
Balancing Power Signature in Secure Systems
A. Bystrov, D. Sokolov, A. Yakovlev, A. Koelmans
School EECE, University of Newcastle upon Tyne

{A.Bystrov, Danil.Sokolov, Alex.Yakovlev, Albert.Koelmans}@ncl.ac.uk

Abstract—Dual-rail code, return-to-spacer protocol and hazard-free
logic is used to make power consumption of synchronous circuits inde-
pendent from data processed. A new compact dual-rail flip-flop is de-
signed, whose power consumption is also data-independent. A method
for negative gate optimisation of dual-rail logic is described, which re-
sults in faster and smaller circuits. A tool for dual-rail circuit optimi-
sation is developed. The tool is interfaced to the Cadence CAD system.
Dual-rail and single-rail benchmarks are simulated and compared.

I. INTRODUCTION

Economics of research and development often sets contra-
dictory targets for a designer. Maximum reuse of existing al-
gorithms, IP cores and tools, all developed with the purpose
of making debugging of the system simpler, also simplify the
reverse engineering of such systems. Design of secure sys-
tems is the area where reverse engineering may become par-
ticularly harmful [1]. Although there exist many system-level
solutions for better security (e.g. strong cryptography), many
of them can be attacked at the physical level by observing
power supply currents or electromagnetic interference in the
close proximity of the circuit [2]. These techniques exploit
the fact that the overall current (or the electromagnetic field)
is the linear superposition of currents (fields) created by indi-
vidual circuit components. If the algorithm of the block oper-
ation is known (you cannot change the encryption standard)
and the implementation is approximately known (one of the
‘cost effective’ IP cores) then accessing the secrets manipu-
lated by the system become feasible. The worst-case scenario
(which takes place in many portable systems) is when the sys-
tem uses the global bus architecture, where only two blocks
can communicate at any time. System ‘desynchronisation’
may help to hide the clock signal used as a reference in power
analysis techniques, but hiding bus transactions and cycles of
a block operation is a much more complex task which might
require very expensive changes to the entire design method-
ology.

A cheaper way is to rebuild individual blocks within the
same synchronous infrastructure so, that their power signa-
ture was independent from the mode of operation and from
the data processed. The further justification for this approach
is that these blocks are secure replacements for the blocks in
the existing architecture dominated by a synchronous single-
threaded CPU core and its slow bus, having no pipelining or
concurrency.

II. ‘ASYNCHRONOUS’ LOGIC ADDS SECURITY TO
SYNCHRONOUS DESIGNS

For maximum security, one would like the power con-
sumption profile to be totally flat. To design a circuit in such
a way appears to be very difficult, but it is certainly possi-
ble to make progress towards this goal. There are basically
two choices: reduce the peaks in the power consumption, or
deliberately burn power when there would normally be little
switching activity. The first approach would require chang-
ing the computational algorithm, which is generally difficult

(or unacceptable, in the case of standardised encryption algo-
rithms). The second approach is much more feasible. Dual-
rail logic and other symmetrical codes are highly suitable for
this purpose.

In this paper we consider the following mechanisms ex-
posing the algorithm via the power consumption channel:� data-dependent number of transitions in flip-flops� data-dependent number of transitions and their energy in
the multilevel combinational logic� data-dependent hazards in combinational logic� mode-dependent switching between sub-blocks.
All these information ‘leaks’ can be minimised by creating
circuits as dual-rail (other monotonic codes are also possible,
e.g. 1-of-4 [3]) having return-to-spacer protocol on each pair
of wires. One wire within each pair switches at every clock
cycle, thus making the number of switching events on these
wires data-independent. Furthermore, if the combinational
logic is made symmetrical by implementing it using compli-
mentary gates (similar to NCL-X [7]), then the power con-
sumption can be made constant within any clock cycle. The
method and the tool for generating and optimisation of such
combinational circuits is described in the following sections.
As our designs are synchronous, a new flip-flop supporting
the return-to-spacer protocol has been implemented.

