delay if the delay not only shifts transitions but

also absorbs any pulse that is narrower than the magnitude of the delay.

A delay is unbounded if the magnitude of the delay could be any positive

value. A delay is bounded if the interval of the delay magnitude is given.

Figure 2.2 represents the comparison of the pure delay with the inertial delay.

The delay magnitudes for these two delays are larger than t1 but smaller than t2.

In speed-independent circuits, every gate has a pure and unbounded delay

and each wire does not have any delay. The e�ect of this assumption is that

every gate computes its new output as soon as its inputs change and if there is a

transition due to the input change, the transition will be delayed for a given time

and then transmitted to its next-level simultaneously. The pure delay assumption

is always much safer compared to the inertial delay assumption with respect to
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2.3 Signal and Circuit

input

pure delay

inertial delay

t1 t2

Figure 2.2: Pure delay and inertial delay -

glitch-freedom as will be analyzed in the following section.

2.3 Signal and Circuit

Transitions on signals represent the dynamics of a circuit. The set of signals

should depict the entire reachable states of a circuit. Here, we de�ne the signals

of a circuit (denoted by the set A) to be the union of the primary input variables

and gate variables. For circuits which are in context with their environment

(ENV ), the signals coming from the primary inputs are denoted by a set I, the

gate variables which feedback to the ENV are primary outputs denoted by a

set O and the gate variables that are not primary outputs are internal signals

denoted by a set R. For autonomous circuits, we have I = O = ∅ and R = A.

A circuit is de�ned as a pair C = (A,ϕ), where A is a set of signals and ϕ is

a labeling function which labels a wire between each signal a ∈ I ∪ R and each

fan-out of a.
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2.4 Operation modes

In the de�nition above, only input signals and gate variables are used to de-

scribe the dynamics of a circuit, wires will not be shown explicitly. This is because

the type of the asynchronous circuit under discussion is the speed-independent

circuit, where wires could be considered to have zero delays, the dynamics of

wires could be fully represented by the gate behaviors. When the isochronic fork

is relaxed (as will be speci�ed in the following chapters), we will still use tech-

niques to avoid introducing signals to wires. The reason behind this is as follows.

Firstly, the number of wires is always equal to or more than the number of gates

in a circuit, so encoding using wire signals would increase the computational com-

plexity. Secondly, introducing signals to wires will break some properties that are

necessary for us to model the behavior of speed-independent circuits (will break

the safeness of a PN).

2.4 Operation modes

The interface mode de�nes how a circuit interacts with its environments. There

are two classical modes [6] that adopted by di�erent asynchronous design paradigms:

1) The fundamental mode/burst mode, when the circuit is stable, one primary

input/one or more primary inputs are allowed to change. The environment cannot

change inputs again unless the entire circuit becomes stable.

2) The input-output mode, the environment could change the primary inputs

of the circuit as soon as it sees the expected transitions on primary outputs.

The fundamental mode requires that the environment keeps all transitions

on primary input signals longer than the maximum delay in the circuit. This
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2.5 Asynchronous control circuits

requires designer to estimate the real delays in a circuit. While input-output mode

requires that every signal transition is acknowledged to make sure that when the

environment sees the expected transitions on primary outputs, all internal signal

transitions have happened.

2.5 Asynchronous control circuits

The class of asynchronous circuits is a very broad class. Di�erent researchers of-

ten propose quite di�erent design �ows, where di�erent speci�cation formalisms,

various assumptions, synthesis techniques and manpower are utilized. This sec-

tion will focus on the introduction of popular asynchronous design methods and

their trade-o�s. Circuits discussed in this section refer to the control circuits if

not speci�ed otherwise. Also, methods referred in this thesis are mainly related

to the design of control. The datapath usually contains a large number of signals

in high concurrency. Techniques that focus on the control are usually not capable

of handling datapath and the synthesized circuits would be ine�cient. However,

a large body of research exists for datapath circuits as well[10] [11] [12].

2.5.1 Asynchronous design paradigms

The Hu�man style asynchronous circuits : The Hu�man style asynchronous cir-

cuits are �rst proposed in [13], which take the bounded wire and gate delay model

and operate under the fundamental mode. The schematic diagram of the Hu�man

style asynchronous circuits is shown in Figure 2.3 (a).
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2.5 Asynchronous control circuits

The speci�cation of the fundamental mode Hu�man style asynchronous cir-

cuits is often a Hu�man �ow table which represents an asynchronous �nite state

machine (ASFM). The circuit consists of primary input signals (a, b, c in Fig-

ure 2.3 ), primary output signals (x, y, z ), state signals (feedback signals from

output to input, M, N, m, n) and the combinational part of the circuit. In the ini-

tial state, one input of the circuit is allowed to change. Then the combinational

part of the circuit starts to compute the new output value and the next state

value. When the environment receives the new output value, it cannot provide

a new input transition until the circuit becomes stable after receiving the next

state value.

The Hu�man style asynchronous circuits, which are quite similar to the syn-

chronous circuits, are easier to design compared to those in other design methods.

But this kind of circuits has two limitations. Firstly, the operations of the circuit

must follow a strict order that one input must change �rst followed by the state

signals and the output signals. Therefore, concurrency between the input changes

and output changes is not allowed (also the �nite state machine cannot depict

this kind of concurrency). Secondly, delays or other techniques must be used to

guarantee that the next state value cannot propagate to the combinational part

too early and the environment does not provide a new input transition too early.

The fundamental mode Hu�man style asynchronous circuits have the limita-

tion that only one input could change at one time. The early work related to the

synthesis of fundamental mode Hu�man style asynchronous circuit is presented

in [13] [14]. Steven Nowick proposed a burst mode Hu�man style asynchronous

paradigm in [15], which expanded the concurrency to allow a constrained set of
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2.5 Asynchronous control circuits

input signals (input burst) to change concurrently. However, the burst mode

asynchronous circuits still do not allow the concurrencies between input bursts

and output bursts and still require the timing constraints in the fundamental

mode. The synthesis of the burst mode asynchronous circuits is automated in

the tool MINIMALIST[16].

The burst mode design style is further expanded by Yun and Dill into the

extended burst mode design style[17][18], which allows an input signal to change

concurrently with output signal and allows control �ow to depend on the input

levels. With these extensions, the burst mode design style covers a wide spectrum

of sequential ranging from asynchronous to synchronous. The extended burst

mode speci�cation could be synthesized by the 3D synthesis tool [19].

Environment

Huffman style 

asynchronous

circuit

Muller style 

asynchronous

circuit

a

Environment

b
c

x
y
z
M
N

m
n

a
b
c

x
y
z

(a) (b)

Figure 2.3: The Hu�man style asynchronous circuit and the Muller style

asynchronous circuit -

The Muller style asynchronous circuits : Unlike the Hu�man style asynchronous

circuits, the Muller style circuits do not put so many restrictions on speci�cations

and the environment. The schematic diagram of the Muller style circuit is pre-

sented in Figure 2.3 (b). The operation of the circuit is based on the following
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2.5 Asynchronous control circuits

protocol: the environment is allowed to provide new inputs as soon as it sees ex-

pected outputs. Also, the speci�cation of Muller style circuits does not constraint

the concurrency between signals. The design of input-output mode Muller style

asynchronous circuits was introduced in [20] [21].

The Delay-Insensitive (DI) circuits :

The DI circuits are one kind of Muller style asynchronous circuits that work

correctly even if every wire and gate has unbounded delay. A very important type

of gate in DI circuits is a C-element. The symbol and the truth table of a 2-input

C-element is shown in Figure 2.4. A more general de�nition for C-element is that

output changes if and only if all of its inputs change. So, an inverter is also a

1-input C-element. Among all asynchronous design paradigms, only DI circuits

do not have any timing assumption. So, DI circuits could tolerate arbitrary delay

variations on their components.

But as was proved in [22], the DI circuits are quite limited: if an autonomous

DI circuit is built of single output gates, then all gates must be C-elements.

Moreover, the C-element itself does not have a DI implementation built of basic

gates[23].

C

a

b

c

a b c

0 0
0 1

1 0
1 1

0
c

c
1

n-1

n-1

Figure 2.4: A 2-input C-element -

The Speed-Independent (SI) circuits :
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2.6 Discussions on the delay model of SI circuits

The DI circuits are quite limited and most practical speci�cations do not have

DI implementations. The SI circuits are usually adopted to enlarge speci�cations

that could be synthesized. As was proved in [24], there exists an SI implemen-

tation for any deterministic computation1. The SI circuits also allow unbounded

delays on gates, but wires in a fork must have the same magnitude delay. If the

delays on wires in a fork (since they have the same magnitude) are combined

into the corresponding gate delay, the timing assumption behind the SI circuits

is equal to say that gates in an SI could have unbounded delays but wires are

instantaneous.

2.6 Discussions on the delay model of SI circuits

Glitches are unwanted transitions on a signal often generated by the delay vari-

ations on gates and wires. Synchronous circuits could use the clock to �lter the

glitches to prevent them from causing hazards. While in asynchronous circuits,

especially for the circuits in input-output mode, all signals should be valid at any

time and therefore any glitch could be recognized as a pre-mature transition.

The appearances of glitches are usually dependent on the delay model. The

pure delay is usually considered to be a safer delay model compared to the inertial

delay, because potential glitches might be absorbed by an inertial delay if they are

narrow enough. But in [26], the author exempli�es that a circuit might manifest a

1Even though the Quasi Delay Insensitive (QDI) circuits [25] have di�erent de�nition, spec-
i�cation form and synthesis �ow, they behaviorally equal to the SI circuits. In this thesis, the
QDI circuits are indistinguishably recognized as the SI circuits.
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2.6 Discussions on the delay model of SI circuits

hazard under inertial delay model while it would be safe under pure delay model.

One example of this situation is presented in Figure 2.5, where gate x is an

internal gate and gate y is a primary output. There are two glitches appear on

the two inputs a and b. The output of gate y is expected to stay at '1'. Assume

the gate y has a pure delay. If the delay model of gate x is pure (case 1 in

Figure 2.5), then the glitch on input a will be canceled out by the glitch on gate

x, the primary output y is hazard-free. However, if the gate x has an inertial

delay (the gate y is still under pure delay model) then the glitch on input a will

go through y and appear at the primary output as a hazard(case 2 in Figure 2.5).

y

x

'0'
a

glitches

a

b
'1'

x

b

y

x

y

case1:

   x pure delay

   y pure delay

case2:

   x inertial delay

   y pure delay

Figure 2.5: Glitches with respect to delay models -

The above example shows that the pure delay model is not always safer than

the inertial delay model. But it is only true when one glitch is used to cancel

out another glitch. When we discuss the glitch-free implementation (no glitches
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2.6 Discussions on the delay model of SI circuits

are allowed at any signal), the pure delay model will always be a safer mode

compared with the inertial delay model.
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Chapter 3

Speed-independent Circuits

The class of asynchronous circuits is a broad class. Usually, each design paradigm

has its own �ow. This chapter further explains why SI design is more interesting

than other asynchronous design paradigms. Also, this chapter introduces the

mathematical models used in the SI design �ow.

3.1 Why SI design

As was introduced in the previous chapter, there are many asynchronous design

paradigms. Unfortunately, these paradigms have totally di�erent design �ows.

Synthesis techniques for one kind of design cannot be used in others. In this

thesis we adopt the SI design, which we think has the following advantages over

others:

Strong variation tolerance ability :

The SI design which only has an isochronic fork timing assumption is robust
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3.1 Why SI design

to process variations and harsh environment.

As the technology develops, process variations become quite severe. The de-

sign paradigms that need to evaluate the real timing or compare the relative

timing between similar components become unreliable. Moreover, all kinds of

unreliable environments could appear as the portability of devices increases. The

power supply might be from the energy harvesting devices and/or the circuit it-

self might operate under subthreshold voltage. The SI design has been proved

to adjust well to the harsh environment, while other design paradigms are more

vulnerable to variations.

As will be shown in the following chapters, the isochronic fork timing assump-

tion could be safely relaxed into a much looser timing assumption and this timing

assumption is easier to implement. The overhead to �x the potential hazards is

not expensive.

Comparatively well supported by EDA tools :

One critical obstacle to asynchronous design for general use is the lake of

EDA tool support. Many commercial circuits like [27] and [28] involve remarkable

manual e�orts. Compared with other asynchronous design paradigms, SI design

is comparatively well studied and better supported by EDA tools in the design

�ow. For example, there are [29] [30] [31] [32] [33] and [34] for synthesis. [35] [36]

[37] and [38] for decomposition and technology mapping, [39] [40] [41] and [42]

for veri�cation and [43] for testing. Almost each step in design �ow is supported

or partially supported by existing automation techniques.
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3.2 Petri Net

3.2 Petri Net

Petri net was �rst formally introduced by Carl Adam Petri in his Ph.D. the-

sis [44] as a modeling language for discrete distributed systems. It has strict

mathematical de�nition and semantics as well as visually graphic representation.

The explicit representations of enabling, disabling, concurrency and con�ict make

Petri Net quite suitable to model asynchronous systems. Especially, one partic-

ular subset of interpreted Petri Net, called the Signal Transition Graph is quite

popular in describing the behavior of SI circuits. Formally,

A Petri Net (PN) is a quadruple N = (P, T, F,m0), where

P is a �nite set of places ,

T is a �nite set of transitions ,

F ⊆ (P × T ) ∪ (T × P ) is a �ow relation and

m0: P → N is the initial marking.

Places represent conditions and are usually depicted as circles (©) in graphical

representation and transitions are events in a system and usually denoted by

bars (−). A place p ∈ P (transition t ∈ T ) is an input place (transition) of a

transition t ∈ T (place p ∈ P ) if p × t ∈ F (t × p ∈ F ) or is an output place

(transition) of a transition t (place p) if t× p ∈ F (p× t ∈ F ). The set of input

places (transitions) of a transition t (place p) is denoted by •t (•p) and the set of

output places (transitions) of a transition t (place p) is denoted by t• (p•). This

de�nition also applies to a set of places (transitions). For example, for the set of

places P1 ⊆ P , •P1 =
⋃

p∈P1

•p.

The marking of a PN is a function M : P → N, which gives each place a
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3.2 Petri Net

non-negative integer representing the number of tokens in this place. A place p

is marked if M(p) > 0, otherwise it is blank. Graphically, a token is drawn as a

dot (•).

A transition t is enabled in a marking m, if every place in •t is marked. An

enabled transition may �re, which will remove one token in each place in •t and

add one token to each place in t•. This �ring will change the marking m into a

new marking m′ and this transformation is denoted by m
t−→ m′.

A marking m′ is said to be reachable from marking m, if there exists a �ring

sequence σ : t1t2. . . tn which transforms the marking m to m′. The marking set

M of a PN is the set of all markings reachable from the initial marking m0.

p1

t1

t2 t3

t4

p2 p3

p4 p5

p1

t1

t2 t3

t4

p2 p3

p4 p5

Figure 3.1: A PN example -

The PN example in the left diagram in Figure 3.1 has �ve places P =

{p1, p2, p3, p4, p5}, four transitions T = {t1, t2, t3, t4} and the initial marking m0 =

(1, 0, 0, 0, 0). t1 is the only transition that is enabled in the initial marking. When

it �res, the initial marking transfers into another marking m1 = (0, 1, 1, 0, 0) as

is shown in the right diagram in Figure 3.1. The marking set of this PN is
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3.2 Petri Net

{(1, 0, 0, 0, 0),(0, 1, 1, 0, 0),(0, 0, 1, 1, 0),(0, 1, 0, 0, 1),(0, 0, 0, 1, 1)}.

Besides the basic semantics of the PN, the properties and concepts [45] intro-

duced below are often involved when certain kinds of PN are used to depict the

behavior of asynchronous circuits.

A transition t is said to be live in a marking m, if there exists a marking m′

reachable from m, such that t is enabled in m′. A PN is live if every transition is

live in any reachable marking from the initial marking m0.

A PN is safe if each place could have at most one token in any reachable

marking from the initial marking m0.

A place is said to be a choice place [46] if it has more than one output transi-

tion. A place is said to be a merge place if it has more than one input transition.

A choice place is further a free-choice place if this place is the only input place of

all of its output transitions. A PN is a free-choice PN if all its choice places are

free-choice places. A PN is said to be a Marked Graph (MG) if it does not have

any choice and merge place.

Two transitions t1 and t2 are in con�ict , if there is a marking m, where t1

and t2 are enabled but �re one will make another from enabled to disabled in the

resulting marking. t1 and t2 are concurrent if for all markings, where t1 and t2

are both enabled, they are not in con�ict.

The PN shown in the left diagram of Figure 3.2 is neither live nor free-choice.

The transition t3 will never be enabled and it has two choice place p2 and p3 as

its input places. The PN shown in the middle diagram of Figure 3.2 is not safe

because every place in it could have up to two tokens; the transitions t1 and t3

are concurrent in this net. Finally, the PN in the right diagram of Figure 3.2 is
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p1
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p2 p3

t1

p1 p2

p3 p4

t1

t2

t3

p2 p3

p4

p1

t1 t2

t3 t4

Figure 3.2: PN properties -

live, safe and free-choice and the transitions t1 and t2 are in con�ict.

A transition t1 (t2) is a predecessor transition (successor transition) of tran-

sition t2 (t1), if t
•
1 ∩• t2 6= ∅ and denoted by t1 ⇒ t2. The set of predecessor

transitions (successor transition) of transition t is denoted by ⊳t(t⊲).

3.3 Signal Transition Graph

The signal transition graph, which is an interpreted PN, was introduced in [47]

(called Signal Graph) and [48] as a high level description of asynchronous cir-

cuits. The transitions in the underlying PN are signal transitions in the circuit.

Formally,

A Signal Transition Graph (STG) is a triple G = (N,A, λ), where

N is the underlying PN,

A is a �nite set of signals and

λ is a labeling function which assigns transitions in N to A× {+,−}.

For all a ∈ A, a+ depicts a rising transition (from logic low to logic high) on
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3.3 Signal Transition Graph

signal a, a− depicts a falling transition (from logic high to logic low) on signal

a and a∗ is used to depict either a+ or a−. The index i (like a ∗ /i) is used

to distinguish multiple occurrences of transitions on the same signal in an STG

when necessary.

