
Balsa-CUBE: an Optimizing Back-End for the Balsa Synthesis System
�

Tiberiu Chelcea
�
, Steven M. Nowick

�
, Andrew Bardsley

�
, Doug Edwards

�
�
Department of Computer Science

Columbia University�
tibi,nowick � @cs.columbia.edu

�
Department of Computer Science

University of Manchester�
bardsley,doug � @cs.man.ac.uk

Abstract
Several approaches have been proposed for the syntax-
directed compilation of asynchronous circuits from high-
level specification languages, such as Balsa [1] and Tan-
gram [13, 10]. Both compilers have been successfully
used in large real-world applications; however, in prac-
tice, these methods suffer from significant performance
overheads due to their reliance on straightforward syntax-
directed translation.

This paper describes a new back-end optimizer (Balsa-
CUBE, short for “Balsa-Columbia University Back-End”)
for an existing asynchronous CAD synthesis package,
Balsa. The back-end incorporates several powerful
transformations for the optimization of large-scale asyn-
chronous systems. The transforms fall into two categories:
peephole and resynthesis. Peephole optimizations replace
existing configurations of components in a template-based
fashion by other configurations of components. In con-
trast, resynthesis optimizations modify and resynthesize a
collection of components in a non-template based fash-
ion. To facilitate the application of these transforms, a
new asynchronous component modeling language, called
CH, is also introduced. All the proposed transforms are
captured as simple language manipulation procedures in
CH. The design flow includes an established tool for asyn-
chronous controller synthesis, Minimalist [8], which syn-
thesizes two-level logic implementations and includes a
number of options for used design-space exploration, and
an established synchronous technology-mapping tool, Syn-
opsys Design Compiler [5]. Experimental results on sev-
eral substantial design examples indicate system-level per-
formance improvements of up to 54%.

1 Introduction
Several approaches have been proposed for compilation
of asynchronous circuits from high-level specification lan-
guages. Hardware compilers such as Balsa [1] (from Uni-
versity of Manchester) and Tangram [13, 10] (from Philips
Research Labs, and now used for commercial products)
perform a syntax-directed compilation of high-level spec-
ifications into an intermediate representation using hand-
shake components. These components are then directly
mapped into VLSI circuits using a template-based ap-
proach. An occam-based compiler [2] and an alternative
translation approach from Caltech [9] have also been pro-
posed.

Balsa and Tangram have been widely-used, but their
syntax-directed translation methods introduce significant

�
This work was supported by NSF ITR Award No. NSF-CCR-

0086036 and NSF Award No. CCR-99-88241, a grant from the New
York State Microelectronics Design Center, and by ESPRC Grant No.
GR/N19618.

performance overheads. While these synthesis styles have
the advantage of “transparency” (the designer is control-
ling the final results from the high-level program), they
also have the disadvantage of avoiding the use of powerful
back-end transformations, except for a few limited peep-
hole optimizations. The Caltech approach uses only local-
ized resynthesis techniques (such as handshake reshuffling
and “guard symmetrization”), which are not systematically
applied or captured at a higher language level. In contrast,
this paper presents a much wider-ranging and more pow-
erful set of transformations for the optimization of asyn-
chronous systems.

This paper presents a new automated, optimizing back-
end (“Balsa-CUBE”), integrated in the Balsa synthesis
system [1]. The back-end also includes the Minimalist
CAD package [8] for burst-mode controller synthesis, and
the Synopsys’ Design Compiler for technology mapping.
The back-end includes a complete hazard verifier, which
verifies top-level controller specifications against the fi-
nal technology-mapped implementation, based on 9-value
hazard simulation [7]. The integrated design flow was
applied to several substantial asynchronous design exam-
ples. Pre-layout back-annotated Verilog simulations on
technology-mapped implementations indicate up to 54%
speed improvement over the unoptimized implementa-
tions. The proposed back-end is the first integrated asyn-
chronous design flow for large-scale systems which incor-
porates a significant number of powerful optimizing trans-
forms.

