
An Alternative Tool Chain for DI Circuit Design

Dennis Furey
fureyd@sbu.ac.uk

June 23, 2003

Abstract

An early theoretical model for delay insensitive
(DI) circuits with the help of some recent innovations
has become the basis for a practical DI circuit syn-
thesis tool, syndi. These innovations include a more
efficient implementation technique for sparse decision
wait elements than any found in the literature, au-
tomated detection and decomposition of concurrent
systems within a specification, a modern approach to
state space enumeration using a method similar to
stubborn sets, and a very high level specification lan-
guage front end. Building on previous work, this pre-
sentation will also demonstrate an integrated solution
to DI circuit design and verification incorporating a
novel DI circuit analysis tool, diana.

1 Introduction

Various approaches to asynchronous circuit synthe-
sis are to be found in the literature [4, 3, 5, 2, 8, 6, 1, 7],
but the present work is concerned primarily with
the problem of a general, fully automated synthesis
method for delay insensitive (DI) circuits, and takes
as its starting point a lesser known idea from [9].

In the course of a theoretical argument, Patra and
Fussel gave a construction whereby it was claimed
that any delay insensitive specification could be im-
plemented using an arbiter, an iwire, a decision wait,
and an acyclic network of forks and merges (a.k.a.
exclusive-or gates). The specification is viewed as a
state machine, with a merge assigned to each output,
a column in the decision wait assigned to each state,
and a row to each input, implying that each output ter-
minal on the decision wait corresponds to a particular
state and input pair. The arbiter is interposed between
the inputs from the environment and the row inputs to
the decision wait to serialize them if necessary, and
the iwire enables the column input for the initial state.
When a given combination of state and input occurs, a
fork from the corresponding terminal enables the col-
umn for the succeeding state, signals an acknowledge-
ment to the arbiter, and sends any required outputs to
their associated merges. In this way the decision wait

effectively executes the state machine specification.
This basic construction would not appear to cope

with non-deterministic state transitions or with speci-
fications that are not initially quiescent, although these
flaws are easily corrected. It should also be said that
the construction was perhaps not intended as a practi-
cal circuit synthesis method, which it is not for several
reasons. DI circuits have a reputation for being big
and slow, and decision wait elements even more so.
If decision waits could be deployed at no cost, there
would still be better ways of implementing most spec-
ifications than by turning them into state machines.
Finally, it may be more laborious to derive a state
machine specification suitable for automated synthe-
sis than it would be to design the circuit manually.

Current circuit fabrication technology tends toward
increased wire delays with each generation, which
will cause substantial engineering problems for other
delay models in the long term and perhaps nullify their
competitive advantage over DI circuits. In prepara-
tion for that possibility, the remaining points above are
addressed by the present work. A new construction
for sparse decision waits curbs their worst excesses.
A generalization of the basic state machine construc-
tion to incorporate decomposition into communicat-
ing subsystems synthesizes circuits more like a human
designer would, and a high level circuit description
language eliminates the need for detailed state based
specifications. These features are incorporated into a
new DI synthesis tool, syndi, and a DI circuit anal-
ysis tool, diana.

2 Sparse Decision Waits

In most DI specifications, not every combination
of state and input is valid, not just for application spe-
cific reasons but because delay insensitivity precludes
consecutive transmissions of the same input without
an intervening output. The naive implementation of a
specification with n inputs and m states would require
a decision wait with objectionably many output termi-
nals nm, even though many and perhaps most of these
terminals will never be used. A significant improve-
ment would therefore be afforded by a decision wait
supporting only the output terminals that are actually

1



needed.
An elegant design for a sparse decision wait based

on a wavefront array was proposed in [7], but the
worst case critical path in this design is proportional to
the greater of n or m, making it unattractive for large
state spaces. Patra and Fussel gave a design for a de-
cision wait with a logarithmic critical path [9], but not
being sparse, it could waste more time by being need-
lessly large than it saves. However, it turns out to be
quite possible for a decision wait to be both logarith-
mic and sparse.

The sparse decision wait synthesis algorithm pre-
ferred by the syndi tool proceeds by permuting the
rows and columns in the specification so as relocate
as many as possible of the unused combinations to
the lower right quadrant. The remaining three non-
empty quadrants are then synthesized individually by
recursively applying the same procedure. These three
sparse decision waits are glued together by way of
a network that intercepts the incoming signals and
routes them to the appropriate quadrant. The recur-
sion terminates when a specification is small enough
to have a known ad hoc DI decomposition.

Because the signals go through only a tree-like
structure to reach their destinations, the critical path
is logarithmic, and because nothing is wasted on un-
used outputs, the result is sparse.

This algorithm has been implemented and tested
on approximately thirty thousand specifications at this
writing, and found to give a correct result in every
case. The tests are performed by generating a netlist
for each circuit, and checking it for refinement against
the corresponding Petri net specification using reach-
ability analysis.