As a special kind of PN, STG inherits all the semantics belonging to PN.

Moreover, in order to model the SI circuits, STG needs ful�lling additional re-

quirements.

Usually, STG is produced by the designer either manually from text descrip-

tion, or by translating the timing diagram with some automatic tools [49]. The

STG, whose signal set A = I∪O, which only depicts the interactions between the

circuit and the environment, is called a speci�cation STG , denoted by STGspec;

while the STG, whose signal set A = I ∪ R ∪ O that depicts all event orders in

an SI circuit, is called an implementation STG , denoted by STGimp.

The PN containing non-free-choice places or unsafe places could be very com-

plex for analyzing. In this thesis, the underlying PN of an STG is restricted

to be live, safe and free-choice if not speci�ed. One technique to process some

non-free-choice STGs will be discussed in the last chapter of this thesis.

Graphically, STG is often short-handed by omitting the places which have

only one input and output transitions and using labeled transitions to instead

the bars in the underlying PN. Figure 3.3 shows an SI circuit (left), in which,

I = {a, b, c}, R = {d} and O = {x, y}. Its STGspec (middle) only depicts the

signal transitions on circuit's interface while its STGimp (right) depicts all the

signal transitions within the circuit.

In an STG, the transitions on the same signal must have consistency . It means
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that in any �ring sequences, the rising transitions and falling transitions on the

same signal must appear alternatively.
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Figure 3.3: An SI circuit with its STGspec and STGimp -

3.4 State Graph

An STG explicitly describes the relations between events. So, the STG is suitable

for high level modeling and manipulating the behavior of an asynchronous system.

While, the logic synthesis, optimization and veri�cation are much easier to be

carried on a low level model, where the reachable states of an STG are explicitly

presented.

The state graph (also called the transition diagram in [47] or state transition

diagram in [9]) is a binary labeled �nite automaton. Each state in the �nite au-

tomaton is a reachable marking of its STG. The binary value of a state represents

the value of signals in the corresponding circuit.

A state graph (SG) is a quintuple SG = (A, S,E, π, s0), where
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3.4 State Graph

A is a �nite set of signals,

S is a set of states,

E = S × S is a set of transitions,

π is a labeling function which labels each state s ∈ S with a bit-vector over

A and

s0 is the initial state.

The value of signal a in state s is denoted by s(a). Two states s and s′ are

adjacent if (s, s′) ∈ E. A transition from state s to its adjacent state s′ by �ring

a∗ is denoted by s
a∗−→ s′. For s

a∗−→ s′ the triple (s, a∗, s′) is said to be consistent

if when a∗ = a+ then s(a) = 0, s′(a) = 1 and s(b) = s′(b) for all b ∈ A and b 6= a.

An SG is considered to have a consistent state encoding if each possible triple

(s, a∗, s) in this SG is consistent.

An SG of an STG could be derived by recursively �ring enabled transitions

from the initial marking and labeling the resulting marking set. An SG derived

from an STG will have a consistent state encoding if and only if the rising and

falling transitions on the same signal appear iteratively[48] in the STG.

The concept of region used data mining was introduced into the SG in [50] for

classifying the states in order to accelerate the manipulations on an SG. States

in each region have the same properties with respect to the corresponding signal.

Event a∗ is excited in state s if there exists a state s′ ∈ S such that s
a∗−→ s′.

Signal a is stable in state s if a∗ is not excited in s. A set of states S ′ ⊂ S is said

to be the i − th positive excitation region of signal a, denoted by ERi(a+), if it

is the i − th largest connected set of states such that for every state s ∈ S ′, a+

is excited in s. A set of states S ′ ⊂ S is said to be the i− th negative excitation
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3.4 State Graph

region of signal a, ERi(a−), if it is the i− th largest connected set of states such

that for every state s ∈ S ′, a− is excited in s. A set of states S ′ ⊂ S is said to be

the i− th positive quiescent region of signal a+, denoted by QRi(a+), if it is the

i− th largest connected set of states such that for every state s ∈ S ′, a is stable

and s(a) = 1. A set of states S ′ ⊂ S is said to be the i − th negative quiescent

region of signal a−, denoted by QRi(a−), if it is the i− th largest connected set

of states such that for every state s ∈ S ′, a is stable and s(a) = 0.

Figure 3.4 shows an STG and the SG derived from this STG. All regions

de�ned above are explicitly shadowed.
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3.5 Summary

This chapter introduces the popular models that are often adopted by existing

methods to synthesis and veri�cation SI circuits. The high level behavior of SI

circuits is often denoted by a labeled live and safe PN called the STG. The entire

reachable state of the circuit could be explicitly expressed by one kind of low

level �nite automaton, called the SG. In the chapter 5, the STG will be used to

describe and manipulate the event causalities in an SI circuit and the hazards will

be checked in the corresponding SG of the STG. The combination use of STG

and SG makes the proposed method work e�ciently.
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Chapter 4

Timing Issues in SI Circuits

The timing issues for SI circuits have attracted lots of attention from researchers.

This chapter presents the main factors that would cause the failure of the isochronic

fork timing assumption. A relaxed timing assumption that will be adopted in the

following chapters will also be introduced.

4.1 Timing assumptions in SI circuits

The cornerstone of SI circuits is the concept of acknowledgement . We say one

signal transition a∗ is acknowledged by another signal transition b∗ if b∗ cannot

happen until a∗ happens. E.g. for an AND gate with inputs a and b and output

o, one could say that the rising transition of o will acknowledge both a+ and b+;

but the falling transition of o could at most acknowledge one falling transition

either on a- or b-.

The fundamental assumption of the SI circuits is so called the isochronic
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4.2 Existing research on isochronic fork reliability

fork timing assumption, which assumes that when a transition at any branch

in a fan-out fork is acknowledged, this transition will also be acknowledged at

other branches in the fork. The hypothesis behind the assumption is that a

transition on a gate is only required to be acknowledged by one branch in its fan-

out fork. Those branches which are not acknowledged explicitly are considered

to be acknowledged by isochronic fork timing assumption.

4.2 Existing research on isochronic fork reliability

Much previous research has investigated the issues related to the isochronic fork

timing assumption. On the one hand, some researchers tried to improve the

circuit performance by introducing more aggressive timing assumptions to the

circuits. For example, in [51], researchers extended the isochronic fork into multi

level isochronic forks and in [50] concurrency reduction and lazy transition tim-

ing techniques were used to improve the circuit performance. On the other hand,

some researchers investigated the reliability of the isochronic fork timing assump-

tion [52] [53] [54] [55]. They tried to �nd out what aspects might cause the

failure of isochronic fork timing assumption and what was the consequence when

the isochronic fork timing assumption was no longer guaranteed.

The next few subsections present the possible causes that could lead to the

failure of the isochronic fork timing assumption. One could conclude that: as

the technology develops, isochronic forks become more and more unreliable and

additional techniques must be used to guarantee the correctness of SI circuits in

the near future.
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4.2 Existing research on isochronic fork reliability

4.2.1 Input negations

The �rst observation about the violation of isochronic fork is the input negations.

When a netlist is implemented, the input negations must be decomposed into

individual inverters. Glitches might appear if the delays of these inverters are

large enough.

x

y z

o

x

y z

oi

"0" "0"

slow

Figure 4.1: Glitches caused by inverter delay -

The left diagram in Figure 4.1 shows a circuit with initial values of the signals

x, y, z and o at ”0”, ”1”, ”0” and ”0” respectively. The output of the gate o is

expected to maintain at ”0” after x+ ⇒ y− ⇒ z+. But when the input inversion

bubble attached to the gate ”o” is decomposed into an individual gate i (as is

shown in the right diagram), this gate might stay at ”1” while gate z has risen

to ”1”. This will cause a positive glitch at the gate o.

When an SI circuit is synthesized from the SG based method such as petrify

[50], certain gates in the circuit are inevitable to contain input negations. In

[52], the author found an error caused by the input inverter and concluded that

in order to guarantee the correctness of SI circuits, certain inverters attached to
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4.2 Existing research on isochronic fork reliability

gate inputs must be considered having negligible delay compared to that of gates.

Much previous research has attempted to solve this problem by speci�cation

re�nement [56, 57]. These works tried to introduce additional signals in the

original speci�cations (e.g. STG) to make sure that the �nal synthesized circuit

did not have any input bubbles requiring negligible delays. These techniques often

generate compact and fast circuits. But they are not only hard to automate but

also not easy to utilize manually except for experienced designers and thus cannot

be considered as a general solution. Moreover, as the gate becomes faster, the

interconnect wire delay could far exceed the gate delay. The consequence is when

a long wire appears, its delay might be large enough for generating glitches even

though no inverters appear on it.

4.2.2 Threshold variations

In [53], the author investigated the situations under which glitches might appear

due to threshold variations. One important experiment showed that compared

with the delay introduced by the input negation or wire delays, the threshold

variations are more dangerous.

This situation is illustrated in Figure 4.2, where the circuit is in the same

initial state as in Figure 4.1. The output of gate o is expected to maintain at

”0” after x+ ⇒ y− ⇒ z+. In order to do so, the transition x+ must propagate

to the gate o before the transition z+ reaches the gate o. That is, the e�ect of

transition x+ must propagate slower through the lower path than through the

wire l1. If one increases the length of wire l2 in the fork, it will introduce extra
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4.2 Existing research on isochronic fork reliability

delay to the lower path and should not a�ect the correctness of the circuit. But if

the threshold voltage of gate y is lower than that of gate o, glitches could appear

when wire l2 is long enough.

x

y z

o

"0"

V  yth

V  oth

t

l1

l2

Figure 4.2: Glitch caused by threshold variation -

When the length of wire l2 increases, the capacitance of the whole fork will

thereby increase. A heavy capacitance will drive the transitions on gate x into

a slow slope. If the threshold of gate y is lower than that of gate o, the gate y

would see the rising transition on x before gate o does. Let us denote gate y sees

x+ τ time beyond gate o as depicted in Figure 4.2. If this τ is large enough, the

transition z+ will reach gate o before x+. A ”1” glitch will appear at gate o.

The threshold voltage variation is quite likely to destroy the isochronic fork

assumption and make the circuit malfunction. As was reported in [22], one circuit

malfunctioned due to the failure of isochronic fork requirement caused by the non-

uniformity of the threshold even in 1.6um process. Now, this situation is quite

severe, because the 3σ intra-die variation of the threshold voltage could reach up

to 42% [58].
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4.2.3 Bu�er insertion

As the process shrinks, the gate becomes more and more faster, however, the wire

delay does not decrease accordingly. Therefore the wire delay is quite likely to

dominate the delay of a circuit. In order to improve circuit performance, bu�ers

are inserted into the circuit to cut the long wire into small segments. The inserted

bu�er not only introduces extra delays on a wire (the same as the decomposed

inverters) but also destroys the equipotentiality of the fork.

Figure 4.3 illustrates this situation. In Figure 4.3, wire l1 is a long wire while

l2 is a comparatively short one. Before inserting a bu�er on wire l1, the response

time of wire l1 and wire l2 is quite close. Because wire l1 and l2 are in the same

fork, the response time of wire l2 will also be slowed down by the capacitance of

wire l1. But when a bu�er is inserted on wire l1 in order to cut the long wire l1

into two pieces(l1′ and l1′′). The bu�er also isolates the impedance of l1′′. The

impedance of wire l1′′ will no longer in�uence the response time of wire l2. So the

wire l1′′ only in�uence the delay of the upper branch; delay di�erence between two

branches will be enlarged. Two diagrams at the bottom of Figure 4.3 show the

simulation results of the response time of wire l1=800um and l2=100um before

and after inserting a bu�er in the middle of l1. This fork is driven by a bu�er,

the wire and gate feature is under 90nm process. As can be seen from these two

diagrams, the response time of both wires in the fork is reduced after inserting a

bu�er on wire l1. But the di�erences between two branches increase signi�cantly.
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4.3 Recent research on isochronic fork relaxation

As the technology develops, almost all features become more and more harmful

to the isochronicity of the fan-out forks. Much recent research has investigated

the situation when the isochronic fork is relaxed.

In [54], authors proposed an algorithm to �nd out a set of timing constraints

that could guarantee the correctness of a given SI circuit when the isochronic fork

timing assumption is eliminated. Their technique directly compared transitions

in the STG to decide whether a circuit glitches or not. Their technique is quite

restricted, as it is applicable to simple STG only, and judge whether a circuit will

glitch on its high level speci�cation will lead to inaccuracies. The hazards should

be analyzed in lower level such as the SG where each reachable state is explicitly

exposed. Moreover, their technique needs to represent each wire in the circuit by

a signal explicitly. If this is done, the resulting STG will not be safe and thus

not easy for further investigation. One example for the un-safeness is presented

in Figure 4.4. An SI circuit and its STG are shown in diagrams (a) and (b).

Diagram (c) explicitly denotes all wires in the circuit and diagram (d) presents

the STG corresponding to (c) when the isochronic fork assumption is removed.

One could see that, in diagram (d), certain transitions (a′′+, c′+, b′− and c′′−)

will not be followed by any transition. (These transitions are acknowledged by

the isochronic fork timing assumption. For example, the dashed arc a′′+ ⇒ d+ in

diagram (d) means when the transition a′+ is acknowledged by d+, a′′+ will also

be acknowledged by d+ due to the isochronic fork timing assumption. However,

this implicit acknowledgement arc cannot be treated as an ordinary arc in PN
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4.3 Recent research on isochronic fork relaxation

and d+ could �re without waiting for the �ring of a′′+). The input places (e.g.

< a+, a′′+ >) to these transitions will not be safe.

In the following chapters, we adopt another timing assumption which will

be explained below. This timing assumption is quite reasonable and convenient

for developing an algorithm to check the hazards and generate a set of timing

constraints for the correctness of a given SI circuit.

Recent research has proven that the isochronic fork timing assumption for SI

circuits could be relaxed into a weaker and easier satis�able timing assumption

[55] without in�uencing the correctness of the circuit.

In the left diagram of Figure 4.5, wires l1 and l2 in a fork feed to the same

gate y. They are called the intra-operator fork . While wires l1 and l3 feed to

di�erent gates. They are called the inter-operator fork [55]. In [55] the authors

relaxed the isochronic fork timing assumption into the strong intra-operator fork

assumption, which assumes that all the intra-operator forks in an SI circuit are

isochronic.

This assumption relaxes the isochronicity hypothesis between the wires which

feed to di�erent gates. The only timing assumption is that wires in a fork that

feed to the same gate are considered to be isochronic. The authors proved that

any SI circuit is hazard-free under strong intra-operator fork assumption if this

circuit does not have any adversary path. This is called the adversary path timing

assumption.

An acknowledge path is an adversary path with respect to a wire if the path

starts in the same fork with this wire, feeds to the same gate as the wire does

and a transition propagates through the path faster than through the wire.
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For example, in the left diagram of Figure 4.6, if a transition on gate x prop-

agates through wire l2, gate u, and wire l3 faster than through the wire l1, then

the path wire l2, gate u and wire l3 is an (3-level) adversary path with respect

to wire l1.

In [55], authors proved the equivalence of the isochronic fork timing assump-

tion and the adversary path timing assumption. They also claimed that the

adversary path timing assumption is the weakest timing assumption that is both

necessary and su�cient for the correctness of SI circuits.

Their work provides a good direction on hazard detection when the isochronic

fork is relaxed but the problem still exists:

Firstly, the adversary path timing assumption is neither the weakest nor a

necessary timing assumption for SI circuits. The isochronic fork timing assump-

tion is only a su�cient but not a necessary timing assumption for the correctness

of SI circuits. So, the equivalence with isochronic fork timing assumption cannot

prove the necessity of the adversary path timing assumption with respect to SI

circuits. In Figure 4.6, the left diagram shows a circuit and the right diagram

shows its STG segment. If the transition u+ caused by x+ reaches the gate v

before x+ arrives at gate v, then the wire l2, gate u and wire l3 is an adversary

path with respect to the wire l1. But this adversary path will not cause any

hazard in the circuit. This counter example shows that the adversary path tim-

ing assumption includes some unnecessary timing constraints and could still be

relaxed.

Secondly, in [55] authors only suggested a condition but did not propose any

method to �nd out all potential adversary paths in a given SI circuit under a
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speci�cation.

In the following chapters, we will relax the isochronic fork timing assumption

into the intra-operator fork timing assumption as [55] did, and propose a method

to obtain the weakest timing constraints that could guarantee the correctness of

an SI circuit. The reason we adopt the intra-operator fork timing assumption is

that the delay variations (caused by wire length variations, threshold variation

and so on) are more controllable to the wires that feed into the same gate than

those feed to the di�erent gates. The wires in a fork that feed to the same gate

are usually in the same length range and the threshold variation of transistors in

a single gate is not that bad. If the threshold variation of transistors in a single

gate is severe in the future, the standard cell of a gate could be made to contain

a bu�er to limit the capacitance of the fork as shown in the right diagram in

Figure 4.5.

4.4 Summary

This chapter mainly introduces the aspects that could cause the failure of the

isochronic fork timing assumption and reviews the existing research about the

timing issues related to SI circuits. All these aspects will become worse as the

semiconductor technology develops. So, the isochronic fork timing assumption

must be relaxed into a reasonable weaker timing assumption. The intra-operator

fork timing assumption proposed by existing research will be adopted in this the-

sis. The correct implementation of asynchronous circuits under severe process

variations could be achieved by designing them in SI mode using the existing
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methods and tools �rst, and then relaxing the isochronic fork timing assumption

and generating a set of su�cient timing constraints for the circuit to work cor-

rectly under the new timing assumption. The technique to generate the set of

timing constraints will be introduced in detail in the next chapter.
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Chapter 5

Hazard checking method

A small �aw in a circuit could cause heavy cost. A famous example is the Pentium

FDIV bug, which cost over $500 million. Veri�cation is the procedure which

checks whether a circuit behaves according to its speci�cation. As the complexity

of the integrated circuit grows, veri�cation is much more important. This is

especially important for asynchronous designs, which often involve error-prone

manual e�orts.