A. Dual-rail logic

Dual-rail code offers two rails with only two valid signal
combinations

������������	
, which encode values 0 and 1 respec-

tively. Other combinations do not belong to the code space.
Dual-rail code is widely used to represent data in self-timed
circuits [4], [5], where a specific protocol of switching helps
to avoid hazards. The protocol allows only the transitions
from all-zeroes, which is a non-code word, to a code word
and back to all-zeroes as shown in Fig. 1(a). The all-zeroes
state is used to indicate the absence of data, which separates
one code word from another. Such a state is often called a
spacer. It is important that any transition in Fig. 1(a) changes
the same number of signals, which results in the balanced and
data-independent power signature.

Spacer Sp0

"1"

<x x >1 0

Code words
"0"

00

01 10

(a) Allowed
transitions

c

c

a

a

b

b

0

1

0

1

1

0

(b) XOR imple-
mentation

Fig. 1. Self-timed dual-rail code

Spacer-to-code switching is monotonic as the number of
ones is only increasing. The opposite transition is also mono-
tonic. Functional operations on dual-rail signals can be im-

plemented as dual-rail logic, an example of which is shown
in Fig. 1(b). These implementations exploit the fact that the
negation operation in dual-rail corresponds to swapping the
rails. Such circuits do not have negative gates hence they are
race-free (internal negative gates in XOR elements are also
converted into positive gates) under any single transition. In
order to avoid hazards in the series of transitions it is neces-
sary either to introduce completion detectors for all internal
signals [6], [7], [8] or to guarantee sufficient duration of in-
put states ‘code word’ and ‘spacer’, as we do in our clocked
designs.

A disadvantage of building circuits out of positive gates is
that such gates are constructed in CMOS out of a negative
gate and an inverter. In this paper we present a method for
negative gate optimisation of dual-rail logic which eliminates
most internal inverters and results in smaller and faster cir-
cuits.

B. Negative Gate Optimisation

If the all-zeroes spacer of the traditional dual-rail code is
applied to a layer of negative gates (NAND, NOR, AND-
NOR, OR-NAND), then the output will be all-ones. The
opposite is also true: all-ones are converted into all-zeroes.
Such spacer transformations are captured in Fig. 2. The po-
larity of signals within code words remains the same.

<x x >1 0

1 0<x x >

"1"
Spacer Sp0

Odd layers of logic

Even layers of logic

"1""0"
Code words

Code words

Spacer Sp0

"0"

11

00

01 10

01 10

Fig. 2. Spacer transformation

This concept is illustrated in Fig. 3, where a single-rail
logic circuit is transformed into a Dual Spacer Dual Rail
(DSDR) circuit. Dotted lines in the single-rail circuit indi-
cate signals which will be mapped into the dual-rail with the
all-ones spacer. The bar on the wire
 is the location of a
spacer polarity converter. The DSDR circuit in Fig. 3(b) is
obtained by replacing gates by their DSDR versions. DSDR
gates are build from the traditional positive dual-rail gates
by adding signal inversion to their outputs and swapping the
output rails (the latter is needed to preserve the polarity of
signals in the output code words). The operation of negation
is implemented as a separate element, which, however, does
not require any logic gates (rail swapping). The spacer po-
larity converter is implemented as a pair of inverters having
their outputs crossed in order to preserve the polarity of sig-
nals in the output code words. From this example one can
see that the DSDR approach helps to reduce circuit latency
by removing inverters from the critical path. Spacer polar-
ity converters are inserted in order to ensure the alternation
of spacer polarities in all paths. They neither belong to the
existing nor create a new critical path.

C. Dual-rail flip-flop

Synchronous flip-flops are build to be power efficient, so if
they switch to the same value (data input remains the same
within several clocks) then nothing changes at the output.
The absence of the output transition saves power, but in the

a
b

c q

(a) Original
single-rail
circuit

Spacer polarity converter

a
a
b
b

c
c

q

q

1
0
1
0

1

0

1

0

~sp

~sp

~sp

(b) DSDR implementation

Fig. 3. Constructing dual-spacer dual-rail circuit

same time it makes the power consumption data-dependent.
In order to avoid this, we make flip-flops operate in the return-
to-spacer protocol as in Fig. 1(a). The solution in Fig. 4 uses
the master-slave scheme, writing to the master is controlled
by the positive edge of the clock and writing to the slave is
controlled by the negative edge. At the same time the high
value of the clock enforces slave outputs into zero (output
spacer) and the low clock value enforces master outputs into
one (internal spacer).