The optimizing back-end incorporates two major con-
tributions. First, a set of transformations is used to opti-
mize large-scale asynchronous circuits. These transforms
(introduced in [4, 3]) fall into two categories: peephole
and resynthesis. A peephole optimization optimizes com-
ponents within a sliding window; if the netlist of compo-
nents in the window conforms to a pattern, they are re-
placed in a template-based fashion by other existing com-
ponents. In contrast, resynthesis optimizations attempt to
replace groups of existing components in a non-template-
based fashion, by re-synthesizing them. Several of the pro-
posed transforms are behavior-preserving [3], while some
are behavior-modifying [4]. Some of the transforms are en-
tirely new, including ones which perform radical changes
on the interfaces of functional units (Protocol Reversal [4]).
Other proposed optimizations are clustering transforms,
somewhat analogous to the transforms presented in [11, 6].
However, these earlier transforms perform unlimited clus-
tering and thus have limited practicality for optimizing
large-scale asynchronous systems. In contrast, our cluster-
ing transforms identify several new and distinct subcate-
gories for limited clustering (Activation Channel Removal,
Call Folding and Call Distribution [3]), which are shown to

be effective in practice for both performance improvements
and synthesis run time. Finally, some of the transforms are
analogous to “handshake reshuffling” [9]. However, in our
new approach, unlike in [9], these transforms are captured
in a higher channel-based component language, avoiding
the need to explicitly specify every low-level signal transi-
tion.

The second contribution of this paper is a new asyn-
chronous component specification language, called CH.
The CH language is very important in the proposed ap-
proach: each transform is formalized as a simple and ef-
ficient language manipulation procedure in CH. Thus, CH
provides a more natural and concise mechanism for explor-
ing various design tradeoffs. The resulting specifications
are thus independent of the synthesizable low-level specifi-
cations into which CH is translated. Burst-Mode controller
specifications are currently employed [8], but they are just
one of several possible low-level specification styles.

As indicated above, the proposed transforms fall into
two categories: behavior-preserving and behavior-non-
preserving. Nearly half of the transforms are behavior-
preserving (four out of nine) and have been formally ver-
ified: Activation Channel Removal, Call Folding, Call
Distribution, and Protocol Reversal. These include all
of the results reported in the Results section for “cluster-
ing transforms”. The remaining transforms are behavior-
non-preserving: Enc Replacement, Seq Replacement, Data
Sampling, Passive Output Port, and Loop Enabling. Since
these modify system-level concurrency, care must be taken
to insure no data or structural hazards, or deadlock result
from their application. As work in progress, we are cur-
rently formalizing a set of safe constraints which ensure
the safe application of such transforms. In addition, the ex-
isting Balsa simulator is currently being extended to handle
CH expressions and to verify, on-the-fly, the safety of the
new transforms whenever they are applied.
2 Overview of the Approach
This section presents a brief overview of the proposed ap-
proach, including the optimization strategies and the new
integrated tool flow, as well as a comparison to related
work.

2.1 Proposed Transformations
A graphical depiction of the proposed optimization ap-
proach is shown in Fig. 1 for two abstract asynchronous
systems. For each system, the “Before” configuration
shows the system before applying any transformations,
while the “After” configuration shows the same system af-
ter applying transformations.

The system in Fig. 1a is partitioned into datapath and
control, and consists of a collection of asynchronous com-
ponents, called handshake components [13, 10]. Each
component is a primitive concurrent asynchronous process,
typically implemented by a few gates. The components are
connected by arcs representing communication channels.
These channels are implemented by a pair of request and
acknowledge wires, and possibly datapath wires, where
communication is implemented by a four-phase handshak-
ing protocol.

There are several types of proposed transforms in the
new back-end. Some transforms cluster together only
control handshake components into larger controllers (1),
while others (2) cluster together small configurations of
mixed control and datapath components (Fig. 1a). Some

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

������������������������������

������������������������������

������������������������������

������������������������������ 	�	�		�	�		�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����

��
��
��
�����
�����
����� �����

�����
�����

�����
�����
�����

After

C
on

tr
ol

 c
om

po
ne

nt
s

Datapath
Components

Datapath
Components

(2)

(a)

Optimizations

Before

(1)

(3)

Sequencer Concurrent
Sequencer

(b)

InterleavingInterleaving
A B

Optimizations

AfterBefore

(4)

(5)

Datapath
Components

Datapath
Components

Figure 1: Overview of the Transformations

transforms (3) simply take a fixed configuration of hand-
shake components in a window and replace it in a template-
based fashion by a new configuration of existing compo-
nents. Finally, other transforms manipulate the behavior of
individual components (Fig. 1b); these can either be single
primitive components or clustered components which re-
sult after applying earlier optimizations. These other trans-
forms either (4) introduce more concurrency in the sequen-
tial execution of systems components (as shown, the “Se-
quencer” component becomes “Concurrent Sequencer”),
or (5) modify the interleaving of handshakes on the com-
ponent’s interfaces (as shown, interleaving A becomes in-
terleaving B for the clustered component).