However, veri�cation is often computationally expensive, especially for asyn-

chronous circuits. Without latches to cut the entire circuit into small pieces,

the veri�cation usually needs to consider the circuit as a whole. This makes

exploration of the possible reachable states exponential to the total number of

signals for highly concurrent circuits. Veri�cation is costly even for moderate size

circuits.
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5.1 Introduction

Veri�cation is an important step in circuit design, which checks whether a circuit

conforms to its speci�cation. The veri�cation of SI circuits is often carried in

two steps [40] [39]. The �rst step checks whether the logic of the synthesized

circuit satis�es the speci�cation (functional correctness). The second step checks

whether the circuit is SI, namely hazard-free under isochronic fork timing assump-

tion (behavioral correctness). Existing techniques often use di�erent approaches

such as hierarchical veri�cation [39] or unfolding [38] to avoid exploring the entire

reachability space. However, the isochronic fork assumption is challenged by the

shrinking technology. The timing veri�cation for SI circuits should also consider

the situation when the isochoric fork assumption is no longer guaranteed. In-

deed, all SI circuits that are not DI will exhibit hazards when the isochronic fork

assumption is violated. The task of this research is that given an SI circuit and

its speci�cation, to �nd a set of timing constraints such that when the isochronic

fork timing assumption is violated, the circuit is still hazard-free. These timing

constraints should be as loose as possible.

There are some recent publications which investigate the timing issues when

the isochronic fork assumption is relaxed. For example, [59] investigates the cost

by changing the interfaces between logic blocks from SI to DI, in which some

conditions related to relaxing SI into DI on STG are discussed. [54] attempts to

investigate the technique that could generate timing constraints that would be

su�cient for the correctness of SI circuits when the isochronic fork is relaxed. The

technique proposed in [54] tries to �nd all unacknowledged transitions appearing
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at one gate's fan-ins and judges whether these unacknowledged transitions would

cause hazards. However, this technique judges the hazards directly at the higher

speci�cation level (STG level) where some important properties such as OR-

causality are invisible. [55] gives a formal proof that the isochronic fork timing

assumption could be replaced by a weaker "adversary path timing assumption"

without a�ecting the correctness of the circuit. However, without considering the

function of the gates in the circuit, the adversary path timing assumption is still

too strong.

5.1.1 Overall �ow

The overall �ow of the proposed method for designing SI circuits under severe

variations in deep-submicron technology process is shown in Figure 5.1.
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The starting point of this work is a high level STG, which speci�es the desired

behavior of the circuit, and a corresponding SI circuit (The circuit is required to

be behaviorally correct with respect to the STG speci�cation. This could be

done by existing veri�cation tools such as [40] [39] and will not be checked in this

work).

Currently, the STG that describes an SI circuit needs to be free-choice as the

technique presented in this work requires to decompose the STG into a set of

MGs that cover this STG. No algorithm to decompose a non-free-choice PN into

a set of MGs has been published. One technique to process some non-free-choice

STGs will be discussed in the Chapter 8.

As the events in the STG consist of transitions on gate variables, each transi-

tion on gate variable must be followed by another one. This indicates that there

will be a local STG for each gate, whose transitions are only these transitions

on its fan-ins and fan-out signals. A local STG explicitly depicts the ordering

relations of the transitions on this gate and could be derived by projecting each

MG component of STG on the variables related to this gate. The local STG

could be seen as the local environment of a gate, which provides input transitions

to the gate and receives output transitions from the gate.

Then the local STG is checked to see whether it contains timing orderings

that rely on isochronic fork assumption. If it does, the tightest timing ordering

(most likely to be violated due to the process variations) will be picked and a

new STG with this timing ordering relaxed will be generated.

The circuit will then be checked under the newly generated STG to see

whether it is hazard-free. If true, the new STG will be accepted which has
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one adversary path less than the old STG. If not true, this timing ordering must

be guaranteed for the correctness of the circuit. A timing constraint which de-

picts this ordering will be added into the Relative timing constraint (Rt) set and

this timing orderings will be marked as "guaranteed already". STG splitting is

required when the OR-causality appears at the relaxed STG. This situation will

be discussed in detail in the following sections.

The process terminates when no timing orderings in the �nal STG rely on

isochronic fork assumption (guaranteed by acknowledgement or by timing con-

straints). The possible use of delay padding is the �nal step, which will be brie�y

discussed in section 5.7.

5.2 Deriving the Local STG

In this thesis, the STG is used as the high level speci�cation of an SI circuit. An

STG that only describes how a circuit C behaves with its environment through

interface protocol is called the speci�cation STG denoted by STGspec. The speci-

�cation STG depicts the transition relations on primary input and output signals

and is often used as a high level function description of the desired circuit. An SI

circuit could be synthesized from a speci�cation STG manually by an experienced

designer or automatically by EDA tools such as petrify [60]. The synthesized cir-

cuit will have one signal for each internal gate besides the input and output

signals. An STG that depicts the transition relations of all signals of a circuit

C (input, output and internal signals) is called the implementation STG of the

circuit and is denoted by STGimp.
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5.2.1 Decomposition of a free-choice STG into MGs

The choice places in a free-choice PN present the uncertainty of the orderings be-

tween events in this PN. One and only one successor transition of a (safe) marked

choice place will eventually �re and it is uncertain which successor transition will

�re in any one run. In this research, events in an STG are required to have certain

relations, the ambiguities brought by the choice places in a free-choice PN need

to be removed �rst.

An STG is a high level abstraction of all possible �ring traces of a circuit under

a certain environment. Due to the properties of SI circuits, choice places could

only appear in the preset of input signal transitions in a free-choice STG. So,

a free-choice STG could be recognized as the composition of multiple subSTGs

where each subSTG represents one �ring option at a choice place. Each choice

place can be decomposed to derive a set of subSTGs where that choice place

does not exist. The subSTGs are called the MG components of the STG, where

the ordering relation between any two transitions is certain and explicit. Hack

introduced an algorithm in [8], which decomposes a free-choice PN into MG

components by MG allocation.

A PN N ′ = (P ′, T ′, F ′,m′
0) is a subnet of PN N = (P, T, F,m0) if T ′ ⊆ T ,

P ′ ⊆ P and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)).

A subnet N ′ = (P ′, T ′, F ′,m′
0) of N = (P, T, F,m0) is a transition generated

subnet of N if for each t′ ∈ T ′ we have •t′ =• t and t′• = t•. A transition generated

subnet N ′ is an MG component of N if N ′ is an MG.

A set of MG components cover a PN N if every transition in N is in at least
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5.2 Deriving the Local STG

one component.

An MG allocation on a free-choice net N = (P, T, F,m0) is a function allo :

P 7→ T such that allo(p) ∈ p•. For every place p only one of its output transi-

tions is allocated, others are eliminated in the allocation. Let eli(T ) and eli(P )

denote the set of eliminated transitions and eliminated places, the MG reduction

algorithm in [8] works like this

First step, eliminate all unallocated transitions: ∀p ∈ P : p•\allo(p) ⊆ eli(T ),

Second step, eliminate the places whose input transitions are all eliminated:

•p ⊆ eli(T ) ⇔ p ∈ eli(P ),

Third step, eliminate the transitions which has at least one input place elim-

inated: •t ∩ eli(P ) 6= ∅ ⇔ t ∈ eli(T ).

This reduction procedure starts from the �rst step and repeats second and

third steps until eli(T ) and eli(P ) do not change any more.

One free-choice PN and its MG components are shown in Figure 5.2.
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Figure 5.2: A live and safe free-choice PN (a), and its MG components

(b)-(d) -
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5.2 Deriving the Local STG

5.2.2 Projecting MG components on operator signals

The implementation STG explicitly shows the transition relations of all signals

in a circuit. However, the value of a gate signal only depends on its fan-in

and fan-out signals. In an SI circuits, each gate could be seen interacting only

with its local environment, which provides input transitions to the gate's fan-ins

and expects output transitions from the gate's fan-out. This local environment

only contains the signal transitions related to this gate and hides all other signal

transitions in the circuit. It could be deduced that if every gate behaves according

to the speci�cation (not generating the premature transitions on its fan-out,thus

providing a "correct" environment for the next level gates), the entire circuit will

satisfy the speci�cation. This local environment of a gate hides all irrelevant

transitions and thus could be directly used to analyze the ordering causalities of

transitions on the gate. The local environment of a gate o is called the local STG

of o and could be derived by hiding all signals except for X = o∪ fan-in (o) by

projecting the STGimp on signals X.

Here, we review some notations which are introduced in the previous chapters.

A transition in an STG is denoted by its label, like t+, where t is the underlying

signal of the transition and + or− is used to denote the direction of the transition.

The notation t∗ is used to denote either a rising transition t+ or a falling transition

t− on signal t. The predecessor transitions (successor transitions) of a transition

t∗ denoted by ⊳t∗ (t∗⊲) is a set of transitions: t′∗ ∈⊳ t∗ ⇔ t′ ∗• ∩•t∗ 6= ∅ (

t′∗ ∈ t∗⊲ ⇔ t ∗• ∩•t′∗ 6= ∅).

In an MG component, all places are omitted and an arc t1∗ ⇒ t2∗ is used to
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5.3 Timing ordering relaxation

denote the relation t1∗ → p → t2∗ in the underlying PN. The arc t1∗ ⇒ t2∗ has

a token if the place p has a token.

The projection of a marked graph MG on a subset of signals X is depicted in

Algorithm 1. The algorithm picks each transition in MG (line 1) and eliminates

this transition if the signal of this transition is not in X (line 2 - 19). The

function insert arc (t1∗ ⇒ t2∗, MG) in line 5 inserts a new place pnew and two

relations t1∗ → pnew and pnew → t2∗ into the underlying PN ofMG. The function

delete arc (t1∗ ⇒ t2∗, MG) in line 13 and 16 removes the place < t1∗, t2∗ > and

two relations t1∗ →< t1∗, t2∗ > and < t1∗, t2∗ >→ t2∗ from the underlying PN

of MG. The function eliminate_redundant_arc (MG) eliminates the redundant

places in MG, which will be introduced in detail in section 5.3.3.

Figure 5.3 shows the process of projection of an STG segment on X where

signal t /∈ X.

t*

proj. on X

Figure 5.3: Projection of an STG segment on X and t /∈ X -

5.3 Timing ordering relaxation

In the local STG (MG component) of a gate, the relations between the input and

output events are explicitly depicted. There could be four kinds of arcs in a local
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5.3 Timing ordering relaxation

Algorithm 1 Proj (MG, X)

1: for all transition t∗ ∈ MG do
2: if (t /∈ X) then
3: for all t′∗ ∈⊳ t∗ do
4: for all t′′∗ ∈ t∗⊲ do
5: insert arc (t′∗ ⇒ t′′∗, MG)
6: if t′∗ ⇒ t∗ has a token then
7: add a token on arc t′∗ ⇒ t′′∗
8: end if
9: if t∗ ⇒ t′′∗ has a token then

10: add a token on arc t′∗ ⇒ t′′∗
11: end if
12: end for
13: delete arc (t′∗ ⇒ t∗, MG)
14: end for
15: for all t′′∗ ∈ t∗⊲ do
16: delete arc (t∗ ⇒ t′′∗, MG)
17: end for
18: delete transition t∗
19: end if
20: MG = eliminate_redundant_arc (MG)
21: end for
22: return STG
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5.3 Timing ordering relaxation

STG, which will be analyzed in detail in the following subsection.

5.3.1 Classi�cation of arcs in the local STG

In the local STG of gate a, events are the transitions on input and output signals.

There could be four kinds of arcs in the STG.

(1) x∗ ⇒ a∗, where x ∈ fan-in(a). This kind of arc denotes an acknowledge-

ment relation. The output transition a∗ will only occur, when the gate receives

the input transition x∗. The timing order denoted by this kind of arc (x∗ �res

before a∗) will always be ful�lled.

(2) a∗ ⇒ y∗, where y ∈ fan-in(a). This kind of arc denotes the interactions

between the gate and its environment. The transition y∗ will only be generated

by its environment after the environment sees the transition a∗ on the gate. Also

the timing order denoted by this kind of arc will always be ful�lled.

(3) x∗ ⇒ y∗, where x, y ∈ fan-in(a) and x = y. This kind of arc denotes a

timing order on the same input signal of gate a. No matter how large the delay

is on a wire, the transitions on the same wire will never be reversed by this delay.

So, the timing order denoted by this kind of arc will always be ful�lled.

(4) x∗ ⇒ y∗, where x, y ∈ fan-in(a) and x 6= y. This kind of arc denotes a

timing order that the transition x∗ will reach gate a before y∗. This indicates

that there is a path, starting from gate x ending at gate y, that y∗ needs the

occurrence x∗ to pass along this path. The timing order behind this kind of arc

might be reversed if the delay of the path is greater than the delay of the wire

between gate x and gate a, if so, the path is considered to be an adversary path
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5.3 Timing ordering relaxation

in [55].

a

b

p
a-

b- b+

o-

b-/2

a+b+/2
o+

Figure 5.4: An SR-latch with its local STG -

The Figure 5.4 shows an SR-latch1 together with its local STG. In this ex-

ample, {a− ⇒ o+, a+ ⇒ o−, b − /2 ⇒ o−} are type (1) arcs, {o− ⇒ b+,

o+ ⇒ b + /2} are type (2) arcs, {b+ ⇒ b−, b + /2 ⇒ b − /2} are type (3) arcs

and {b− ⇒ a−, b+ /2 ⇒ a+} arc type (4) arcs.

5.3.2 Arc relaxation algorithm

Each type (4) arc in the local STG represents a timing order between two events

that relies on isochronic fork timing assumption. For example, in Figure 5.5, the

arc x∗ ⇒ y∗ indicates that y∗ is caused by the event x∗ along an acknowledgement

path (shown as the dashed line in Figure 5.5), and because of the isochronic fork

timing assumption, x∗ is guaranteed to reach the gate o before y∗. When the

1The SR-latch is considered to be an atomic gate in the library as denoted by the dashed
line and is internally hazard-free. Also, the '00' input combination is not restricted, because
according to the de�nition (any gate has only one output) only one output will be used, the
outputs of two NAND gates do not need to be complemented. The potential races introduced
by the input combination from '00' to '11' will be excluded by disallowing this hazardous
concurrency between a+ and b+ according to the criterion introduced in section 5.4.
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x

...

y
o

Figure 5.5: Demonstration of a type (4) arc -

isochronic fork timing assumption is violated (modeled by a delay shown in the

right diagram), x∗ and y∗ could reach the gate o in any order. In an STG, this

equals to making the ordered events x∗ and y∗ concurrent and keeping any other

relations unchanged. The modi�ed STG would be a new speci�cation for the

gate, which allows the event y∗ to reach the gate before x∗.

Relaxation of an arc x∗ ⇒ y∗ such that x, y are all input signals and x 6= y

in an marked graph MG:

1) Delete the arc x∗ ⇒ y∗ in MG.

2) For all transitions bi∗ such that there exists an arc bi∗ ⇒ x∗ in the underly-

ing PN of MG, add the arc bi∗ ⇒ y∗ into the PN and mark the place < bi∗, y∗ >

if place < bi∗, x∗ > or < x∗, y∗ > is marked.

3) For all transitions di∗ such that there exists an arc y∗ ⇒ di∗ in the underly-

ing PN of MG, add the arc x∗ ⇒ di∗ into the PN and mark the place < x∗, di∗ >

if place < y∗, di∗ > or < x∗, y∗ > is marked.

In general, the relaxation of an arc x∗ ⇒ y∗ in an STG is shown in Figure 5.6

and detailed in Algorithm 2.

This relaxation operation of an arc x∗ ⇒ y∗ makes two ordered transitions x∗
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b*1 b*n

x*

y*
c*1 c*n

d*1 d*n
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a*1 a*n a*1 a*n... ...

Figure 5.6: relaxation of arc x∗ ⇒ y∗ in the most general case -

Algorithm 2 Relax (STG, x∗ ⇒ y∗)
1: for all bi∗ ∈⊳ x∗ do
2: insert arc (bi∗ ⇒ y∗, STG)
3: if the arc bi∗ ⇒ x∗ has a token then
4: add a token on arc bi∗ ⇒ y∗
5: end if
6: end for
7: for all di∗ ∈ y∗⊲ do
8: insert arc (x∗ ⇒ di∗, STG)
9: if the arc y∗ ⇒ di∗ has a token then

10: add a token on arc x∗ ⇒ di∗
11: end if
12: end for
13: if x∗ ⇒ y∗ has a token then
14: add a token on each newly inserted arc bi∗ ⇒ y∗ and x∗ ⇒ di∗
15: end if
16: delete arc (x∗ ⇒ y∗, STG)
17: STG = eliminate_redundant_arc (STG)
18: return STG
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5.3 Timing ordering relaxation

and y∗ concurrent and does not change their order relations with other transitions.

Lemma 1 : The relaxation of an arc x∗ ⇒ y∗ in a live and safe MG component

of a local STG does not in�uence the consistency and liveness.

Proof:

Consistency : According to the relaxation operation, the arc between the same

signal (e.g. a+ ⇒ a−) will not be relaxed. In any trace, if the rising and falling

transitions of a signal alternate in the original MG component, then they alternate

after relaxation. So, relaxation does not in�uence the consistency.

Liveness : The relaxation will delete one place < x∗, y∗ > from the MG and

add a set of places {< b∗, y∗ >|∀b∗ ∈⊳ x∗} and {< x∗, d∗ >|∀d∗ ∈ y∗⊲} into

the MG as was illustrated in Figure 5.6 and this relaxation does not change the

liveness of the MG,

If one transition t ∈ T is dead in the initial marking m0, then ∃p ∈• t : ∀m ∈

M,m(p) = 0, where M is the marking set of the initial marking m0. The only

places added into the MG are the places in subset of •y and •(y∗⊲), so, the only

transitions that might become dead after relaxation are y∗ and y∗⊲.

Without loss of generality, let us consider the newly added place pa =<

b1∗, y∗ > in 5.6. If ∀m ∈ M m(pa) = 0, due to the relaxation algorithm, the

following case must be true, m0(< x∗, y∗ >) = 0 ∧m0(< b1∗, y∗ >) = 0 ∧ b1∗ is

dead. Thus if the MG after relaxation is not live then the original MG must also

contain dead transitions. �

However, the relaxation of an arc might destroy the safeness of the original

MG, more than one token could be accumulated at a place.