d_code
q_code

m_code

clk

m
_n

R
es

m
_n

E
n

s_
R

es

s_
E

n

(a) Schematic

m_code−set m_nEn+

s_Res+
clk+

m_nRes+
q_code−reset

clk−
s_Res− q_code−set s_En−

m_nRes−
m_code−reset

(b) Signal transition graph

Fig. 4. Dual-rail flip-flop

This circuit operates as explained in Fig. 4(b). Both mas-
ter and slave latches have their respective reset and enable
inputs (negative polarity for the master). The delay between
removing the reset signal and disabling writing for each latch
(hold time) is formed by the couple of buffers in the clock
circuit. Buffers between master and slave are needed to delay
m_code ‘set’ value until s_En-. The advantage of this imple-
mentation is the use of a single cross-coupled latch in each
stage for a couple of input data signals. It is possible only
because there can be only three states (two code words and
one spacer) at a dual-rail input.

III. TOOL FOR GENERATING DSDR CIRCUITS

The diagram of the Verimap tool is presented in Fig. 5. The
input for the tool is a Verilog netlist. The gates used in the
netlist and the gates complementary to them must be defined
in the library.

gates
library of

convertion into
positive logic DR

optimisation for
negative logic DR

1−2−1 rail converter

1−2−1 converter

RTL netlist

DR netlist
positive logic

negative logic
DR netlist

completion
netlist

netlist

completion

spacer protocol
on interface

rules for logic
transformation

constraction of

construction of

Fig. 5. Verimap diagram

The rules for logic transformation into dual-rail specify the
direct and complementary logic gate names, the sets of in-
verted inputs and outputs, the requirement of completion de-
tection and inversion of the spacer for each gate in the library.
If a predefined dual-rail implementation of a gate is found in
the library the tool uses it, otherwise such an implementation
is built automatically using the rules.

Dual-rail logic can be optimised for negative gates. For this
all inverters in positive dual-rail logic are replaced by swap-
ping of the rails. In addition to inversion of a code word this
operation also inverts the spacer, which may result in differ-
ent spacers on the inputs of some elements. In order to allign
the spacers the depth of each gate is calculated and a spacer
inverter is inserted in the connection between the gates if their
depth difference is an even number. The user defined spacer
protocol on inputs and outputs of the circuit is preserved.

If required, the tool generates the completion signals in
the following way. First, the logic is sliced into layers of
equal depth. Second, every element which requires comple-
tion is supplemented by either OR-gate (for all-zeros-spacer)
or NAND-gate (for all-ones-spacer) connected to its output
rails. This gates generate the completion signals. Then, the
completion signal for each layer is built using a multi-input
C-element, joining the completion signals from the individual
elements of the given layer and the completion signal from
the previous layer of logic. Finally, the go input is connected
to the input of the first layer C-element and the done output
is generated by the last layer C-element.

To preserve the interface to the single-rail environment the
tool creates a wrapper module which converts the circuit in-
puts from single-rail to dual-rail and outputs from dual-rail to

single-rail.

ci

b

a

s

co

Fig. 6. Full adder (single-rail)

Let us consider the tool operation on the example of full
adder shown in Fig. 6.

0a
1a

0co

1co

0s

1s

0

1b

b

1

0

ci
ci

and1 (d=1) or1 (d=3)

and2 (d=2)

xor2 (d=2)

xor2 (d=1)

Fig. 7. Full adder (dual-rail)

The dual-rail circuit is built by duplicating all the wires
and replacing all gates by corresponding dual-rail elements
as shown in Fig. 7.

0a
1a

0co

1co

0s

1s

~sp

~sp

~sp

~sp

~sp

0

1b

b

1

0

ci
ci

~sp

and1 (d=1)

xor1 (d=1)

and2 (d=2)

spinv1 (d=2)

or1 (d=3)

xor2 (d=2)

Fig. 8. Full adder (dual spacer, dual-rail)

The full adder optimised for negative logic is shown in
Fig. 8. The dotted lines indicate the rails of all-ones spacer
and solid lines represent the rails with all-zeros spacer. This
circuit is generated in the following way. First, each posi-
tive dual-rail gate is split into corresponding negative dual-
rail gate and not inverting spacer dual-rail inverter (which is
a pair of inverters, one on each rail). Second, the inverter is
replaced by spacer inverting dual-rail inverter (which is just a
swapping of rails). Then, a spacer inverter spinv1 is inserted
between and1 and or1 elements because their depth differ-
ence is even, which indicates a spacer conflict. The depth of
an instances are shown in parenthesis next to their names.