2.2 Integrated Tool Flow

Balsa [1] is collection of programs developed at University
of Manchester, that facilitate the description and synthesis
of large-scale asynchronous systems. The original Balsa
design flow takes a system description in the Balsa high-
level description language and translates it into a netlist
of handshake components. Each component is typically a
simple primitive concurrent process, often containing only
a few gates. The handshake components are then each in-
dividually mapped to actual VLSI circuits in a template-
based fashion.

The tool flow for the new back-end is shown in Fig. 2;
it now includes an optimization step, which consists of the
proposed set of resynthesis and peephole transforms. The
shaded boxes indicate new research contributions.

The new back-end takes the unoptimized list of hand-
shake components, and performs the proposed peephole
and resynthesis transforms on them, to obtain a list of op-
timized components. It then partitions the list into data-
path and control components. The datapath components
are then synthesized using the existing Balsa system tech-
nology mapper (balsa-netlist [1]). The control compo-
nents are first translated into Burst-Mode Specifications [8]
and then synthesized. A CH expression for a control
component is first translated into an intermediate form,
which contains signal transitions and labels for states, goto
statements and keywords indicating external input choices.

S
yn

ta
x−

D
ire

ct
ed

T
ra

ns
la

tio
n

��
CH−to−BMS

��
��

��
�� ���������������������������������

���������������������������������

	�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��

Synopsys tech−mapping

C
on

tr
ol

 S
yn

th
es

is

.bms files

.sol files

.v files

Balsa Tech−Mapping
("balsa_netlist")

Tech−mapped Controllers

D
at

ap
at

h
S

yn
th

es
is

partitioning control componentsdatapath components

Handshake Components
Optimized Netlist of

CH prgm.

Tech−mapped Datapath

.v files

Minimalist

Final Optimized Circuit

balsa−c

Handshake Components
Unoptimized Netlist of

Balsa Program

pla2verilog
DC script

Balsa−to−CH

Peephole transforms Resynthesis transforms

O
pt

im
iz

at
io

n
S

te
p

.breeze files

Figure 2: New Balsa System Design Flow

The intermediate form is then linearly traversed to ex-
tract the Burst-Mode specification. These specifications
are then synthesized into hazard-free logic implementa-
tions using the Minimalist Burst-Mode CAD package [8],
with speed-oriented scripts. Finally, the logic implementa-
tions are then technology-mapped using a commercial tool
(Synopsys’ Design Compiler [5]). The optimization flow
also includes a hazard verifier, which compares the burst-
mode controller specification with the technology-mapped
netlist, using a 9-valued simulation based on Kung’s ap-
proach [7].

2.3 Related Work

Peephole optimization and control resynthesis techniques
for asynchronous systems have been previously proposed.
Previous peephole optimizations [13, 2] have typically
been behavior-preserving, and most have dealt with sim-
ple components and improvements (such as redundancy
removal). In contrast, many of the newly proposed trans-
forms in this paper are behavior-modifying, and subsume
many of the earlier ones.

Recent approaches to control resynthesis [11, 6] are
mainly variants of component composition, using Petri
Net or trace theory formalisms, and are behavior pre-
serving. In contrast, the proposed resynthesis techniques
include more powerful transformations for design-space
exploration, including concurrency enhancement (Enc-
Replacement, Seq-Replacement [4]) and protocol manip-
ulation (Protocol Reversal [4]). Furthermore, extensions to
a component modeling language, CH, are proposed which
formalize and facilitate these manipulations.

A final difference is that, unlike the previous approaches,
the new transforms are being integrated into a compre-
hensive CAD package for asynchronous synthesis, Balsa,
which provides an entire design flow from a high-level lan-
guage down to layout. Furthermore, these previous resyn-
thesis approaches did not report results on performance im-
provements, only on area.

3 Case Study: Binary Counter
This section discusses in more detail the optimization of
an asynchronous system, a binary counter. The counter
receives a positive integer value from the environment; it

then counts down from the received value down to zero,
writing each intermediate value back to the environment.

Figure (3 before) shows the unoptimized implemen-
tation of the binary counter. The control components
(i.e. the components that control the flow of the pro-
gram) are represented by diamond shapes; the datapath
components (i.e. the components that implement the data
computation) are represented by oval shapes. The con-
nections between components are either channels (rep-
resented by thick lines) or wires (represented by thin
lines). It is interesting to notice that some Balsa com-
ponents (such as While, in this example), are internally
represented in Balsa-CUBE by more controllers (in this
case two: count bin m3 and count bin m4). This
happens because burst-mode specifications cannot directly
handle bundled data; thus, for the While component, a
slave controller count bin m4 simply transforms bun-
dled data into dual-rail data, which can then be used di-
rectly by the master controller count bin m3.