One example is shown in Figure 5.7, where the newly added arc q− ⇒ a+
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5.3 Timing ordering relaxation

is not safe when the arc q− ⇒ p+ is relaxed in the original graph. However,

the relaxed MG will only become unsafe when the gate has redundant literals,

where redundant means that these literals could be removed without a�ecting

the behavior of the gate.
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Figure 5.7: un-safeness caused by relaxation -
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Figure 5.8: possible unsafe places after relaxation -

Lemma 2 : The relaxation of an arc x∗ ⇒ y∗ in a live and safe MG component

of a local STG does not in�uence safeness unless the gate has redundant literals,

where redundant means that these literals could be removed without a�ecting

the behavior of the gate.

Proof:
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5.3 Timing ordering relaxation

When an arc x∗ ⇒ y∗ in an MG is relaxed (as exempli�ed in Figure 5.8),

only the newly added places (arcs) < j∗, y∗ > and < x∗, k∗ > (where j∗ ∈⊳ x∗,

k∗ ∈ y∗⊲) could be unsafe.

If there is a transition k∗ ∈ y∗⊲ such that the place < x∗, k∗ > is unsafe then

it must be the case that the transition x∗ could �re twice without �ring transition

k∗. If this is the case, the original MG cannot have a cycle cyc = x∗ ⇒ y∗ ⇒

k∗ ⇒ σ ⇒ x∗ otherwise transition x∗ cannot �re twice without the �ring of k∗.

Moreover, because the place < x∗, y∗ > is safe in the original MG, there must be

a cycle cyc1 = x∗ ⇒ y∗ ⇒ σ′ ⇒ x∗, in the MG and for the same reason it must

be a cycle cyc2 = y∗ ⇒ k∗ ⇒ σ′′ ⇒ y∗, in the MG. The two cycles cyc1 and cyc2

cannot have common vertex other than y∗, otherwise, suppose they have another

common vertex l∗ then one cycle cyc3 = x∗ ⇒ y∗ ⇒ k∗ ⇒ l∗ ⇒ · · · ⇒ x∗ exists

in the MG, which contradicts that the MG cannot have a cycle cyc = x∗ ⇒ y∗ ⇒

k∗ ⇒ σ ⇒ x∗.This is shown in Figure 5.9.

x

y

k

... ...

...
...

l

*

*

*

*

Figure 5.9: If two cycles have a common vertex l -

The only possible shape of the MG that would have an unsafe place <

64



5.3 Timing ordering relaxation

x∗, k∗ >, k∗ ∈ y∗⊲ after relaxing the arc x∗ ⇒ y∗ is shown in Figure 5.10. After

relaxing the arc x∗ ⇒ y∗, ∀k∗ ∈ y∗⊲ such that there is no cycle which contains

both x∗ and k∗, the newly added place < x∗, k∗ > will be unsafe. This is because

that transition x∗ could continuously �re twice without �ring k∗, so if the arc

x∗ ⇒ k∗ was explicitly added, the corresponding place < x∗, k∗ > will be unsafe.

There will be one cycle containing all transitions on the signal x and one cycle con-

taining all transitions on the signal k. Otherwise, two transitions x∗ and x∗ (k∗

and k∗) will be concurrent, which violates the consistency property of the STG.

Without loss of generality, assume that cyc1 = x∗ ⇒ y∗ ⇒ σ′ ⇒ x∗ is the cycle

that contains all the transitions on the signal x and cyc2 = y∗ ⇒ k∗ ⇒ σ′′ ⇒ y∗

is the cycle that contains all the transitions on the signal k (as the two cycles in

�gure5.10). Due to our relaxation rule, only the arc between two input events

could be relaxed, the signal y cannot be the output signal of the gate (y must be

a input variable). At least one cycle between cyc1 and cyc2 does not contain any

transition on the output signal o; otherwise there will be two transitions o∗ and

o∗ appear at two cycles respectively. The consistency property of the STG will

be violated. It has been proved that y∗ is the only common vertex of two cycles,

this indicates that all the transitions on x or k are totally concurrent with all

the transitions on the output signal o. Without loss of generality, assume that

all the transitions on signal x are concurrent with all the transitions on signal

o. The transitions on x could �re freely, without any limitation to the �ring of

transitions on o. This indicates that the value of o does not depend on the value

of x. So, x is redundant.

By the same logic, the Figure 5.11 shows the only possible shape of the MG
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that would have an unsafe place < j∗, y∗ >, j∗ ∈⊳ x∗ after relaxing the arc

x∗ ⇒ y∗. The transition x∗ should be the only common vertex of the two cycles

containing j∗ and y∗, transition j∗ could �re twice without �ring transition y∗.

At least one signal between y and j is redundant. �

x

y

k

...
...

*

*

*

Figure 5.10: Shape of MG that will have an unsafe place < x∗, k∗ >,

k∗ ∈ y∗⊲ after relaxing x∗ ⇒ y∗ -
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Figure 5.11: Shape of the MG that will have an unsafe place < j∗, y∗ >,

j∗ ∈⊳ x∗ after relaxing x∗ ⇒ y∗ -

The top two diagrams in Figure 5.12 show the gate o, which contains a redun-

dant literal p, together with its local STG. The literal p is redundant because the

only cube c1 = bp that contains the literal p is covered by another cube c2 = b,
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5.3 Timing ordering relaxation

we have c1 ⊑ c2. The literal p is redundant in gate o, the value of gate o will

never depend on the literal p. So, other input signals and the output signal of

gate o could transition more than once without waiting for any transitions on

signal p. In this situation, if we do the relaxation on arc p− ⇒ b+ on the STG,

the resulting STG will not be safe. When the redundant literal p is removed from

the gate and from its local STG, as was shown at the bottom two diagrams in

Figure 5.12, relaxation will not break the safeness on the resulting STG.
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Figure 5.12: Gate o has a redundant literal p -
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5.3.3 Removing redundant arcs

The relaxation of a single arc will add a set of new arcs into the STG. Some of

the newly added arcs could be redundant. An arc is redundant 1 if the order

constraints imposed by this arc has been guaranteed by other arcs. E.g. in the

Figure 5.13, after relaxing the arcs b+ ⇒ a−, two arcs o+ ⇒ a− and b+ ⇒ o−

will be added, where the arc o+ ⇒ a− is a redundant arc. The arcs b+ ⇒ b− ⇒

o− have already constrained that b+ would happen before o−.

a+
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b+

a- b-
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a+

o+

b+

a- b-

o-

a+

o+

b+

a- b-

o-

Relax b+ a-
Remove 

redundant arcs

Figure 5.13: redundant arcs due to the relaxation -

Redundant arcs do not contribute to the �ow of an STG, but their existence

might complicate the relaxation and analysis processes. So, redundant arcs should

be detected and removed after new arcs are added into the STG.

1In this thesis, the term redundant is used to characterize the arcs and places which could
be eliminated without a�ecting the �ow sequences in the underlying STG. In other literature,
e.g. [61], di�erent terms (implicit place) might be used. Due to the fact, the redundancy and
implicitness is equivalent w.r.t. places in a live MG, the term redundant is used to generalize
this characteristic. The term implicit are used to characterize the un-drawn places in an MG.
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Please note that for each arc x∗ ⇒ y∗ in the local STG, there is an im-

plicit place denoted by < x∗, y∗ > on it. An arc is redundant means that the

corresponding place < x∗, y∗ > and the �ow relation w.r.t this place could be

eliminated without a�ecting the �ow sequences in the original STG. A redundant

place will never disable the �ring of one transition on its own [62]. This suggests

that the redundant place could be checked in an MG N = (P, T, F,m0) whose

marking set is M as follows,

A place p is redundant if ∀m ∈ M,m(p) = 0 ⇒ ∃p′ ∈ P∧p′ 6= p∧p′ ∈ •((p)•)∧

m(p′) = 0

However, this requires to generate the marking set of an STG and check each

marking in it. [61] suggests a method to check the redundancy of a place in an

MG structurally, which avoids the generation of marking set.

In [61], researchers had proved that in a live MG, a redundant place would

either be a loop-only place or a shortcut place.

In a live MG, a place p is a loop-only place if •p = p• ∧m0(p) = 1; a place p is

a shortcut place if there is a path σ =• p · · · p• ∧ p /∈ σ ∧∑

p′∈σ m0(p
′) ≤ m0(p).

The place p4 in the Figure 5.14 (a) is a shortcut place, because there is a

path σ = (x+, p2, y+, p3, x−) between two transitions •p4 = x+ and p•4 = x− and

m0(p4) ≥
∑

p′∈σ m0(p
′) = m0(p2) +m0(p3) = 0.

However, the place p11 in Figure 5.14 (b) is not a shortcut place, the path

connecting two transitions •p11 = b− and p•11 = b+, which contains the least

tokens, is shown by the dotted line in the graph. The total number of tokens on

this path is two which is greater than the number of tokens in place p11.

In order to check the redundancy of a place p0, one needs to check whether
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Figure 5.14: Property of shortcut places -
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there exists one path from •p0 to p•0 and the number of tokens on this path

should be less than or equal to the number of tokens in p0. This could be done by

changing the MG into an edge weighted directed graph and searching the shortest

path between two nodes •p0 and p•0 as was proposed in [61].

Given a marked graph MG = (T, P, F,m0), a directed graph G = (V,E)

is built by creating one node t for each transition t∗ ∈ T in MG and creating

one edge e = (•p, p•) for each place p ∈ P ∧ p 6= p0. The weight of each edge

e = (•p, p•) is the number of tokens in the place p in initial marking m0. The

edge weights in the directed graph G = (V,E) are non-negative and the shortest

path between two nodes could be solved by Dijkstra algorithm. A pseudo-code

for checking the redundancy of a place p0 in the marked graph MG is shown in

Algorithm 3. The time complexity of this algorithm is O(n2), where n is the

number of transitions in the MG.

The directed graphs corresponding to the MGs in Figure 5.14, which are used

to check the redundancy of the place p0, is shown in Figure 5.15. The dotted

arc corresponds to the place in the original MG for checking redundancy and. In

graph (a) in Figure 5.15, the shortest path from x+ to x− is x+, y+, x− whose

weight is 0, equal to the number of token in the place < x+, x− >. So, the place

< x+, x− > is redundant in the original MG. However, in graph (b), the shortest

path from b− to b+ is b−, c+, o+, a+, a−, o−, b+ whose weight is 2, larger than

the number of token in the place < b−, b+ >. So, the place < b−, b+ > is not

redundant.
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Algorithm 3 Check_place_redundancy (MG, p0)

1: V = ∅
2: E = ∅
3: for all transitions t∗ ∈ T in MG do
4: V = V ∪ t∗
5: end for
6: for all places p ∈ P and p 6= p0 in MG do
7: E = E ∪ (•p, p•)
8: w(•p, p•) = m0(p)
9: end for

10: SP = Dijkstra (V , E,w, •p0, p
•
0)

11: if m(p0) ≥ SP then
12: return true
13: else
14: return false
15: end if
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Figure 5.15: Check for shortcut places using Dijkstra's algorithm -
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5.4 Local STG relaxation and hazard criterion

5.4 Local STG relaxation and hazard criterion

5.4.1 Four relaxation cases

The relaxation of one arc in the STG, which will make two ordered transitions

into concurrent ones, will expand the reachable states of the STG. Whether this

relaxation is acceptable or not depends on whether the newly introduced states

cause glitches. A glitch is a premature transition, in which the output of a gate

is enabled to �re when it is expected to remain stable.

Timing conformance: A local STG of a gate o, is said to be in timing confor-

mance to gate o if in the SG of the STG: {fo↑(s) = 1|s ∈ ER(o+)∨s ∈ QR(o+)}

and {fo↓(s) = 1|s ∈ ER(o−) ∨ s ∈ QR(o−)}.

The timing conformance of a local STG with respect to a gate is that, the

output value of this gate should evaluated to "1" at each state in ER(o+) and

QR(o+) and should evaluated to "0" at each state in ER(o−) and QR(o−) in

the SG of STG.

The timing conformance of a local STG to a gate o = a · b is illustrated in

Figure 5.16, where diagram (a) and diagram (b) show the gate and its initial

local STG and the corresponding SG. Diagram (c) shows the STG, where the arc

a+ ⇒ b+ is relaxed, and the corresponding SG. In the SG of the resulting STG,

gate o evaluates to "1" in every state in ER(o+) and QR(o+) and evaluates to

"0" in every state in ER(o−) and QR(o−). So, the STG in diagram (c) is in

timing conformance to the gate o. However, the STG in diagram (d), which is

derived by relaxing the arc b− ⇒ a+ in diagram (b), is not in timing conformance

to the gate o. Because there is a state abo = 110 in QR(o−) at which the fo↑ = ab

73



5.4 Local STG relaxation and hazard criterion

a

b
o

b-

a+

b+

o+

a-

o-

010

000

abo

100

110

111

011

b-

a+

b+
o+

a-

o-

(a) (b)

b-

a+ b+

o+

a-

o-

010

000

abo

100

110

111

011

b-

a+

b+ o+

a-

o-

(c)

110
a+

b+

b-a+

b+

o+

a-

o-

010

000

abo

100

110

111

011

b-

a+

b+
o+

a-

o-

(d)

110
a+

b-

Figure 5.16: Illustration of timing conformance. (a) the gate and (b)-(d)

local STGs and the corresponding SGs -

74



5.4 Local STG relaxation and hazard criterion

evaluates to "1" and the gate would prematurely �re to "1" without waiting for

the transition b+ to come.

After relaxing one arc x∗ ⇒ y∗, if the resulting STG is in timing conformance

to the gate, it indicates that the gate will be glitch-free even when the transition

x∗ comes later than transition y∗. But the reverse is NOT always true. If the

resulting STG is not in timing conformance to the gate, the gate still could be

glitch-free if the violation of timing conformance is due to unnecessary relation

constraints or the so-called "OR-causality" [63] [64].

The prerequisite transition set of the i-th occurrence of an output o∗ is de�ned

as Epre(o ∗ /i) = {z∗ : z∗ ∈ (⊳o ∗ /i)}. The output transition should only �re

when all transitions in its prerequisite transition set have �red; otherwise, the

�ring of an output transition is a glitch. The prerequisite transition set for each

transition on output signal o is calculated before relaxation and is used to check

the correctness after this relaxation has been carried out.

When an arc x∗ ⇒ y∗ belongs to the local STG of gate o, for the SG of the

resulting STG, one and only one of the following four cases will happen.

Relaxation case 1: ∀s ∈ QR(o+), fo↓(s) = FALSE and ∀s ∈ QR(o−),

fo↑(s) = FALSE.
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Figure 5.17: Relaxation case 1 -
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5.4 Local STG relaxation and hazard criterion

Relaxation case 1 relates to the situation that the resulting STG is in timing

conformance to the gate. If so, the gate is guaranteed to be glitch-free under the

new STG.

Relaxation case 2: ∃s ∈ QR(o+) such that fo↓(s) = TRUE and ∀s ∈

QRi(o+) such that fo↓(s) = TRUE, s(z) = 1 if z+ ∈ Epre(o − /j); s(z) = 0

if z− ∈ Epre(o − /j), where QRi(o+) is followed by ERj(o−). Or similarly for

QR(o−), fo↑, QRi(o−) and ERj(o+).

w='0'

x

z

y
o

z+ x+

y+

o+

z+
x+ y+

o+

00000

00010 01000

01010 01100

01110

01111

z+ x+

x+ z+ y+

y+ z+

o+

00000

00010 01000

01010 01100

01110

01111

z+ x+

x+ z+ y+

x+ z+

o+

00100

y+

00110

x+y+

y+

z+

relax x+ -> y+

relaxation case 2.1

wxyzo wxyzo

Figure 5.18: Relaxation case 2 -

Relaxation case 2 relates to the situation that the gate evaluates to "0" ("1")

in some states in QR(o+) (QR(o−)), but in all these states, all the prerequisite

transitions have �red. Even if the resulting STG violated the timing conformance,

this situation does not indicate a glitch. This situation occurs when a transition,

which cannot be acknowledged by an output transition, is unnecessarily put into

the prerequisite set of an output transition.

The Figure 5.18 shows a gate o with its STG segment. The literal w remains at

"0" during this segment. When the arc x+ ⇒ y+ is relaxed, the transition x+ is

set to be one of the prerequisite events of o+. However, due to the gate function,

the occurrence of x+ cannot be acknowledged by o+, thus the gate becomes
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5.4 Local STG relaxation and hazard criterion

enabled to �re o+ in state '00110' (as is indicated by the dashed square in the

�gure) in QR(o−). This is not a premature �ring, because all the transitions

{z+, y+} in the prerequisite set of o+ in the STG before relaxing have �red; the

o+ is allowed to be �red.

Relaxation case 3: ∃s ∈ QRi(o+) such that fo↓(s) = TRUE and either

x+ ∈ Epre(o − /j) and s(x) = 0 or x− ∈ Epre(o − /j) and s(x) = 1, where

QRi(o+) is followed by ERj(o−). For all s that ful�lls all conditions above, x∗

is excited in s and s′ is the state obtained by �ring x∗ in s, s′ ∈ ERj(a−). Or

similarly for QR(o−), fo↑, QRi(o−) and ERj(o+).
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Figure 5.19: Relaxation case 3 -

Relaxation case 3 applies to the situation when the gate evaluates to "0"

("1") in some states in QR(o+) (QR(o−)), and for all these states, x∗ is excited

and the states reached by �ring x∗ is in ER(o−) (ER(o+)). Relaxation case 3

is still not a hazardous situation. Because in all states in QR(o+) or QR(o−)

where the gate is ready to transit, x∗ is the only transition that belongs to the

prerequisite set of o+ or o− that has not �red yet. The reason that the gate

becomes excited without waiting for transition x∗ after relaxing the arc x∗ ⇒ y∗

is that transition y∗ could make another clause in fo↑ or fo↓ become true. This is

called OR-causality in [63] and [64]. This is not a hazard because the arc x∗ ⇒ y∗
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5.4 Local STG relaxation and hazard criterion

indicates that (in gate y) x∗ is acknowledged by y∗, so when y∗ arrives, x∗ must

have occurred (even though x∗ has not propagated to gate o yet).