Here are some statistics for different full adder implemen-
tations. The full adder circuit optimised for negative logic
uses 8 inverters less than the not optimised one (10 inverters
are removed and 2 inverters are inserted for spacer inversion).
The critical path (carry flag calculation) has been shorten by 3

inverters compared to the single-rail one. CMOS implemen-
tation of the single-rail full adder uses 38 transistors, dual-rail
– 76 transistors, negative logic optimised dual-rail – 60 tran-
sistors (which is only 1.58 times more than in the single-rail
circuit).

IV. CASE STUDY

In this Section we compare two implementations of the
benchmark incr8 using a ripple-carry adder, one is dual-rail,
the other is single-rail. The benchmark loads the value of
0xFC into the 8-bit register and then increments this value
with each clock cycle. Both implementations use AMS-
0.35 � technology and are simulated using the analog simu-
lator Cadence Spectre. A clock frequency of 20MHz is cho-
sen, which is typical for smart card applications. Simulation
goes until the carry on all bits occurs (0xFF -> 0x00). Then
the waveforms of current during this transition is compared
against the transition without carry.

Fig. 9. Benchmark incr8 (dual-rail)

The circuit in Fig. 9 is the dual-rail implementation of
incr8. It uses full adders as in Fig. 8 and dual-rail flip-flops as
in Fig. 4. A couple of inverters I24, I26 form the dual-rail in-
put (with spacers) for the adders. Blocks I16-23 are combina-
tional circuits enforcing the state 0xFC at the flip-flop inputs
during reset. The waveforms in Fig 10 illustrate circuit opera-
tion. Flip-flops are triggered by the positive edge of the clock.
One can see that all dual-rail signals are zero (spacer) when
the clock is high. During this time the state of the system is
stored in the master part of the flip-flops. It propagates to the
output of flip-flops only at the beginning of the low phase of
the clock. This is the moment when the combinational logic
computes the next state. One can also see that the number of
transitions is constant in each clock cycle (independent from

the data). This results in a very even distribution of power
supply current (/V0/MINUS waveform).

Fig. 10. Dual-rail circuit operation

The diagrams in Fig. 11 show the waveforms of the power
supply current under different operations performed by the
circuit. The diagrams (a) and (b) correspond to writing of
data into the master parts of flip-flops. The minor differences
in these waveforms are possibly due to early propagation ef-
fects in the combinational logic being reset to spacer in the
same time. It is important that the area under graphs remains
the same, which indicates the same power consumed within
each pulse.

The diagrams (c) and (d) are superpositions of the current
during the addition performed by combinational logic and
the power signature of flip-flops writing data from masters
into slaves and resetting masters. One can see the long trails
caused by computations in the ripple-carry adders. The trail
in (d) is longer as all 8 carry signals are computed sequen-
tially. The trail in (c) is shorter due to early propagation ef-
fects in the combinational logic. Early propagation happens
when some signals (carry in this case) are not needed for out-
put computation. These dual-rail signals are still switched,
but this is done concurrently with outputs. This is why the
shorter trial is also higher. The area under the graphs is iden-
tical because of the same number of switching performed.

A similar experiment has been performed with the single-

(a) 1 flip-flop bit changing (b) 8 flip-flop bits changing

(c) no carry (early output generation) (d) 8 carry operations

Fig. 11. Power supply current for the dual-rail circuit

rail implementation of the same benchmark. Full adders
and flip-flops were taken from AMS-0.35 � HRDLIB library.
They are optimised at the transistor level, hence consume less
power. Power signature, however, for this circuit depends
heavily on data, thus allowing an observer to guess which
part of the algorithm is performed. Waveforms of the power
supply current for this circuit are shown in Fig. 12. The di-
agram (a) shows the current when only one flip-flop bit is
changed and only one carry is generated. The long trail in
(b) corresponds to the computation involving sequential gen-
erating four carry signals, while only one flip-flop changed
its state. The burst of power consumption in (d) corresponds
to switching eight flip-flops to new states. The area is clearly
different under all these graphs, which means different en-
ergy consumed.

