
Limits on ILP in Micronet-based Architectures

D. K. Arvind and C. Keepax
Institute for Computing Systems Architecture

School of Informatics, The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ, Scotland.

Email: dka@inf.ed.ac.uk

Abstract

This paper describes the use of simulations to study the lim-
its on Instruction Level Parallelism (ILP) in a micronet-
based asynchronous processor. The impact of two fea-
tures on the exploitable ILP were studied: the dependency
lengths between instructions in the program, and the asyn-
chronous synchronisation overhead in the architecture. The
results demonstrate that the attenuation in the speedup due
to ILP is moderate with increases in the synchronisation
overheads (of upto 50% of ALU computation cost), thanks
to the overlapping of communication and computation in-
herent in micronet architectures.

1 Introduction

The micronet [dka94] is a network of entities which com-
pute concurrently and communicate asynchronously. This
paper explores the impact of dependency lengths and syn-
chronisation delays on the speedup due to ILP in multiple
ALU micronet architectures. Section 2 gives an overview of
the Micronet-based Asynchronous Processor (MAP) datap-
ath, Section 3 describes the COMPASS design environment
which was used to derive the results of the experiments de-
scribed in Section 4.

2 The MAP Datapath

MAP is a family of processors based on the micronet model
for the design of asynchronous architectures. The MAP
datapath, as shown in Figure 8, is a network of execution
units, such as the Instruction Buffer, the Instruction Issue
Unit, Control Unit, Register Bank, and integer functional
units such as the Memory Unit and the ALUs. The 32-
bit datapath executes a subset of the MIPS instruction set.
It contains sixty-four, 32-bit general-purpose integer regis-
ters, and a collection of dedicated registers for the program

counter, link register (for the return address of a function),
stack pointer (which points to the area in memory for the
spilt variables), and HI and LO registers (used for storing
the results of 32-bit multiplication). Each execution unit is
composed of a Functional Microagent (FM) which executes
a specific micro-operation, and communicates with other
units via Communicating Microagents (CM) employing a
four-phase handshaking protocol. The Instruction Buffer
caches instructions for the Instruction Issue Unit, and the
Control Unit mediates their operations. On the issue of an
instruction, the appropriate control signals are asserted and
the destination register is locked, and the instruction is con-
sidered issued once the signals have been acknowledged.
The CMs between the register bank and the X and Y buses
communicate to place the register values, as specified in the
instruction, on the X and Y buses, respectively. The ALU
will operate on the values and the results are placed on the
Z-bus and written back to the destination register, which is
then unlocked.

3 The COMPASS Design Environment

The COMPASS Design Environment integrates two major
modules - a compiler based on SUIF which generates as-
sembly code of ANSI C programs for the MAP target, and
an object-oriented modelling and simulation environment
for MAP architectures, which executes this code. COM-
PASS therefore supports the exploration of both the archi-
tectural and compiler optimisation spaces in a unified envi-
ronment.
A C program is compiled into the SUIF intermediate rep-
resentation using C2suif. Compilation passes are written
to operate on this intermediate representation and program
optimisation is achieved by running a series of different
passes. Machine SUIF provides target-specific functional-
ity and is built on top of SUIF and encapsulates MAP spe-
cific elements which are necessary for optimisations, such
as instruction scheduling. Machine SUIF is built from a se-
lection of libraries, each of which can be extended or mod-



ified to implement different architectural forms or compila-
tion passes. The most important one is the Machine library,
which specifies the Machine SUIF intermediate representa-
tion known as SUIF Virtual Machine (SUIFVM). The SUIF
intermediate representation is lowered into a SUIFVM rep-
resentation before executing MAP specific optimisations.
SUIFVM represents entities at a lower level and is closer
to the way the MAP architecture actually represent instruc-
tions. Rather than representing a for statement directly as
SUIF does, SUIFVM would represent it as a block of in-
structions (the body of the loop) and a conditional branch
(the terminating condition). As in SUIF, a series of passes is
used in the Machine SUIF compilation process: two passes
are used to lower the SUIF intermediate representation into
SUIFVM, followed by a second lowering to the target MAP
machine library. MAP specific optimisation passes are next
run, followed by register allocation and code finalisation,
such as stack layout. Finally, a printer object outputs the
program in an assembly form for execution on the instruc-
tion level simulator of the MAP architecture.
The core of the bespoke simulator is the SPAM kernel
which controls the order of events to be simulated and keeps
track of the timing. The Memory and Sim components in
the simulator are built on top of the SPAM kernel. The out-
put of the Assembler fills the Memory with instructions,
which is interpreted by the objects which model the pro-
cessor behaviour in the Sim component. They inherit the
functionality of the Entity class, and attached to the entities
are ports which allow different entities to send and receive
events. The events correspond to actions in a processor,
such as the value of a register being read. The entity class
inherits from the context class, which ensures that the entity
keeps processing information, and the entity class handles
timing and ensures that events get to the right place at the
right time.