The Figure 5.19 shows a gate o with its STG segment. When the arc x+ ⇒ y+

is relaxed, the gate could reach a state '010' in QR(o−), in which x+ is enabled.

By �ring x+ in state '010' a new state '110', which is in ER(o+), is reached.

This corresponds to the relaxation case 3.

Relaxation case 4: ∃s ∈ QRi(o+), fo↓(s) = TRUE and either ∃z+ ∈

Epre(o − /j) and s(z) = 0 or ∃z− ∈ Epre(o − /j) and s(z) = 1, s′ is the state

by complementing the value of signal x in s and s′ /∈ ERj(o−)where QRi(o+) is

followed by ERj(o−). Or similarly for QR(o−), fo↑, QRi(o−) and ERj(o+).
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Figure 5.20: Relaxation case 4 -

Relaxation case 4 applies to the situation when an arc x∗ ⇒ y∗ is relaxed,

the gate becomes enabled in some states in QR(o+) in QR(o−) in the resulting

SG. For at least one of these states, not all the transitions in prerequisite set of

o− or o+ have �red and the state derived by complementing the x value is not

in ER(o−) or ER(o+).

In Figure 5.20, when the arc x+ ⇒ y− is relaxed, the gate could reach a

state '001' in QR(o+), in which the gate is enabled to transit to "0" and by
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5.4 Local STG relaxation and hazard criterion

complementing the value of x in state '001', the newly reach state '101' is still in

QR(o+). The relaxation case 4 is equal to that in the "problematic" state, there

exists another transition in the prerequisite set of o+ or o− other than x∗, which

has not �red yet.

The relaxation case 1 indicates the relaxation of arc x∗ ⇒ y∗ will be accepted

immediately. The STG will be updated for further operation. The relaxation

case 4 indicates the relaxation will be rejected and one timing constraint x∗ ≺ y∗

(which means that x∗ must reach the gate before y∗) will be generated to prevent

the gate from entering the hazardous states. The relaxation cases 2 and 3 requires

further modi�cations of the STG.

The relaxation case 2 happens when a transition x∗, which is not necessary for

the �ring of the output transition o∗, is relaxed into one of prerequisite transitions

of o∗. The gate o could become enabled without waiting for the occurrence of x∗,

so the gate becomes excited in some states in QR(o∗). In this case, x∗ should be

concurrent with o∗, which is done by relaxing the arc x∗ ⇒ o∗. There could be

two cases after making x∗ to be concurrent with o∗.

The �rst case is exempli�ed in Figure 5.21 (a), where after making x+ to

be concurrent with o+, fo↑ is true in every state in ER(o+). However, in the

second case, there exists one state s ∈ ER(o+) such that fo↑ is false in s. One

example for the second case is shown in Figure 5.21 (b), x+ is not necessary for

o+, because there is another transition z+ which is concurrent with o+ and if z+

reaches gate o earlier than x+, it will trigger o+ instead of x+. This means that

neither z+ nor x+ is necessary for o+, neither of them could be a prerequisite

transition of o+. So, when x+ is relaxed to be one of prerequisite transition of
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o+, it must be made to be concurrent with o+ as discussed above. However,

when x+ is modi�ed to be concurrent with o+, the ER(o+) could be entered by

just �ring y+ in the initial marking, where fo↑ is still false. This happens because

the enabling of gate o needs at least one transition between x+ and z+ to happen

�rst, but neither of them are necessary for o+, when both of them are concurrent

with o+, the ER(o+) could be entered when fo↑ is still false. This problem is

caused by the OR-causality, where the enabling of a gate could be caused by more

than one option. Both relaxation case 2 and case 3 could meet the OR-causality.

The details of OR-causality situation and decomposition of the OR-causality will

be speci�ed in detail in Chapter 6.

5.5 Optimal relaxation order

Di�erent relative timing constraint sets might be derived if arcs are relaxed in

di�erent orders. This is because there might be more than one way to prevent a

gate entering a hazardous state.

The diagram (a) in Figure 5.22 show an STG segment whose SG (shown in

diagram (b)) contains a hazardous state s. There are two approaches to forbid

the circuit to visit this hazardous state (timing constraints are denoted by &):

1) to force c+ before a+ (the corresponding STG segment and SG are shown in

diagram (c) and (d)); 2) to force b+ to come before a+ (the corresponding STG

segment and SG are shown in diagram (e) and (f)).

One example which shows di�erent timing constraints due to di�erent relax-

ation orderings is presented in Figure 5.23. Four di�erent sets of timing con-
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Figure 5.22: Preventing the gate entering hazardous state s -

straints could guarantee the correctness of the circuit:

1) {x+ ≺ y−, y+ ≺ z+} (relax x+ ⇒ z+ before y+ ⇒ z+ and then relax

y+ ⇒ x− before x+ ⇒ y−);

2) {y+ ≺ x−, y+ ≺ z+}(relax x+ ⇒ z+ before y+ ⇒ z+ and then relax

x+ ⇒ y− before y+ ⇒ x−);

3) {x+ ≺ z+, y+ ≺ x−} (relax y+ ⇒ z+ before x+ ⇒ z+ and then relax

x+ ⇒ y− before y+ ⇒ x−) and

4) {x+ ≺ z+, x+ ≺ y−} (relax y+ ⇒ z+ before x+ ⇒ z+ and then relax

y+ ⇒ x− before x+ ⇒ y−).

We prefer to generate the optimal one during the relaxation process rather

than generate all of the cases and choose the best one. Exhaustion of all relaxation

orders implies a time complexity of O(n! ), where n is the number of arcs to be
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relaxed, and most of these relaxations lead to the same results.
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Figure 5.23: Di�erent timing constraints due to di�erent relaxation or-

dering -

The weakest constraint set could be generated by relaxing the tightest arc at

each step. This will relax tighter arcs as much as possible before they become

the necessary timing requirement to avoid entering the hazardous state. In Fig-

ure 5.24, when deciding which of the two arcs c+ ⇒ a+ and b+ ⇒ a+ should be

relaxed �rst, their weights (the level of adversary path) could be calculated from

the STGimp. The STGimp explicitly presents adversary paths; for example, viola-

tion of the arc c+ ⇒ a+ needs two adversary paths c+ ⇒ p− ⇒ q+ ⇒ h− ⇒ a+

and c+ ⇒ m− ⇒ n+ ⇒ a+ to be faster than the wire between fan-out of gate

c and fan-in of gate a. If all the signals p, q, h,m, n, k, l are internal signals, the

weight of arc c+ ⇒ a+ is three and that of arc b+ ⇒ a+ is two. The arc

b+ ⇒ a+ is tighter than arc c+ ⇒ a+ and should be relaxed �rst. If there are

several arcs of the same tightness, one arc will be picked randomly. The function

find_tightest_arc(STG) returns the tightest input to input arc in a local STG

of a gate, whose ordering has not been guaranteed yet.
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5.6 Top level algorithm

The top level algorithm of the proposed method is shown in Algorithm 5, where

the input STG will be decomposed into a set of MGs by the function Decom-

pose_into_MG(STG) using Hack's algorithm [8] if it contains free-choice places.

Then the local STG for each internal (denoted by R) and primary output (de-

noted by O) signal a will be generated by the function Proj(MG, a∪ fan-in(a))

introduced in Algorithm 1. The timing constraints for a gate a to work correctly

under an MG component will be derived in Algorithm 4 using the processes an-

alyzed in the previous sections. The function Write_sg(STG) generates the SG

of an STG using the method presented in [48]. Function Relax(STG, x∗ ⇒ y∗)

is the arc relaxation algorithm de�ned in Algorithm 2. Function Check(SG, fa↑,

fa↓) decides which relaxation case will be due to the criteria introduced in this

chapter. Lines 10-14 and 20-24 depict the OR-causality decomposition in relax-

ation case 2 and 3, which will be speci�ed in detail in the next chapter. The
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timing constraint the transition x∗ should arrive at gate a before y∗ is denoted

as a : x∗ ≺ y∗ in line 28. The timing constraints for a circuit to work correctly

when the isochronic fork is relaxed is the union of the timing constraints of all

gates under all MG components.

5.6.1 Complexity analysis

The time complexity of decomposing a free-choice STG into MGs using Hack's

algorithm grows exponentially with respect to the number of choice places in an

STG. However, the number of choice places in an STG is decided by the function

of the circuit not the scale of the circuit. Usually, an STG does not contain a

large number of choice places.

The complexity for deriving the local STGs for all gates in an SI circuit is

O(n6) with respect to the number of transitions (n) in the STG. In the worst case,

there are O(n) gates which need deriving their local STGs. There are up to O(n)

transitions needing to be eliminated for each local STG. When one transition is

eliminated, each arc in the resulting STG needs to be checked for redundancy.

The complexity for checking the redundancy of one arc is O(n2) and a graph

which has O(n) transitions could have up to O(n2) arcs.

When an STG is decomposed into a set of local STGs, checking hazards for

all gates is performed on their local STGs. Thus, the complexity for the hazard

checking work increases linearly with respect to the number of gates in the circuit.

So, the complexity of the proposed technique increases exponentially as the

number of choice places in an STG. When the number of choice places in the
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STG is considered to be a constant, the asymptotic computation complexity is

O(n6), where n is the number of transitions in the STG.

Algorithm 4 Expand (STGa, fa↑, fa↓, Rt)

1: while STGa contains input to input arcs whose ordering is not guaranteed do

2: x∗ ⇒ y∗ = �nd_tightest_arc (STGa)
3: new_STGa = Relax (STGa, x∗ ⇒ y∗)
4: if Check (Write_sg (new_STGa), fa↑, fa↓) == relaxation case 1 then

5: STGa = new_STGa

6: else if Check (Write_sg (new_STGa), fa↑, fa↓) == relaxation case 2 then

7: if Check (Write_sg (Relax (new_STGa, x∗ ⇒ a∗), fa↑, fa↓) == relaxation case 1 then

8: STGa = Relax (new_STGa, x∗ ⇒ a∗)
9: else

10: STGa = new_STGa

11: Cans_set = �nd_candidate_transitions (STGa)
12: Init_cons = �nd_initial_restrictions (STGa)
13: Solution_group = OR_causality_decomposition (Cans_set, Init_cons)
14: SubSTGsa = Add_restriction_arcs_case2 (STGa, Solution_group)
15: for all STGa' ∈ SubSTGsa do

16: Expand (STGa', fa↑, fa↓, Rt)
17: end for

18: end if

19: else if Check (Write_sg (new_STGa), fa↑, fa↓) == relaxation case 3 then

20: STGa = new_STGa

21: Cans_set = �nd_candidate_transitions (STGa)
22: Init_cons = �nd_initial_restrictions (STGa)
23: Solution_group = OR_causality_decomposition (Cans_set, Init_cons)
24: SubSTGsa = Add_restriction_arcs_case3 (STGa, Solution_group)
25: for all STGa' ∈ SubSTGsa do

26: Expand (STGa', fa↑, fa↓, Rt)
27: end for

28: else

29: Rt = Rt ∪ {a : x∗ ≺ y∗}
30: Mark the arc {x∗ ⇒ y∗} has been guaranteed yet
31: end if

32: end while

5.6.2 Proof of correctness

The starting point of the proposed method is an SI circuit and an STG describing

its behavior. The SI circuit conforms to the STG, which means that the circuit is

functionally correct and hazard-free. The relaxation operation only relaxes arcs

between two transitions on the input signals of a gate, which is equivalent to

changing two ordered input transitions into concurrent. This modi�cation does
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Algorithm 5 Deriving_timing_constraints( STGimp, C)

1: Rt = ∅
2: MG = Decompose_into_MG(STGimp)
3: for all MGi ∈ MG do
4: for all signal a ∈ R ∪O do
5: STGa = Proj(MGi, a ∪ fan− in(a))
6: Expand (STGa, fa↑, fa↓, Rt)
7: end for
8: end for
9: return Rt

not change the interface protocol between a gate and its environment and thus

could only introduce hazards but will not harm the functionality of the gate.

Interface protocol will only be changed if the OR-causality relation happens,

where the corresponding transition on output signal will be triggered by a di�erent

clause of the gate. However, this is a local e�ect, that the environment could only

receive the output transition when it has sent the input transitions required by

the gate in the initial STG. As will be analyzed in the next chapter, the subSTGs

generated by the proposed OR-causality decomposition method cover all possible

�ring sequences when an OR-causality occurs. The relaxation operation will keep

the liveness and consistency of the STG nor will the safeness be violated if the

gate does not contain redundant literals. These three properties guarantee that

when an arc in the STG is relaxed the resulting STG is still a valid representation

of the behavior of the gate. Each time when an arc is relaxed, this relaxation will

be accepted if it does not introduce hazards; or will be rejected if it does.

In section 5.3.2 we have proved that the relaxation operation does not destroy

the liveness and consistency of the STG. Also, the safeness will not be a�ected if

the circuit does not have redundant literals. This suggests that the whole process
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will eventually terminate. Indeed, when an arc is relaxed, more states could be

reached by the resulting STG (if the relaxed arc is not a redundant one). For

a live and safe STG with n signals, there are at most 2n reachable states. The

whole process will eventually converge.

5.7 Delay padding to ful�ll timing constraints

When the relaxation is done, all of the generated timing constraints could be

changed into the pairwise delay constraints between a wire and a path by track-

ing back to the STGimp and looking up the Circuit C. The circuit will work

correctly if these constraints are guaranteed. Some constraints could be consid-

ered to be "safe" (e.g. adversary path cross environment or a very long adversary

path), some constraints could be guaranteed by layout. If there are very strong

constraints (very short adversary path) and the technology variations are severe,

all these strong constraints could be guaranteed by delay padding.

The padding technique will not be investigated in detail, because the number

of strong constraints in an SI is usually not large. Therefore, �nding a good

padding positions in a circuit is not a di�cult task when the timing constraints

have been generated. A simple heuristic that could �nd a good padding positions

in most cases is introduced below.

There are two kinds of padding positions: padding on a wire and padding

on a gate. Figure 5.25 shows the possible padding positions (position 1-5) to

guarantee the delay constraint that a wire from gate g_1 to g_4 should be

faster than another path between these two gates. Padding on position 1, 3 or 5
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5.7 Delay padding to ful�ll timing constraints

(padding on wire), only delays transitions on one branch of a gate; while padding

on position 2 or 4 (padding on gate) will delay all branches of a gate output, which

is equivalent to the increase of the delay of a gate. Padding on a gate could always

ful�ll one delay constraint without worsening other delay constraints, but might

unnecessarily delay other branches in a fork; while padding on a wire has less

performance penalty but may degrade another delay constraint if the wire that

the delay padded on should be faster than another adversary path. A greedy

padding policy could be used which tries to pad the delay on position 1 if the

corresponding wire does not participate in another delay constraint. If it does,

then the greedy algorithm tries to pad on position 3. In the worst case when all

the wires in the adversary path are in some other delay constraints then pad on

the position 2 could break this cyclic dependency.

...

...

...
...

...

...

1
2

3
4

5
g_1

g_2 g_3

g_4

Figure 5.25: Padding positions -

Due to the padding rule described above it could be guaranteed that all of

the delay constraints could be ful�lled (padding on the last gate could always

ful�ll this delay constraint without worsening another path, like the technique

used in synthesis in [9]). Usually, a good padding method to get the minimum

performance penalty is to try to pad delays on the wire near the destination gate

of an adversary path such that this wire is not in the fast path of another delay
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5.8 Summary

constraint by looking up the delay constraint table(as was exempli�ed in Table

7.1 in Chapter 7).

5.8 Summary

This chapter introduces our method to generate a set of timing constraints for

an SI circuit to work correctly when the isochronic fork timing assumption is re-

laxed into the intra-operator timing assumption. The method generates the local

environments for all gates in the circuit and operates on these local environments

to avoid exploring the reachability space of the entire circuit. In each local en-

vironment, the timing constraints implied by the isochronic fork will be relaxed

one by one. Unnecessary timing constraints will be removed in the relaxation

process. The computational complexity of the proposed method is polynomial to

the number of signals in the circuit and the generated timing constraints could

always be ful�lled.
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Chapter 6

OR-causality Decomposition

The relaxation case 2 and case 3 presented in the chapter 5 do not imply a glitch at

a gate. They violate the timing conformance because the so-called OR-causality

happens. This chapter analyzes the situation in which an OR-causality relation

would appear in the local STG in relaxation case 2 and case 3 and proposes a

method to decompose the STG into a set of subSTGs. The subSTGs are then

treated as individual STGs and are processed one by one iteratively. A gate will

work properly if it works properly in every subSTG.

6.1 OR-causality

The �ow semantics of PNs, an event is enabled if and only if all of its input places

have tokens, explicitly expresses the strong causality (AND-causality) between

events. It is easy to describe the causality like this: events a and b must occur

before the event c. However, the weak causality (OR-causality) like: event c is
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6.1 OR-causality

enabled if any event of a and b occurs, is not easy to be represented in PNs. This

kind of causality might appear in the local STG during the relaxation process.

When two ordered transitions in the local STG are made to be concurrent by

the relaxation operation, more than one clause could evaluate from false to true

concurrently. The corresponding pull up/down function would become true and

cause the gate to transit when any of its clause evaluates true. OR-causality

relations between clauses cannot be expressed by a safe or free-choice PN. In

order to describe the behavior of a gate using safe MGs where the proposed

relaxation method could work, the local STG needs to be decomposed into a set

of subSTGs when the OR-causality relations between transitions are encountered.

The OR-causality in relaxation case 2 and case 3 will be analyzed in detail in this

section and the decomposition method will be introduced in the next section.

6.1.1 OR-causality in relaxation case 2

OR-causality in relaxation case 2: Relaxation case 2 happens if and only if

there is a transition y∗ which is a prerequisite transition of o∗ and the relaxation

of an arc x∗ ⇒ y∗ makes x∗ to be a prerequisite transition of o∗, but o∗ could

also be caused by other transitions if x∗ is delayed. Due to the relaxation rule, x∗

must then be made concurrent with o∗ because the transitions in the prerequisite

set of o∗ are those that must be necessary for the �ring of o∗. However, if the

clause containing x∗ is the last clause whose literals are all ordered with o∗ then

making x∗ concurrent with o∗ will cause fo↑ to become false in some states in

ER(o+) or fo↓ to become false in some states in ER(o−).