Figure (3 after) shows the optimized implementation of
the same system. As before, the control and datapath com-
ponents are identified by diamond and oval shapes, re-
spectively. In addition, the components optimized through
peephole transforms are shown in octogonal shapes.

The system was optimized by applying two transforms:
Activation Channel Removal [3] (three times) and Proto-
col Reversal [4] (two times). For each transform, the ini-
tial set of components on which each transform is applied
is identified in the before configuration; the thick labeled
arrows lead to the resulting components. Activation Chan-
nel Removal clusters together control components; for this
system, four initial control components are clustered into a
single final control component. Protocol Reversal switches
the port type for unary functional units; it thus moves the
computation performed by such units from the critical path
into background. For the binary counter, Protocol Reversal
has been applied for two separate configurations.

4 Results
The entire synthesis flow has been tested for a number of
examples. Each example was described using the Balsa
language, and synthesized with balsa-c, to obtain the
initial netlist of handshake components. These compo-
nents were then read into the optimization program pro-
posed in the paper to obtain the optimized netlist of com-
ponents. Each component was then synthesized and tech-
nology mapped into the AMS 0.35 m library. The final
implementations were back-annotated using pearl, and
simulated with Cadence Verilog-XL.

This section discusses the results of applying the new
back-end to six designs: a four-handshake systolic counter,
a programmable eight-bit binary counter, an eight-place
wagging register, an eight-bit word, three-place low-
latency FIFO, an eight-bit, three-place stack, and a 32-bit
microprocessor core.

Table 1 shows, for each example, three sets of results.
The “Balsa” column shows the area and speed (throughput
and/or latency) of the basic Balsa designs without any op-
timizations. The “Clustering Transforms” and “All Trans-
forms” columns show the results after applying only clus-
tering transforms, and after applying all transforms, re-
spectively, to each design. These two last columns indicate
the total area and area overheads, and speed (latency or
throughput, as indicated) and the improvements in speed

Activation Channel Removal

Protocol Reversal

C1

0

C22

0

1

C16

0

3

C21

0

1

$BrzFetch

C19

0

2

C13

0

4

c15_0r

C12

0

1

$BrzFetch

C8

0

2

$BrzFetch

C6

0

3

$BrzVariable

$BrzCallMux

C24

0

2

$BrzVariable

$BrzCallMux

C23

0

2

C2

1

C20

1

2

C17

1

1

C18

1

2

c15_0a0

2

0

c15_0a1

3

1

C14

1

1

C11

0

2

$BrzBinaryFuncConstR

C10

0

1

C9

2

1

C3

2

C7

3

1

C5

0

2

C4

2

1

c15_0a c15_0d[0:0] C15

0

count_bin1_m1

C1

0

b

$BrzCallMux

PE0BrzVariable

C24

0

2

$BrzCallMux

PE2BrzVariable

C23

0

2

C21

0

3

$BrzFetch

C19

0

4

$BrzFetch

C12

0

12

$BrzFetch

C8

0

13

C6

0

14

c15_0r

1

C20

1

2

C18

1

2

C17

1

1

count_bin1_m4

c15_0a0

8

0

c15_0a1

9

1

C11

0

2

C10

0

1

2

C7

3

1

C5

0

2

C4

2

1

PE1BrzBinaryFuncConstR

C9

1

2

C25

1

0

PE3BrzBinaryFuncConstR

C14

1

1

$BrzPassivatorPush

C26

1

0

c15_0a c15_0d[0:0]

C15

0

BEFORE

AFTER

count_bin1_m1

a

activate

b

activate

$BrzFetch

$BrzFetch

$BrzFetch

count_bin1_m5

count_bin1_m4

count_bin1_m3

count_bin1_m2

$BrzBinaryFuncConstR

$BrzPassivatorPush

$BrzFetch

C2

a
C3

Figure 3: Binary Counter: Initial and Optimized Implementations

Examples Balsa Clustering Transforms All Transforms
(No Optimizations)
Area Speed Synthesis Area Speed Area Speed