4 Experiments and Results

We investigated the influence of two factors, one software
and the other hardware, which would affect the performance
of programs executing on micronet archiectures. The first
factor was the dependency lengths1 of the instructions in
the program. This is an important issue in the case of MAP
architectures which have a number of ALUs to exploit in-
struction level parallelism. If the mix of instructions is dom-
inated by ones with small dependency lengths, then there
is a greater likelihood of the Instruction Issue Unit being
stalled due to these dependencies. This would result in a
low utilisation rates for these functional units, and a lower

1The dependency length of any two instructions within a basic block
in a program is defined as the shortest distance (in terms of number of
instructions) between the producer and the consumer instructions.

speedup2. The second factor was the delay of the Com-
municating Microagents (CM) and how this influenced the
speedup. One of the features of the micronet model was
to overlap the communication with the computation and
thereby ameliorate the overhead of asynchronous commu-
nication. We wished to assess in a quantitative manner the
influence of increasing the CM delay on the overall perfor-
mance. We used synthetic benchmarks which were straight
line code in which the dependency lengths between the in-
structions were uniform across the instructions, and ranged
from 1 to 5 or was infinite, i.e. the instructions were inde-
pendent. Figures 1, 3 and 5 illustrate the speedup for the
benchmarks in the case of 2, 3 or 4 ALUs, where the ALU
delay was set at 20 Time Units (TU), and the CM delay
ranged from 1 to 19 TU. Figures 2, 4, and 6 illustrate the
speedup for the same parameters listed previously, except
that the ALU delay was set at 120 TU.
The best speedup corresponded to those cases where the de-
pendency length is infinite and the CM delay is the low-
est. As the CM delay is increased from 1 TU to 19 TU,
an increase of 1800%, the speedup in the case of 4 ALUs
- ALU delay of 120 TU (Figure 6) is attenuated by about
40%, compared to 62% in the case of ALU delay of 20 TU
(Figure 5). A comparable reduction of 63% in the speedup
is experienced in the case of 2 ALUs - ALU delay of 20 TU
(Figure 5), compared to 22.5% reduction in the speedup in
the case of the ALU with 120 TU delay. In the case of 1
ALU, the reduction in speedup is 22.5% (Figure 1) and 5%
(Figure 2), respectively.
In summary, the performance is more tolerant to increases
in the synchronisation costs, especially in cases where the
CM delay is less than one-tenth of the ALU delay (Figures
2, 4 and 6), which reflects the relative implementation costs
in practice.
Figure 7 illustrates the speedup for the inverse discrete co-
sine transform. The implementation of this algorithm is
characterised by basic blocks of average size of 31 instruc-
tions, of which 81% are ALU instructions, and 19% mem-
ory instructions. 93% of the instructions have dependency
lengths of either 1 or 2 instructions. There is a reduction
of 21.5% in the speedup with 4 ALUs (delay 0f 120 TU)
between the two extreme cases of CM delays.

References

[dka94] Arvind, D. K. and Rebello, V. 1994. Instruction Level
Parallelism in Asynchronous Processor Architectures In
Proc. of the 3rd International Workshop on Algorithms
and Parallel VLSI Architectures, pp 80-91, Eds. M, Moo-
nen and F. Cathoor, Leuven, Belgium, Aug. 1994, Else-
vier.

2The speedup is defined as the ratio of program execution times on one
ALU to many ALUs



Figure 1. Speedup with 2 ALUs (delay 20 TU) Figure 2. Speedup with 2 ALUs (delay 120 TU)

Figure 3. Speedup with 3 ALUs (delay 20 TU) Figure 4. Speedup with 3 ALUs (delay 120 TU)

Figure 5. Speedup with 4 ALUs (delay 20 TU) Figure 6. Speedup with 4 ALUs (delay 120 TU)



1 3 5 7 9 11 13 15 17 19
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

CM Delay

Sp
ee

du
p

2 ALUs of delay 20
3 ALUs of delay 20
4 ALUs of delay 20
2 ALUs of delay 120
3 ALUs of delay 120
4 ALUs of delay 120

Figure 7. Attenuation in Speedup for the Inverse Discrete Cosine Transform

Instruction
Buffer

Instruction Issue Unit
Unit

Control 

X BUS

Y BUS

Z BUS

CU

CM
IIU

CM

CM

CM CMCM

FU

CM

FM

ALU0 ALU1 ALUn MU Register Bank
FM FM FM FM FM

FU

CM

FU

CM

FU

CM

FU

CM

OPER

FETX

OPER

FETY

FU FU

CM

FU

CM

FETX

CM

FETY LOCK

LOCK

Figure 8. The MAP Datapath