92



6.1 OR-causality

The Figure 6.1 shows an example that contains OR-causality in relaxation

case 2. The pull up function fo↑ of the gate o has three clauses, x · y, z · k · y and

m · y · n. Initially, when the arc k+ ⇒ y+ in the STG in diagram (b) is relaxed,

k+ is placed to be a prerequisite transition of o+ as is shown in diagram (c).

Apparently, fo↑ could also become true if clause x ·y or m ·n ·y becomes true. So,

k+ needs to be modi�ed to be concurrent with o+ by relaxing the arc k+ ⇒ o+.

The resulting STG shown in diagram (d) will be accepted because all the literals

in clause x · y are still ordered with o+ which guarantees that fo↑ is true in each

state in ER(o+). However, when the arc x+ ⇒ y+ in the STG in diagram (d)

is relaxed, x+ should also be modi�ed to be concurrent with o+. After that, the

STG in diagram (f) could enter ER(o+) after m+ and y+ �res but the pull up

function of the gate o, fo↑, is still false.

The reason for this is that in the STG segment, any of the three clauses x · y,

z·k·y andm·y·n could cause fo↑ to become true, thus only the transition y+, which

corresponds to their common literal y, is necessary for o+. All other transitions

cannot be placed at the prerequisite transitions of o+. But it is required that

all literals in at least one clause are ordered with o+ to guarantee that when the

STG enters the ER(o+) this clause could enable gate o to transit to high. When

any literal (x+ in this example) of the last clause that are ordered with o+ (the

clause x · y in this example) is modi�ed to be concurrent with o+, the STG could

enter ER(o+) without any clause becoming true.

When more than one clause could become true simultaneously and enable the

gate to transit, a safe MG cannot describe this race behavior. In order to describe

the behavior of a gate under OR-causality using MGs, the original local STG
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6.1 OR-causality

x

z
y o

relax x+ -> y+ arc modification

  relax  x+ -> o+

m
n

k

x+

y+

relax k+ -> y+

arc modification

   relax k+ -> o+

m+

o+

z+ n+k+
x+

y+

m+

o+

z+ n+k+

x+

y+

m+

o+

n+k+z+
x+

y+

m+

o+

n+k+z+

x+

y+

m+

o+

n+k+z+

(a) (b) (c)

(d) (e) (f)

Figure 6.1: OR-causality in relaxation case 2. (a) the gate and (b)-

(f)relaxation steps -
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6.1 OR-causality

needs to be decomposed into a set of subSTGs. The OR-causality decomposition

is done by adding concurrency restriction arcs between the transitions involved

in the OR-causality relation, to guarantee that for each subSTG, one clause will

always evaluate true before (or not later than if clauses have common literals) all

other clauses, the transition on output signal is then unambiguously caused by

that clause.

Candidate clauses are the clauses which have a possibility to win the race

to cause the transition on the output signal. The candidate clauses for the OR-

causality in relaxation case 2 could be derived by testing whether one clause could

�rstly evaluate true among all clauses in the "problematic" states.

Candidate clause for OR-causality in relaxation case 2 : In relaxation

case 2, when the OR-causality happens, a clause c in fo↑ (if fo↑ is false in some

states in ER(o+)) is called a candidate clause if,

(1) In the SG corresponding to the STG before arc modi�cation, there exist

two states s and s′ in QR(o−), s → s′, fo↑(s) = false, fo↑(s
′) = true and clause

c is true in s′.

Or,

(2) Clause c contains all prerequisite transitions of o∗.

A clause c in fo↓ (if fo↓ is false in some states in ER(o−)) is called a candidate

clause if,

(1) In the SG corresponding to the STG before arc modi�cation, there exist

two states s and s′ ∈ QR(o+), s → s′, fo↓(s) = false, fo↓(s
′) = true and clause

c is true in s′;

Or,
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6.1 OR-causality

(2) Clause c contains all prerequisite transitions of o∗.

Not all transitions, which correspond to literals in a candidate clause, will

be used for the OR-causality decomposition. Some transitions are guaranteed

to occur before the OR-causality relation happens by the arcs in the current

STG. The decomposition only involves those transitions whose occurrences could

in�uence the order of clause evaluation.

Candidate transition for OR-causality decomposition: A transition t∗

is called a candidate transition for the OR-causality decomposition if,

(1) there is a candidate clause c, t ∈ c if t∗ is t+, t̄ ∈ c if t∗ is t− and t∗ is

concurrent with o∗.

(2) t∗ is x∗, if this OR-causality is caused by relaxing x∗ ⇒ y∗.

A candidate clause is a clause which could make fo↑ from false to true in

QR(o−) or fo↓ from false to true in QR(o+) when the OR-causality happens.

Candidate transitions are those transitions whose literals appear at a candidate

clause and are concurrent with o∗ or this transition is x∗.

x

z
y o

m
n

k

x+

y+

m+

o+

n+k+z+

x+

y+

m+

o+

n+

k+

z+

(a) (b) (c)

Figure 6.2: Candidate clause and transition for OR-causality in relax-

ation case 2. (a) the gate, (b) and (c) two di�erent STG segments -
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6.1 OR-causality

Figure 6.2 shows a gate o in diagram (a) together with two di�erent STG

segments in diagrams (b) and (c). In both STG segments, relaxation case 2

happens after relaxing x+ ⇒ y+ and after modifying the x+ to be concurrent

with o+, OR-causality happens. There are three candidate clauses z ·k ·y, m ·n ·y

and x·y in the STG segment in diagram (b), but only two candidate clauses z ·k ·y

and x ·y in the STG segment in diagram (c). In diagram (b), when the transitions

m+, y+, z+ and k+ �re the fo↑ turns from false to true; when the transitions

m+, y+ and n+ �re the fo↑ turns from false to true. However, in diagram (c),

there are no �ring sequences by which the clause m · n · y could make fo↑ turn

from false to true, because when the clause m · n · y becomes true the clause

z · k · y has already become true. The candidate transitions in diagram (b) are

z+, k+ for the candidate clause z · k · y (y+ is not concurrent with o+), n+ for

the candidate clause m ·n ·y (m+ and y+ are not concurrent with o+) and x+ for

the candidate clause x · y. The candidate transitions in diagram (c) are z+, k+

for the candidate clause z · k · y and x+ for the candidate clause x · y.

6.1.2 OR-causality in relaxation case 3

OR-causality in relaxation case 3: Relaxation case 3 happens if and only if

x∗ is a prerequisite transition of o∗ and the relaxation of an arc x∗ ⇒ y∗, which

makes y∗ to be concurrent with x∗, causes at least one clause containing the

literal y but not containing the literal x in fo↑ to become true in QR(o−) or in

fo↓ to become true in QR(o+).

The Figure 6.3 shows an example that contains OR-causality in relaxation
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6.1 OR-causality
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Figure 6.3: OR-causality in relaxation case 3. (a) the gate, (b) and (c)

two di�erent STG segments -

case 3. The pull up function fo↑ of the gate o has three clauses, p · x, y ·m and

y · n. When the arc x+ ⇒ y+ is relaxed, the pull up function fo↑ will become

true if m+ or n+ arrives before x+, thus making the gate o excited in QR(o−).

Before the arc x+ ⇒ y+ is relaxed, the clause p · x is guaranteed to become

true before clauses y ·m and y ·n. So, o+ must be caused by the clause p·x. When

the arc x+ ⇒ y+ is relaxed, these three clauses could become true concurrently

and the o+ will be caused by the �rst one becoming true. This OR-causality still

cannot be depicted by a single safe MG and the STG needs to be decomposed

into a set of subSTGs.

Candidate clause for OR-causality in relaxation case 3 : In relaxation

case 3, when the OR-causality happens, a clause c in fo↑ (if fo↑ is true in some

states in QR(o−)) is called a candidate clause if,

(1) In the SG corresponding to the STG, there exist two states s and s′

98



6.1 OR-causality

∈ QR(o−), s → s′, fo↑(s) = false, fo↑(s
′) = true and clause c is true in s′.

Or,

(2) The clause c is the clause that contains all prerequisite transitions of o∗.

A clause c in fo↓ (if fo↓ is true in some states in QR(o+)) is called a candidate

clause if,

(1) In the SG corresponding to the STG, there exist two states s and s′

∈ QR(o+), s → s′, fo↓(s) = false, fo↓(s
′) = true and clause c is true in s′.

Or,

(2) The clause c is the clause that contains all prerequisite transitions of o∗.

Candidate transition for OR-causality decomposition: A transition t∗

is called a candidate transition for OR-causality decomposition if,

(1) there is a candidate clause c, t ∈ c if t∗ is t+, t̄ ∈ c if t∗ is t− and t∗ is

concurrent with o∗.

(2) t∗ is x∗, if this OR-causality is caused by relaxing x∗ ⇒ y∗.

Figure 6.4 shows a gate o in diagram (a) together with two di�erent STG

segments in diagrams (b) and (c). In both STG segments, OR-causality happens.

There are three candidate clauses y · m, y · n and p · x in the STG segment in

diagram (b), but only two candidate clauses y · n and p · x in the STG segment

in diagram (c). In diagram (b), when the transitions p+, m+ and y+ �re the

fo↑ turns from false to true; when the transitions p+, n+ and y+ �re the fo↑

turns from false to true. However, in diagram (c), there are no �ring sequences

by which the clause yn could make fo↑ turn from false to true, because when the

clause y ·n becomes true the clause y ·m has already become true. The candidate

transitions in diagram (b) are m+, y+ for the candidate clause y ·m, n+, y+ for
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6.2 Decomposition of OR-causality

the candidate clause y · n and x+ for the candidate clause p · x. The candidate

transitions in diagram (c) are m+, y+ for the candidate clause y ·m and x+ for

the candidate clause p · x.

Both OR-causality relations between clauses in relaxation cases 2 and 3 need

the STG to be decomposed into a set of subSTGs, and the technique that achieves

this will be introduced in the next section.
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m+ n+

p+ x+

y+o+
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p+

(a) (b) (c)

Figure 6.4: Candidate clause and transition for OR-causality in relax-

ation case 3. (a) the gate, (b) and (c) two di�erent STG segments -

6.2 Decomposition of OR-causality

OR-causality during the relaxation is the situation when the isochronic fork tim-

ing assumption is relaxed, more than one clause in a pull-up or pull-down function

of a gate could (depending on which of them become true �rst) cause a transi-

tion at the gate's output. This race relation cannot be depicted by a safe MG.

In order to describe the behavior of a gate using MG, the corresponding local

STG needs to be decomposed into a set of subSTGs where each subSTG does not
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6.2 Decomposition of OR-causality

contain OR-causality relations and the union of reachable states of all subSTGs

should contain all the states that could be reached by the original STG when

OR-causality happens.

The diagrams (a) and (b) in Figure 6.5 show a gate o and its local STG

segment that were introduced before in Figure 6.2. The STG segment in diagram

(b) contains OR-causality relations where any of the three clauses x · y, z · k · y

and m ·n ·y could trigger a rising transition at the gate o output when it becomes

true and there are no constraints on which of these three clauses will become

true �rst. Diagrams (c) to (g) are the decomposed subSTG segments of the

STG segment in diagram (b). In each subSTG, the OR-causality relation is

eliminated by adding order-restriction arcs (arcs marked with a '#' symbol ).

The order-restriction arcs are added between candidate transitions in an OR-

causality, which restrict the orderings of candidate transitions in di�erent clauses

to guarantee that one candidate clause will always become true before all others,

the output transition is then clari�ed to be caused by that clause. For example,

the diagrams (c) and (d) depict the subSTGs where the output transition o+ is

caused by the clause x · y, diagram (e) depicts the subSTG where o+ is caused

by clause z ·k ·y and diagram (f) and (g) depict the subSTGs where o+ is caused

by clause m · n · y. The OR-causality decomposition only restricts the ordering

between the candidate transitions, so, the transition m+ in the diagram will

not be considered in the decomposition but it will be considered when the arc

m+ ⇒ y+ is relaxed and the corresponding STG entering OR-causality again in

the following subSTG relaxation. The union of the states reached by diagram (c)

to (g) includes all the states that the gate o could exhibit in diagram (b).
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Figure 6.5: OR-causality decomposition example. (a) the gate, (b) STG

segment before decomposition and (c)-(g)resulting subSTG segments -
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6.2 Decomposition of OR-causality

An order-restriction arc behaves like a normal arc in PN semantics except

that it will not be relaxed (the ordering of the two events connected by a order-

restriction arc is considered to be �xed) and it will not be checked for redun-

dancy, which means even if an order-restriction arc is redundant it will not be

eliminated. The elimination of an order-restriction arc might cause STG enter-

ing OR-causality relation again in the future relaxation and cause the additional

unnecessary OR-causality decomposition. Keep the redundant order-restriction

arcs in an STG will not cause any trouble, because they will not be relaxed any

more.

The technique to decompose an STG which contains an OR-causality will be

demonstrated on a set of examples, from simple to complex.

The decomposition of an STG containing OR-causality is a technique to add

order-restriction arcs to concurrent candidate transitions between di�erent clauses

to make sure that one clause will become true before other clauses. The subSTGs

should include all the states that could be reached by the gate under this OR-

causality and the decomposition that contains fewer subSTGs is preferred (each

subSTG needs to be analyzed one by one, fewer subSTGs implies less computa-

tion).

A set of concurrency restriction arcs are generated for each subSTG during

the OR-causality decomposition. The subSTG is then derived by adding these

arcs into the original STG and modifying some causalities when needed. For

example, the set of concurrency restriction arcs for the subSTG in diagram (c) in

Figure 6.5 are {x+ ≺ k+; x+ ≺ n+}. The solution of an OR-causality decompo-

sition is a group of sets of concurrency restriction arcs, one set for each subSTG.
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6.2 Decomposition of OR-causality

The solution for the OR-causality in Figure 6.5 is:

S =



































Sx =

{

{x+ ≺ k+; x+ ≺ n+}
{x+ ≺ z+; x+ ≺ n+}

Szk =
{

{z+ ≺ x+; k+ ≺ x+; z+ ≺ n+; k+ ≺ n+}

Sn =

{

{n+ ≺ x+;n+ ≺ k+}
{n+ ≺ x+;n+ ≺ z+}

Firstly, consider the simplest situation, where an OR-causality relation only

involves two clauses ca and cb. The clause ca will become true when all the

candidate transitions in set A �re and the clause cb will become true when all

transitions in set B �re. The task is to generate a set of subSTGs such that

in each subSTG the clause ca evaluates true before the clause cb, and the set of

states in the SGs of all subSTGs includes all the states in which the clause ca will

evaluate true before the clause cb.

For example, suppose the clause ca becomes true when all the candidate tran-

sitions in set A = {a+, b+, c+} �re and clause cb becomes true when all the can-

didate transitions in set B = {d+, e+, f+} �re. Initially, there are no constraints

about the �ring order relation among these transitions. There are P 6
6 = 720

di�erent �ring sequences. When a restriction a+ ≺ d+ is added, it excludes all

�ring sequences that d+ �res before a+. The question is how to �nd a group

of restriction sets such that in each constraint set, there are only pairwise order

constraints between two transitions (like a+ ≺ d+). The order constraints in

a constraint set work together to limit the �ring sequences this constraint set

expresses. The union of the �ring sequences of all constraint sets contains all

sequences in which all transitions in set A �re before at least one transition in set

B and contains no sequences in which all transitions in set B �re before at least
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6.2 Decomposition of OR-causality

one transition in set A. Among all of the groups which ful�ll the requirement

above, the one which contains the fewest number of sets is preferred.

For example, in the group

{

{a+ ≺ d+; b+ ≺ e+}
{a+ ≺ d+; b+ ≺ e+; c+ ≺ d+} , there are two

restriction sets {a+ ≺ d+; b+ ≺ e+} and {a+ ≺ d+; b+ ≺ e+; c+ ≺ d+}. This

group is not a valid solution for the problem: Firstly, the restriction set {a+ ≺

d+; b+ ≺ e+} includes a �ring sequence a+ → d+ → b+ → e+ → f+ → c+

where all transitions in B �re before the transition c+ in A. Besides, the �ring

sequence e+ → b+ → a+ → c+ → d+ → f+, which should be included, is not

included in any restriction set.

A closer look at problem description reveals that, each transition in A should

�re before at least one transition in B, this requires that each transition t∗ ∈ A

to have a constraint pair t∗ ≺ t′∗ where t′∗ ∈ B 1. Otherwise, there exists a

�ring sequence where all transitions in B �re before t∗ and thus violates the

requirement. Meanwhile, each transition t∗ ∈ A needs at most one constraint

pair t∗ ≺ t′∗ where t′∗ ∈ B. Additional order constraints on t∗ only exclude some

required �ring sequences and push the solution into sub-optimal.

The technique to get the required solution group will be analyzed step by

step, from the simplest to the most general case.

1This is under the circumstances that t∗ does not transitively �re before any transition in
B, this situation will be analyzed in detail later
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6.2 Decomposition of OR-causality

6.2.1 Generating the solution group

This subsection will introduce the method to derive the solution group step by

step.

Case (1): There are only two clauses involved in an OR-causality whose can-

didate transition sets are A and B. Sets A and B do not have any common

transition and do not have initial ordering restrictions between transitions. The

task is to generate a group of restriction sets for the relation A ≺ B, where A ≺ B

denotes all the �ring sequences that all transitions in A must �re before at least

one transition in B :

In all valid �ring sequences, the last transition must be a transition in set B,

and the task is to generate a group of restriction sets to include these and only

these sequences. When the sets A and B do not have any common transition

and do not have initial ordering restrictions between transitions, the method

to generate the solution group is quite straightforward: generate a restriction

set for each transition t′∗ in set B and in each restriction set generate order

constraint pairs to make all transitions in A �re before t′∗. For example when

the set A = {a+, b+, c+} and B = {d+, e+, f+}. The solution group SA≺B =










{a+ ≺ d+; b+ ≺ d+; c+ ≺ d+}
{a+ ≺ e+; b+ ≺ e+; c+ ≺ e+}
{a+ ≺ f+; b+ ≺ f+; c+ ≺ f+}

is valid (and quite likely to be optimal). The

constraint set {a+ ≺ d+; b+ ≺ d+; c+ ≺ d+} includes (but not only includes)

all the �ring sequences ending with transition d+ and so do {a+ ≺ e+; b+ ≺

e+; c+ ≺ e+} and {a+ ≺ f+; b+ ≺ f+; c+ ≺ f+} for transition e+ and f+. In

all three constraint sets, every transition in A is forced to precede one transition

in B, so all the �ring sequences included by three restriction sets are valid. The
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6.2 Decomposition of OR-causality

solution group contains |B| restriction sets, where |B| denotes the cardinality of

the set B.