Comparing these benchmarks, one can see that the over-
all power consumption of the dual-rail circuit is significantly
higher. This is mainly because it switches all bits of data
(each represented as a pair of wires) twice within the cycle of
operation. It is about four times more than a corresponding
single-rail circuit. In this experiment we did not optimise the
flip-flops at the transistor level, they all also include delay ele-
ments (buffers) which could be shared between flip-flops. We

estimate the possible reduction in power consumption due to
flip-flop optimisations to be about 15%.

V. CONCLUSIONS

We used the dual-rail code with return-to-spacer protocol
to build hazard-free combinational logic for synchronous cir-
cuits targeted for security applications. Due to the symmetry
of representation of values in this code and to the symmetry
in dual-rail logic implementation the number of switching in
each clock cycle became constant. This resulted in a very bal-
anced power consumption, independent from data processed.
Special dual-rail flip-flops have been designed, which use a
single cross-coupled latch for the master and a similar single
latch for the slave implementation. These flip-flops generate
spacers internally, which balances their power signature, and
externally, which balances the power signature of the combi-
national logic.

A benchmark using a ripple-carry adder has been imple-
mented in the dual-rail and single-rail versions in AMS-0.35 �
technology. Both implementations have been simulated us-
ing the analog simulator Cadence Spectre. Simulation re-
sults indicate a significant reduction in data-dependency of
the power supply current in the dual-rail circuit. The dual-

(a) 1 flip-flop output changing, 1 carry computed (b) 1 flip-flop output changing, 8 carries computed

(c) 8 flip-flop outputs changing, no carry computed

Fig. 12. Power supply current for the single-rail circuit

rail circuit consumes more power as it switches all dual-rail
signals twice during the clock cycle, one time into the use-
ful value and the second time to the spacer. The overall
power consumption of the dual-rail circuit was about four
times greater than that of the single-rail. The authors believe
that this can be reduced if the new flip-flops are optimised at
the transistor level and if 1-of-4 codes are used.

The method for negative gate optimisation of dual-rail
logic has been developed. It uses spacers of different polar-
ity in different levels of combinational circuits. The tool for
dual-rail logic optimisation has been created. The benchmark
results indicate only 60% overhead comparing to the single-
rail logic implementations. The tool is interfaced to Cadence
CAD system.

REFERENCES

[1] R.J. Anderson, M.G. Kuhn: ‘Low cost attacks on tamper resistant de-
vices’. In M. Lomas et al. (ed.): Security Protocols, 5th Int. Workshop,
Paris, France, 1997, Proceedings, Springer LNCS v 1361, pp 125-136.

[2] S. Moore, R. Anderson, P. Cunningham, R. Mullins and G. Taylor: ‘Im-
proving smart card security using self-timed circuits’. ASYNC’2002,
2002, pp 211–218.

[3] W. J. Bainbridge and S. B. Furber: ‘Delay insensitive system-on-chip
interconnect using 1-of-4 data encoding’. In Proc. ASYNC’2001, March
2001.

[4] VARSHAVSKY, V., KISHINEVSKY, M., MARAKHOVSKY, V.,

ROSENBLUM, L., and TAUBIN, A. : ‘Self-timed control of concur-
rent processes’ (Kluwer, 1990), (Russian edition 1986).

[5] DAVID, I., GINOSAR, R., and YOELI, M.: ‘An efficient implementa-
tion of boolean functions as self-timed circuits’. IEEE Trans. on Com-
puters, 1992, 41(1), pp. 2–11.

[6] SPARSO, J., and FURBER, S. (Editors): ‘Principles of asynchronous
circuit design - a systems perspective’ (Kluwer, 2001).

[7] KONDRATIEV, A., and LWIN, K.: ‘Design of asynchronous circuits
using synchronous CAD tools’. Proc. DAC’02, New Orleans, USA,
2002, pp. 107–117.

[8] FANT, K., and BRANDT, S.: ‘Null Convention Logic: a complete
and consistent logic for asynchronous digital circuit synthesis’. Proc.
Int. Conf. Application-Specific Systems, Architectures and Processors
(ASAP’96), IEEE CS Press, Los Alamos, Calif., 1996, pp. 261–273.

ACKNOWLEDGEMENT

This work has been supported by EPSRC grants
GR/R16754 (project BESST) and GR/S12036 (project
STELLA).