(� m
�
) (ns) Run Time (� m

�
) Overhead (ns) Improve (� m

�
) Overhead (ns) Improve

Systolic Counter 27.84 24.81 0.8 s 35.46 27.37% 16.06 35.26% 24.91 -10.52% 11.28 54.50%
Binary Counter 113.04 236.30 1.9 s 121.58 7.55% 217.33 8.03% 118.34 4.69% 126.96 46.26%
Wagging Register 228.93 49.82 2.7 s 283.71 23.93% 42.43 14.83% 298.15 30.24% 34.40 30.95%

latency 17.33 15.19 12.36% 10.32 40.45%
FIFO put cycle time 205.08 8.41 17.2 s 334.72 63.21% 8.06 4.16% 312.32 52.29% 6.22 26.04%

get cycle time 11.78 9.91 15.87% 8.28 29.71%
Stack 99.07 121.58 2.9 s 119.52 20.64% 107.70 11.40% 111.84 12.88% 62.94 48.23%
Microprocessor Core 453.76 66.48 3h 17m 0s 563.47 24.18% 60.65 8.76% 589.18 29.18% 58.14 12.55%

Table 1: Experimental Results - Applying Groups of Transforms

for each design; in addition, the “Clustering Transforms”
column also shows the synthesis run time for Minimalist.

For each example, the peephole optimizations are ap-
plied first, and then the resynthesis optimizations.1 The
following transforms were successfully applied: Systolic
Counter – Activation Channel Removal, Call Distribution,
Loop Enabling Transform; Binary Counter – Activation
Channel Removal, Protocol Reversal on Functional Units,
Seq Replacement; Wagging Register – Activation Channel
Removal, Seq Replacement; Low-Latency FIFO – Activa-
tion Channel Removal, Seq Replacement, Loop Enabling,
Data Sampling, and Passive Output Port; Stack – Acti-
vation Channel Removal, Loop Enabling, Passive Output
Port; Microprocessor Core – Activation Channel Removal,
Call Distribution, Call Folding, Passive Output Port.

References
[1] A. Bardsley and D. Edwards, “Compiling the Language Balsa

to Delay-Insensitive Hardware”, Hardware Description Languages
and their Applications (CHDL), pp. 89-91, April 1997.

[2] E. Brunvand, “Translating Concurrent Communicating Programs
into Asynchronous Circuits”, Technical Report CMU-CS-91-198,
Carnegie Mellon University, 1991.

[3] T. Chelcea, A. Bardsley, D. Edwards, and S.M. Nowick, “A Burst-
Mode Oriented Back-End for the Balsa Synthesis System”, Pro-

1Currently, this application order of the transforms is the default; how-
ever, Balsa-CUBE allows the users to select which transforms are applied,
and the order in which they are applied. In the future, it will be beneficial
to conduct a wide-ranging set of detailed experiments to evaluate the best
order of applying transforms, as well as to evaluate area overheads.

ceedings of Design Automation and Test in Europe, pp. 330-337,
March 2002.

[4] T. Chelcea, S.M. Nowick, “Resynthesis and Peephole Transforma-
tions for the Optimization of Large-Scale Asynchronous Systems”,
Proceedings of the Design Automation Conference, pp. 405-410,
June 2002.

[5] “Design Compiler Family Datasheet”,
http://www.synopsys.com/products/logic/design comp ds.html.

[6] T. Kolks, S. Vercauteren, and B. Lin, “Control Resynthesis for
Control-Dominated Asynchronous Design”, Proceedings of the In-
ternational Symposium on Advanced Research in Asynchronous
Circuits and Systems, pp. 233-243, 1996.

[7] D.S. Kung, “Hazard-non-increasing gate-level optimization algo-
rithms”, Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 631-634, 1992.

[8] R.M. Fuhrer and S.M. Nowick, “Sequential Optimization of Asyn-
chronous and Synchronous Finite-State Machines: Algorithms and
Tools”, Kluwer Academic Press, 2001.

[9] A.J. Martin, “Programming in VLSI: From Communicating Pro-
cesses to Delay-Insensitive Circuits”, in C.A.R. Hoare, editor, De-
velopments in Concurrency and Communication, UT Year of Pro-
gramming Institute on Concurrent Programming, Addison-Wesley,
1990, pp. 1-64.

[10] A.M.G. Peeters, “Single–Rail Handshake Circuits”, PhD. Thesis,
Department of Computer Science, Technical University of Eind-
hoven, 1996.

[11] M.A. Pena and J. Cortadella, “Combining Process Algebras and
Petri Nets for the Specification and Synthesis of Asynchronous Cir-
cuits”, IEEE ASYNC’96 Symposium, pp. 222-232.

[12] L.A. Plana and S.M. Nowick, “Architectural Optimization for Low-
Power Nonpipelined Asynchronous Systems”, IEEE Transactions
on Very Large Scale Integration Systems, Vol. 6, No. 1, March 1998.

[13] K. van Berkel, “Handshake Circuits: an Intermediary between
Communicating Processes and VLSI”, PhD. Thesis, Department of
Computer Science, Technical University of Eindhoven, 1992.