The case (1) solves the simplest case where there are only two candidate

clauses, which do not have any common candidate transitions and all candidate

transitions are concurrent. The case (2) will allow two candidate clauses to have

common candidate transitions, based on case (1).

Case (2): Sets A and B do not have initial ordering restrictions between

transitions, but might have common transitions:

When A and B have common transitions, for example A = {a+, b+, c+}

and B = {a+, d+, e+, f+}. Transition a+ is a candidate transition, which is

necessary for both two clauses to become true. In this case, a+ does not need

to have an order restriction to precede any other transition in B (or it could be

considered as the transition a+ in A always precedes itself in B). All transitions

that are both in set A and B will be eliminated from set A and then, the new set

A′ and B do not have any common transitions and do not have initial ordering

restrictions between transitions.

After deleting the common transitions, A′ and B ful�ll the conditions in case

(1) and the constraint group could be derived using the method shown in case

(1). The constraint group for A = {a+, b+, c+} and B = {a+, d+, e+, f+} for

the relation A ≺ B is SA≺B =



















{b+ ≺ a+; c+ ≺ a+}
{b+ ≺ d+; c+ ≺ d+}
{b+ ≺ e+; c+ ≺ e+}
{b+ ≺ f+; c+ ≺ f+}

.

There could be initial ordering restrictions between transitions in A and B

when all candidate transitions are not fully concurrent in the STG. Except for
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6.2 Decomposition of OR-causality

ful�lling all requirements for A ≺ B, the solution group should not involve any

�ring sequences that contradict the initial ordering restrictions. This means that

if there is a transitive relation that t∗ ≺ t′∗, where t∗, t′∗ ∈ A
⋃

B; the solution

group should not contain any �ring sequence where t′∗ appears before t∗. The

case (3) allows two candidate clauses to have initial ordering restrictions between

candidate transitions.

Case (3): Sets A and B could have initial ordering restrictions between tran-

sitions and could contain common transitions:

This is the most general case between two transition sets A and B. There

might be some pre-set ordering relations between transitions in set A and B. For

example, when A = {a+, b+, c+, g+, h+}, B = {a+, d+, e+, f+} with the initial

orderings {c+ ≺ d+; f+ ≺ c+; e+ ≺ b+; e+ ≺ g+}. The initial orderings are

from ordering relations between candidate transitions in the STG speci�cation.

As in case (2), the common transitions of A and B will be removed from A �rst.

The set A after eliminating the common transitions is A′ = {b+, c+, g+, h+}.

Meanwhile, for any transition t∗ ∈ A if there is a transitivity relation t∗ ≺

t1∗, t1∗ ≺ ... ≺ tm∗, tm∗ ≺ tn∗ where t1∗, ..., tm∗ ∈ A ∪ B and tn∗ ∈ B, it implies

that t∗ is already guaranteed to precede the transition tn∗ ∈ B and t∗ does not

need any additional ordering restrictions. All transitions in A, which are already

guaranteed to precede one transition in B, will be eliminated from A. The set

A after eliminating the common transitions in B and the transitions which are

already guaranteed to precede one transition in B is A′′ = {b+, g+, h+}.

The question is then changed into how to �nd the required restriction group

between A′′ and B such that A′′ and B do not have any common alphabets and
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6.2 Decomposition of OR-causality

there are no transitions in A′′ which transitively precede a transition in B but

there could be some transitions in B which transitively precede a transition in

A′′.

Any valid �ring sequence for the relation A′′ ≺ B must be ended by a tran-

sition in B. When a transition t′∗ ∈ B transitively precedes a transition in A′′

in the initial ordering restrictions, transition t′∗ cannot be the last transition in

any valid �ring sequence.

From the previous analysis it could be seen that, when solving the solution

group for the relation A ≺ B in case (2), one constraint set will be generated

for each transition t∗ in B to include all �ring sequences ending with t∗. When

a transition t′∗ ∈ B in case (3) cannot be the last transition in any valid �ring

sequence, no constraint set should be generated for this transition. So, the tran-

sition t′∗ ∈ B should be deleted from the set B. The set B after deleting those

transitions that transitively precede a transition in A′′ is denoted by B′.

After deleting all the transitions in A′, which transitively precede a transition

in B and the transitions in B which transitively precede a transition in A′ in

the initial ordering restrictions. A′′ and B′ ful�ll the conditions in case (1).

The constraint group for A = {a+, b+, c+, g+, h+}, B = {a+, d+, e+, f+} with

the initial orderings {c+ ≺ d+; f+ ≺ c+; e+ ≺ b+; e+ ≺ g+} is A ≺ B is

SA≺B =

{

{b+ ≺ a+; c+ ≺ a+; g+ ≺ a+;h+ ≺ a+}
{b+ ≺ d+; c+ ≺ d+; g+ ≺ d+;h+ ≺ d+} .

To sum up, in order to �nd a solution group of the relation A ≺ B subject to

a set of initial ordering restrictions, the common transitions of A and B and the

transitions in A which transitively precede a transition in B, are removed from A

�rst. Then the transitions in B which transitively precede a transition in A, are
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6.2 Decomposition of OR-causality

removed from B. After this, a restriction set where all transitions of A precede

a transition t∗ will be generated for each transition t∗ ∈ B. The algorithm for

solving the relation A ≺ B subject to the initial ordering restrictions Init_cons

is presented in Algorithm 6.

Algorithm 6 Two_clause_slover(A, B, Init_cons)

1: Constraint_set = NULL
2: for all transitions t∗ ∈ A do
3: if t∗ transitively precedes a transition t′∗ ∈ B in Init_cons then
4: delete t∗ from A

5: end if
6: if t∗ ∈ B then
7: delete t∗ from A

8: end if
9: end for

10: for all transitions t′∗ ∈ B do
11: if t′∗ transitively precedes a transition t∗ ∈ A in Init_cons then
12: delete t′∗ from B

13: end if
14: end for
15: for all transitions t′∗ ∈ B do
16: create a constraint set c_s containing t∗ ≺ t′∗ for all transition t∗ ∈ A

17: Constraint_set = Constraint_set ∪ c_s
18: end for
19: return Constraint_set

6.2.2 Decomposition according to the solution group

When OR-causality relation involves more than two candidate clauses, c1, c2, ..., cn,

the timing restrictions for a given clause c1 to be evaluated true before all other

clauses are solved in two steps. Firstly, derive the solution groups for c1 to be

evaluated true before each other clause separately, and then picks up a restric-

tion set in each group and merge (union) them together to form a restriction set
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6.2 Decomposition of OR-causality

in the �nal solution group. The �nal solution group should include all possible

combinations of restriction sets in each solution group.

For example, in the Figure 6.5, the solution for the clause m · n · y to be

evaluated true before the clause x · y is Smny≺xy =
{

{n+ ≺ x+} and to be

evaluated true before the clause z · k · y the restriction group is Smny≺zky =
{

{n+ ≺ z+}
{n+ ≺ k+} . So, the solution for the clause m · n · y to be �rstly evaluated

true among all clauses is Smny =

{

{n+ ≺ x+;n+ ≺ z+}
{n+ ≺ x+;n+ ≺ k+} .

There might exist common restriction sets between certain groups. For exam-

ple, if the solution group for the relationA ≺ B is SA≺B =

{

{a+ ≺ c+; b+ ≺ c+}
{a+ ≺ d+; b+ ≺ d+}

and for A ≺ C is SA≺C =

{

{a+ ≺ c+; b+ ≺ c+}
{a+ ≺ e+; b+ ≺ e+} . When the restriction set

{a+ ≺ c+; b+ ≺ c+} is picked from the solution group SA≺B, there is no need to

pick any restriction set from the second group SA≺C. So, when it is the turn to

pick a restriction set from one group, whether any restriction set in that group

has been included will be checked �rst. If any restriction set have been included

(which is true if two groups have common restriction sets), this group will be

ignored in this turn. Moveover, when two restriction sets have common restric-

tion orderings, the repeated restriction orderings will be removed automatically

by the union operation.

The algorithm for calculating the timing constraints for a clause, whose candi-

date transition set is A, to be �rstly evaluated true among all candidate clauses is

presented in Algorithm 8. Algorithm 8 calls the Algorithm 7 to recursively solve

all combinations of restriction sets (res_set) in each solution group(sub_sets).

The decomposition of an OR-causality, is to generate the timing restriction
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6.2 Decomposition of OR-causality

Algorithm 7 Gen_group(sub_sets, cardin, n, build_group, group)

1: skip =0
2: if n 6= cardin then
3: res_set = sub_sets[n]
4: car_res_set = |res_set|
5: for (i = 0; i <=car_res_set-1; i++) do
6: if res_set[i] ⊆ build_group then
7: skip=1
8: Gen_group(sub, cardin, n+1, build_group, group)
9: break

10: end if
11: end for
12: if skip ==0 then
13: for (j = 0; j <=car_res_set-1; j ++) do
14: group_next = build_group
15: group_next = group_next ∪ res_set[j]
16: Gen_group(sub, cardin, n+1, group_next, group)
17: end for
18: end if
19: else
20: group =group ∪ build_group
21: end if
22: return group

Algorithm 8 one_clause_take_over(A, Cans_set, Init_cons)

1: solution_A = ∅
2: sub_set = ∅
3: for all transition_set B ∈ Cans_set do
4: if B 6= A then
5: sub_sets = sub_sets ∪ Two_clause_slover(A, B, Init_cons)
6: end if
7: end for
8: cardin = |sub_sets| -1
9: solution_A= solution_A ∪ Gen_group(sub_sets, cardin, 0, ∅, ∅)

10: return solution_A
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6.2 Decomposition of OR-causality

groups for each candidate clause, where each restriction set represents the added

ordering restriction arcs in one subSTG. The top level algorithm for the decom-

position of an OR-causality relation involving a set of candidate transition sets

Cans_set with the initial ordering restriction set Init_cons is presented in Al-

gorithm 9.

Algorithm 9 OR_causality_decomposition (Cans_set, Init_cons)

1: solution = ∅
2: for all Candidate_transition_set A ∈ Cans_set do
3: solution = solution ∪ one_clause_take_over(A, Cans_set, Init_cons)
4: end for
5: return solution

When the solution group for one OR-causality is derived, the STG will be

decomposed into a set of subSTGs according to the restriction sets in the group.

One subSTG will be generated for each restriction set and an ordering restriction

arc will be inserted for each restriction pair in each restriction set.

For OR-causality relation in case 2, when one candidate clause takes respon-

sibility for causing the output transition, arcs will be added from all candidate

transitions in that clause to the output transition to indicate that these candi-

date transitions are the prerequisite transitions for the output transition. One

ordering restriction arc (marked with # symbol) will be added for one restriction

pair in each restriction set.

Figure 6.6 shows a gate o and its STG segment. This STG segment has an

OR-causality relation whose solution set is
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Figure 6.6: An OR-causality relation in case 2. (a) the gate and (b) its

local STG segment -

S =



































Sx =

{

{x+ ≺ k+; x+ ≺ n+}
{x+ ≺ z+; x+ ≺ n+}

Szk =
{

{z+ ≺ x+; k+ ≺ x+; z+ ≺ n+; k+ ≺ n+}

Sn =

{

{n+ ≺ x+;n+ ≺ k+}
{n+ ≺ x+;n+ ≺ z+}

The decomposition results for the OR-causality relation in Figure 6.6 (after

eliminating the redundant arcs) is presented in Figure 6.7. Diagram (a) in Fig-

ure 6.7 shows the subSTG corresponds to the restriction set {x+ ≺ k+; x+ ≺

n+}. Diagram (b) shows the subSTG corresponds to the restriction set {x+ ≺

z+; x+ ≺ n+}. Diagram (c) shows the subSTG corresponds to the restriction

set {z+ ≺ x+; k+ ≺ x+; z+ ≺ n+; k+ ≺ n+}. Diagram (d) shows the subSTG

corresponds to the restriction set {n+ ≺ x+;n+ ≺ k+}. Diagram (e) shows the

subSTG corresponds to the restriction set {n+ ≺ x+;n+ ≺ z+}.

For OR-causality relation in case 3, when one candidate clause c takes charge

of causing the output transition, arcs will be added from all candidate transitions

in this clause to the output transition to indicate that these candidate transitions

are the prerequisite transitions for the output transition. For all transitions t∗,
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Figure 6.7: Decomposition results for the OR-causality relation in Fig-

ure 6.6. (a)-(e) resulting subSTG segments -
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6.2 Decomposition of OR-causality

which are prerequisite transitions for the output transition in the original STG,

if t (if t∗ is t+) or t (if t∗ is t−) is not a literal of clause c, the arc t∗ ⇒ o∗ will

be relaxed. This is because unlike case 2, where all the prerequisite transitions of

o∗ are still prerequisite transitions after decomposition, if t or t is not a literal of

clause c, t∗ will not be the prerequisite transition any more and t∗ should become

concurrent with o∗. One ordering restriction arc (marked with # symbol) will be

added for one restriction pair in each restriction set.

x

y

o
m

n

p
x+

y+o+
m+ n+

p+

(a) (b)

Figure 6.8: An OR-causality relation in case 3. (a) the gate and (b) its

local STG segment -

Figure 6.8 shows a gate o and its STG segment. This STG segment meets an

OR-causality relation whose solution set is

S =



























Sx =

{

{x+ ≺ y+}
{x+ ≺ m+; x+ ≺ n+}

Smy =
{

{m+ ≺ x+; y+ ≺ x+;m+ ≺ n+}
Sny =

{

{n+ ≺ x+; y+ ≺ x+;n+ ≺ m+}
The decomposition results for the OR-causality relation in Figure 6.8 (af-

ter eliminating the redundant arcs) is presented in Figure 6.9. Diagram (a) in

Figure 6.9 shows the subSTG corresponds to the restriction set {x+ ≺ y+}. Dia-
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gram (b) shows the subSTG corresponds to the restriction set {x+ ≺ m+; x+ ≺

n+}. Diagram (c) shows the subSTG corresponds to the restriction set {m+ ≺

x+; y+ ≺ x+;m+ ≺ n+}. Diagram (d) shows the subSTG corresponds to the

restriction set {n+ ≺ x+; y+ ≺ x+;n+ ≺ m+}.
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mz nz

py
#
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mz nz

py ##
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mz nz

py
#

#

#
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#

#

(a) (b)

(c) (dm

Figure 6.9: Decomposition results for the OR-causality relation in Fig-

ure 6.8. (a)-(d) resulting subSTG segments -

6.3 Summary

This chapter analyzes the OR-causality relation in the relaxation case 2 or case 3

in detail and introduces the technique to decompose an STG into a set of subSTGs

when an OR-causality occurs. In each subSTG, one pull up/down function of a
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6.3 Summary

gate is guaranteed to be enabled by one speci�ed clause. There are no OR-

causality relations in the subSTGs. Each subSTG is then processed in the �ow

described in chapter 5 and a gate will work properly if it works properly in every

subSTG.
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Chapter 7

Results

This chapter presents the results of the theory proposed in Chapter 5. In the �rst

section, one example is used to demonstrate entire �ow of the proposed method

in detail and then the benchmark results for certain application examples are

presented.

7.1 Design example

The inputs of the proposed technique are one SI circuit together with its imple-

mentation STG. As an example, the block diagram and the STG speci�cation of

a 2-cycle FIFO controller(chu150 ) is presented in Figure 7.1. The speci�cation is

synthesized and then decomposed into simple gates using the tool petrify. The re-

sulting implementation STG and the circuit diagram are presented in Figure 7.2.

This implementation STG is an MG, so, it does not need to be decomposed any-

more. The local STG for each internal and output signal is then derived and
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processed independently. Here, the gate_Ai is chosen as an example.

Ri

Ai

Ro

Ao

L D

D-

Ao-

Ai-

Ri+

L+

D+

Ao++

Ai+

Ri-

Ro-

L+/2

Ro+ L-L-/2

(a) (b)

    FIFO 

Controller

Figure 7.1: The block diagram and STG speci�cation of FIFO -

The diagrams (a) and (b) in Figure 7.3 present the circuit diagram of gate_0

and its local STG. There are four timing ordering arcs (L+ ⇒ D+, D+ ⇒ L−,

L + /2 ⇒ D− and D− ⇒ L − /2) in the local STG that rely on the isochronic

fork timing assumption. The arc L+ ⇒ D+ is chosen to be relaxed �rst. The

resulting STG is shown in diagram (c). The relaxation case 4 happens in the

resulting STG, which suggests that glitches will appear if the transition D+

reaches gate_0 before L+. One timing constraint L+ ≺ D+ (the arc marked with

a & symbol in diagram (d)) is added to the constraint set. Then in diagram (d),

the arc L+/2 ⇒ D− is chosen to be relaxed. In the resulting STG in diagram (e),

the relaxation case 3 happens. The STG in diagram (e) is then decomposed into

two subSTGs in diagrams (f) and (j) to solve the OR-causality (order-restriction

arcs are marked with a # symbol). The subSTGs in diagrams (f) and (j) are then

analyzed individually. The relaxation process in each subSTG iterates until all

ordering relations are guaranteed. The �nal subSTG are presented in diagrams
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Figure 7.2: The implementation STG and circuit diagram of FIFO -

(i) and (k). One could see that there are two timing constraints (L+ ≺ D+

and D− ≺ L − /2) in the �nal subSTGs compared with four in the original

local STG, which indicates that the unnecessary timing orderings D+ ⇒ L− and

L+ /2 ⇒ D− are excluded during the relaxation process.

A timing constraint could then be changed into a delay constraint between a

wire and its adversary path by looking up the circuit and the entire STG shown

in Figure 7.2. The timing constraint D− ≺ L − /2 for gate_0 implies that the

transition D− from the environment propagating to gate_0 along the wire w3

should be faster than propagating along the adversary path wire w5, gate_2, w7,

gate_L and w14.

Each internal and output signal in this circuit are processed individually, and
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Figure 7.3: The STG relaxation procedure of the gate_0 -
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the delay constraints for this circuit to work correctly are shown in Table 7.1.

Most constraints in Table 7.1 are quite loose, which could be considered to have

been ful�lled already. When some constraints are considered strong, delays need

to be padded to ful�ll these constraints.

In this example, the adversary paths, whose levels are deeper than �ve (adver-

sary path involves more than two gates), or which pass through the environment

(the delay for the response from the environment is usually larger than a wire de-

lay in the circuit), are considered to be ful�lled already. There are two constraints

left, w15+ < w14+, gate_0+, w4+ and w3− < w5−, gate_2+, w7+, gate_L−, w14−.

These two constraints could be guaranteed by padding delays on wire w4 and w14.

A closer look at Table 7.1 reveals that each constraint only involves unidirec-

tional transitions on the adversary paths. This suggests that less performance

penalty would be introduced if the delays padded on adversary paths only de-

lay the required unidirectional transition. This could be achieved by using the

current-starved delay[65][66]. Two examples of the current-starved delay are pre-

sented in Figure 7.4. The current-starved delay uses a control voltage V to control

the charge/discharge current to control the delay magnitude of falling/rising tran-

sitions. The delay presented in diagram (a) in Figure 7.4 could delay the rising

transition for a given time but has little e�ect on the falling transition; while the

current-starved delay in (b) could delay the falling transition for a given time but

has little e�ects on the rising transition.

123



7.2 Simulation and Analysis

Table 7.1: List of timing constraints

wire ≤ adversary path
w15+ w14+, gate_0+, w4+
w14+ w3+, ENV, w17+
w3- w5-, gate_2+, w7+, gate_L-, w14-
w6- w9-, gate_3+, w10+, gate_4-, w12-,gate_L+, w17+,ENV, w5+
w5- w1+, gate_Ro+, w2+, ENV, w6+
w8+ w1+, gate_Ro+, w2+, w6+, gate_2-, w7-, gate_L+, w8+,

gate_3-, w10-, gate_4+, w12+, gate_L-, w14-, gate_0-, w4-,
gate_Ai+, ENV, w16+, w13-, gate_L+, w17+, w1-, gate_Ro-,
w2-, w9-

w9+ w6+, gate_2-, w7-, gate_L+, w17+, ENV, w8-
w13+ w11+, gate_4-, w12-, gate_L+, w17+, ENV, w1+, Ro+, w2+,

ENV, w6+, gate_2-, w7-
w11- w13-, gate_L+, w17+, ENV, w1-, Ro-, w2-, w9-, gate_3+,

w10+

7.2 Simulation and Analysis

The FIFO circuit is put through SPICE simulation using ASU Predictive Tech-

nology Model bulk CMOS model library from 90nm to 32nm [67]. The theoretical

error rates due to the failure of the isochronic fork as the process shrinks and the

performance penalty due to the padding are tested. When calculating the error

rate, only the glitches caused by the wire delays are considered. Failures caused

by the variation of the threshold are not considered. The error rate of the cir-

cuit is pessimistically calculated when any gate in the FIFO circuit glitches. As

the length of local interconnection decreased as process shrinks, the relative wire

length is used to compare the error rates between di�erent processes. The wire

length is changed into units of gate pitches and the interconnection distribution

function of the wire length in a circuit is calculated using the formula in [68]:
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Figure 7.4: The current starved delays. (a) controlled delay for rising

transition and (b) controlled delay for falling transition -
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Where N is the number of gates and the experience constant is set to k=3, p=0.85

and α=2
3
respectively. The error rate for each gate is conservatively calculated

as:

ER =

∫ 2
√
N

error_length

i(l)dl · (
∫ short_wire_length

0

i(l)dl)m

Where error_length is the units of gate pitch from which this gate starts to

glitch, short_wire_length is the length that we assume the wires in the adver-
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sary path will not exceed (about 20 gate pitches) and m is the number of wires

segments in the adversary path.
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Figure 7.5: The trend of error rate as the technology shrinks -

Figure 7.5 shows the trends of error rate as the process shrinks in one million-

gate scale circuit, un-buf indicates the case where bu�ering is not used on long

wires and buf-1 depicts the error rate when one bu�er is inserted into the "direct

wire" and no bu�ers inserted into its "adversary path" (The error rate will in-

crease signi�cantly when a bu�er is inserted into the "direct wire". Please refer

to the section 4.2.3 for the detailed analysis).

The Figure 7.6 shows the trends of the error rate as the scale increases from

0.5 million to 4 million under the 90nm process.

As can be seen from these �gures, the error rate increases as the technology

shrinks and the bu�er insertion technique will increase the error rate signi�cantly.

126



7.2 Simulation and Analysis

90nm−0.5M 90nm−1M 90nm−2M 90nm−4M
0

1%

2%

3%

4%

5%

6%

7%

8%

9%

C
irc

ui
t e

rr
or

 r
at

e

Scale

 

 

un−buf
buf−1

Figure 7.6: The trend of error rate as the scale increases -

Also, the error rate increases remarkably with the scale of circuit. The results

suggest that SI circuits will become less safe in the future.

The Figure 7.7 shows the delay penalty to eliminate all the glitches in one mil-

lion gates scale using di�erent padding methods (bu�er and one-direction current-

starved delay). The delays are inserted on wire w4 and w14 to just counter the

maximum wire length delay, the environment is assumed to be zero delay and the

delay penalty is calculated as the maximum latency increase in the slowest STG

cycle.
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Figure 7.7: The delay penalty -

7.3 Benchmarks

This section describes automated tool and presents the benchmark results on a

set of popular SI circuits.

7.3.1 Description of the Tool

The technique presented in Chapter 5 has been implemented in the tool Check_hazard,

which reads an STG as the circuit speci�cation and a restricted EQN �le as the

circuit description.

The STG to the tool is in the astg format as was used in the tools petrify

[60] and sis [69], since the astg format is widely used in the tools related to the

synthesis and veri�cation of SI circuits. This format will not be introduced in
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detail here. Currently, the circuit speci�cation format used in the tool is in a

restricted EQN format. In this format, each line contains an equation in the

sum of product form to specify the pull-up function of one gate in the circuit.

No brackets are allowed. The literals in each product term are connected by

the symbol ∗ and di�erent product terms are connected by the symbol +. The

negation of a signal is su�xed by "'". An equation is terminated with a ";". The

synthesized netlists from some popular tools such as petrify and sis might need

to be preprocessed before being input to the tool. For example, for a C-element

with the input signal A and the negation of signal B, the equation should be like:

C = A*B' + A*C + B'*C;

The equation C = A*B' + C* (A+B'); is not correct because it contains a pair

of brackets. The example of an STG in the astg format is shown below:
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.model imec-ram-read-sbuf

.inputs req precharged prnotin wenin wsldin

.outputs ack wsen prnot wen wsld

.internal csc0 map0 i0 i2 i4 i8

.graph
req+ i4+
i4+ prnot+
prnot+ prnotin+
precharged+ prnot+
prnotin+ wen+
wen+ precharged- wenin+
precharged- i0-
i0- ack+
wenin+ i0-
ack+ req-
req- i8+ wen-
i8+ csc0-
wen- wenin-
wsen- wenin-
wenin- wsld+ i4- i0+
i0+ ack-
i4- prnot-
wsld+ wsldin+ precharged+
wsldin+ csc0+
prnot- prnotin- precharged+
prnotin- i8-
i8- csc0+
wsld- wsldin-
wsldin- wsen+ map0+
ack- req+
wsen+ req+
csc0+ wsld- i2-
i2- wsen+
csc0- map0-
map0+ ack-
map0- i2+
i2+ wsen-
.marking { <i4+,prnot+> <precharged+,prnot+> }
.end

A circuit speci�cation in the restricted EQN format is shown below:

i0 = precharged + wenin';
ack = i0' + map0';
i2 = csc0' * map0';
wsen = wsldin' * i2';
i4 = wenin + req;
prnot = i4* precharged + i4 * prnot + precharged * prnot;
wen = req * prnotin;
wsld = wenin' * csc0';
i8 = req' * prnotin;
csc0 = i8' *wsldin + i8' * csc0;
map0 = wsldin' * csc0;

A command line to run the tool is "Check_hazard STG.g EQN.eqn". The tool

130



7.3 Benchmarks

will automatically perform the entire process and will report two sets of timing

constraints like those in the following block. The �rst set of timing constraints

is the timing constraints to exclude all adversary paths proposed in [55] and the

second set is the timing constraints after our relaxation operation.

The timing constraints in the original speci�cation are:
ack: map0- < i0+
wsen: wsldin+ < i2-
prnot: precharged- < i4-
wen: req+ < prnotin+
wen: prnotin- < req+
wsld: wenin+ < csc0-
wsld: csc0- < wenin-
csc0: wsldin- < i8+
map0: csc0+ < wsldin-
map0: wsldin+ < csc0+
i0: precharged+ < wenin+
i0: wenin- < precharged+
i2: map0+ < csc0-
i2: csc0+ < map0+
i2: csc0- < map0-
i4: wenin+ < req-
i4: req- < wenin-
i8: req+ < prnotin+
i8: prnotin+ < req-

The timing constraints for this circuit to work correctly are:
ack: map0- < i0+
wsen: wsldin+ < i2-
wen: prnotin- < req+
wsld: wenin+ < csc0-
csc0: wsldin- < i8-
map0: wsldin+ < csc0+
i0: precharged+ < wenin+
i0: wenin- < precharged-
i2: map0+ < csc0-
i2: csc0+ < map0-
i4: wenin+ < req-
i8: req+ < prnotin+
The running time for this program is 0.400000 seconds

7.3.2 Results

A set of SI circuits is used to test the e�ects of the proposed method. These

speci�cations are synthesized and then decomposed into multi-level SI circuits
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with each gate containing no more than 4 input signals using the tool petrify [60].

The benchmark results are obtained on a 2.4Ghz personal computer. The Table

6.2 shows the comparison of generated timing constraints between the proposed

method and the timing assumptions proposed in [55], which is currently the

weakest formally proved set of conditions.

The column "NO. of adv. before" presents the number of timing constraints

before our relaxation process. The timing constraints before our process are

equal to the timing constraints to exclude all adversary paths in an SI circuit as

is proposed in [55] . The column "NO. of adv. after" presents the number of

timing constraints after our relaxation process. The column "NO. of ≤ 5 level

adv. before" presents the number of timing constraints to exclude the adversary

paths whose level is less than or equal to 5 (two gates appear in the adversary

path) and the column "NO. of ≤ 5 level adv. after" presents the number of timing

constraints in three and �ve level in our technique. The column "NO. of ≤ 3 level

adv. before" presents the number of timing constraints to exclude the adversary

paths whose level is three (one gate appears in the adversary path). The column

"NO. of ≤ 3 level adv. after" presents the number of timing constraints in three

level in our technique. As can be seen from this table, the relaxation reduces by

around 40% of unnecessary constraints in all these three aspects. Also, from the

table, one could �nd that the computational time does not increase signi�cantly

as the number of states 1 increases.

1The number of reachable states shown in this table is the number of states reached by the
circuit when the isochronic fork timing assumption is not relaxed. The reachable states would
boost signi�cantly when the isochronic fork timing assumption is relaxed.
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Name NO. of

in

NO. of

out

NO. of

gate

NO. of

states

NO. of adv.

before

NO. of adv.

after

NO. of ≤

5 level adv.

before

NO. of ≤

5 level adv.

after

NO. of ≤

3 level adv.

before

NO. of ≤

3 level adv.

after

CPU

time (s)

adfast 3 3 7 94 10 6 4 2 0 0 0.04

atod 3 3 5 28 14 9 10 4 3 1 0.01

chu 133 3 4 7 41 10 6 2 1 1 1 0.04

converta 2 3 7 36 20 10 10 6 8 4 0.1

ebergen 2 3 5 24 10 6 5 5 2 2 0.01

�fo (chu 150) 3 3 7 64 14 9 5 3 4 2 0.05

imec-nak-pa 4 5 10 110 16 11 8 5 1 1 0.24

imec-ram-read-sbuf 5 5 11 112 19 12 4 2 2 1 0.40

imec-sbuf-read-ctl 2 4 8 32 12 6 3 3 2 2 0.06

mp-forward-pkt 3 5 8 44 13 8 1 1 0 0 0.1

nowich 3 3 8 43 10 5 2 1 1 0 0.12

trimos-send 3 6 15 2023 35 25 15 11 12 8 0.12

vbe5c 3 6 5 37 8 4 6 1 4 1 0.12

Total ratio after/before = 63.9 % after/before = 60.0% after/before = 57.5 %

Table 7.2: Comparison of the timing constraints
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7.4 Summary

This chapter �rst demonstrates the relaxation process of the proposed method

using an FIFO controller example. The example is then simulated to study the

error rate when the technology develops. Even though the threshold voltage

variations are not considered, error rate increases as the semiconductor feature

size shrinks. Also, a set of popular SI circuits is used to test the proposed method.

The benchmark results suggest that the proposed method excludes around 40%

unnecessary timing constraints compared with the previous research on this issue.

134



Chapter 8

Conclusion and Future Work

This chapter concludes our work and discusses the possible promotions for the

proposed method.

8.1 Conclusion

As the semiconductor technology shrinks, process variations become a big ob-

stacle to the circuit design. The synchronous design, which needs to distribute

the clock signal throughout the whole circuit, faces severe challenges. The asyn-

chronous design suggests a promising design method for the IC design industry

in the coming few decades. The SI design paradigm is more interesting in the

variation tolerance aspect compared with other asynchronous design paradigms.

Not only because it has the strongest variation tolerance ability for the most

speci�cations, but also because it has comparatively better EDA tool support.

However, any asynchronous circuit which is not DI will malfunction if certain

135



8.1 Conclusion

timing requirements are not met. Any SI circuit should be veri�ed �rst before

implementation.

Current veri�cation methods for SI circuits are mainly focused on checking

whether an SI circuit works properly under the isochronous fork timing assump-

tion; that is whether the circuit is functionally conformant to the its speci�cation

and is SI. However, as the process shrinks, the isochronic fork timing assumption

is no longer reliable. It is required that the timing veri�cation technique should

also consider the situation where the isochronic fork assumption is no longer

guaranteed. The timing veri�cation is a computationally expensive task. It is

especially true for asynchronous circuits which do not have latches to isolate the

entire circuit into smaller blocks. This work proposes a technique to derive a set

of timing constraints that are su�cient for an SI circuit to work correctly when

the isochronic fork timing assumption is relaxed into the intra-operator fork tim-

ing assumption. The whole veri�cation task is divided into a set of smaller tasks

to avoid exploring the entire reachability space. The high level model (STG) is

used to describe the behavior and manipulate the transition causalities in an SI

circuit; while, the low level model (SG) is used to check whether hazards would

appear in the circuit under a given environment. Each turn, the relaxation pro-

cess modi�es the causality of two ordered transitions into concurrent to include

the states that will be reached when the arriving order of two events in the circuit

is reversed. Then the SG of the resulting STG will be checked to see whether it

contains hazards. If it does, one timing constraint will be generated to guarantee

the original ordering of the two events; if it does not, the resulting STG will be

accepted which allows the occurrence of the two events in any order. The timing
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assumptions in the resulting STG will have one less adversary path compared

with the original one. The generated timing constraints are signi�cantly weaker

than the existing proved conditions. Around 40% unnecessary timing constraints

are excluded after local STG relaxation.

The main contributions of the proposed method are:

1) It corrects some wrong conclusions given by previous researchers about the

weakest timing assumption in SI circuits.

2) It introduces a hazard checking criterion for SI circuits when the isochronic

fork timing assumption is relaxed into the intra-operator fork timing assumption.

3) It proposes a polynomial complexity method for generating a set of timing

constraints for an SI circuit to work properly under the intra-operator fork timing

assumption. The proposed method checks the hazards of each gate at its local

STG. This means that the complexity of hazard checking task is linear to the

number of gates in an SI circuit. Also, the complexity of deriving the local STGs

for all gates in an SI circuit is polynomial to the number of gate in the circuit if

the number of free-choice places in its STG is considered to be a constant.

This work could be improved if the following questions are answered.

8.2 Future work

8.2.1 Non-free-choice place

The relaxation process in the proposed technique requires that the local STG

of the gate must be an MG, where transitions have explicit ordering relations.
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The technique proposed in [8], which could decompose a live and safe free-choice

STG into a set of MGs, requires the original STG to be a free-choice one and

a guaranteed method of decomposing any STG into a set of equivalent MG's

cannot be found in the literature. One solution to this problem is to change a

non-free-choice STG into a free-choice STG by writing its SG and then deriving

a free-choice STG from this SG using the technique proposed in [49], which has

been implemented in the petrify tool. One example is shown in Figure 8.1.

However, the derived free-choice STG might contain too many choice places.

The technique proposed in [8] uses brute force to enumerate all possible MG

components; so, the number of MGs grows exponentially with respect to the

number of free-choice places in the STG. If the STG contains too many choice

places, decomposing this STG becomes impractical.

Future research could be carried out to �nd a technique that could struc-

turally decompose a less restricted class of PN into a set of MGs, thus avoiding

introducing too many choice places during transforming the original STG into a

free-choice STG.

8.2.2 Not pure SI circuits

Many synthesis techniques [70] [71] [72] involve timing assumptions during the

logic synthesis to improve the performance. The synthesized circuits are then no

longer pure SI circuits. Some timing assumptions involved in these synthesis tech-

nique could be expressed by relative timing arcs, for example, the concurrency

reduction arcs in [50]. Some timing assumptions could be expressed by decom-
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Figure 8.1: A non-free choice STG and its equivalent free-choice STG -

139



8.2 Future work

posing the original STG into a set of component STGs and then using timing arcs

to restrict the �ring sequences (similar the OR-causality decomposition), like the

indistinguishable �ring timing assumption in [50]. For those timing assumptions

that are not easy to express with timing arcs, one possible approach is to specify

a set of states such that these states are not hazardous states even if they are not

timing conformant to the function of the gate.
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