3 System Decomposition

Traditionally a very difficult proposition, it would
not be much of an exaggeration to identify the central
problem of asynchronous circuit synthesis as that of
efficiently partitioning a specification into a collection
of subsystems with constant-bounded state spaces. A
general solution would imply scalable silicon compi-
lation comparable to that of sequential programming
languages.

Some helpful techniques in this connection have
been developed. Although they fall short of a gen-
eral solution due to the lack of hard upper bounds on
the sizes of the subsystems obtained, they are con-
ducive to more appropriate implementations for con-
current specifications whose synthesis as state ma-
chines would be awkward.

3.1 Partial Direct Mapping

If one were to inspect a particular state machine
specification, it might be possible to infer for exam-

ple that some particular input may occur only in con-
current combination with another one. The pair of
them could just as well be combined into a C element,
whose output is fed to an implementation based on a
form of the specification simplified accordingly. If a
state based synthesis were used in both cases, the de-
cision wait in the latter would not only have one less
row, but also at least two fewer columns, because there
would no longer be distinct states needed to represent
that one input but not the other has arrived.

An implementation could benefit from the anal-
ogous transformation when two inputs found to be
interchangeable are combined using an exclusive-or
gate, or more generally when several suitably related
inputs are combined using a majority gate. (Some
benefit accrues even if no majority gate primitive is
available by using a DI decomposition for one.) To a
lesser extent, comparable transformations to combine
concurrent or interchangeable outputs where possible
using forks or randomizing elements are also benefi-
cial.

It is not clear how these transformations would be
detected and performed in general for a state machine
specification. However, syndi initially uses a Petri
net representation for all specifications, which is trans-
formed to a state machine only at a later stage. It turns
out that all of these transformations are straightfor-
ward to carry out by simple pattern matching against
the specification while it is still in its Petri net form.

When these transformations are performed, not
only is the quality of the resulting circuit improved,
but the time spent synthesizing it may be asymptoti-
cally reduced insofar as the size of the Petri net de-
creases. This advantage is normally associated with
direct mapping synthesis schemes, but is achieved in
a state based system without any loss of generality.

3.2 Connected Components

Applying the above transformations to a specifica-
tion until a fixed point is reached will in the best case
leave nothing of the Petri net remaining to be imple-
mented by state based synthesis. Alternatively, an-
other desirable outcome is for the Petri net to become
fragmented into several components, each of which
can then be synthesized separately, leading to an over-
all implementation proportional to the sum of their
state spaces rather than their product, as it would be
if they were synthesized together.

A less ideal but more likely possibility, particularly
when the original specification is a closed Petri net,
is that the Petri net remains connected, but takes the
form of an ensemble of subgraphs, each bounded by
observable transitions. Each such subgraph is able to
interact with the others only indirectly by way of a
common environment consisting of places and unob-
servable transitions, and could be pictured as an island

2



within the Petri net.
It would be possible in this case to synthesize a cir-

cuit from each island by treating it as an open Petri
net. However, synthesis of open Petri nets is usually
prohibitively expensive due to state explosion, and the
resulting circuits can be overkill because they will not
take full advantage of their restricted environments.
(E.g., a sequencer is produced where a latch would
suffice.)

Instead, syndi makes a copy of the whole Petri
net for each island in this situation, but maintains the
set of observable transitions for only one island in
each copy, redefining those of the others as unobserv-
able. A circuit is then synthesized for each copy. Al-
though synthesis from multiple copies is more time
consuming, it is mitigated to the extent that rendering
the majority of transitions unobservable often allows
more local optimizations to the Petri net than were
possible before. In any case, the quality of the result-
ing circuit stands to gain.

4 Language Issues

The specification language used by the syndi
compiler is designed for the effectiveness and conve-
nience of working engineers. The language consists
of about a hundred built in functions or statements
in several related groups, but perhaps only about a
dozen anticipated for frequent use. Engineer friendly
mnemonics similar to those in other languages and a
simple uniform syntax for expressions and statements
eliminates a lengthy learning curve. The language
is strongly typed and capable of informative compile
time diagnostics. Although it is based on a formal se-
mantics congenial to theoreticians, an intuitive or ex-
perimental attitude toward the language is welcome.
By writing small test programs and inspecting the re-
sults as a graphically rendered Petri net or finite state
transducer (with the help of the diana tool), a user
can quickly acquire a working knowledge of the lan-
guage.

4.1 A Specification Example

Without going into great detail, it may be possible
to convey a flavor for the language with a small exam-
ple. The example in Figure 1 is that of a one-bit mem-
ory cell with dual rail data inputs named write.0
and write.1, data outputs data.0 and data.1, a
read input signal, and a write acknowledgement sig-
nal. The cell responds to either write signal with a
write acknowledgement, and to the read input with
the data output corresponding to whichever write in-
put was most recently signalled. The getput state-
ment describes a system that engages in a passive
handshake with its environment starting with the first
input in its parameter list. The compiler directives

#petrinet+
#circuit+

memory_cell =

forever do<
(until got<write.1>) doany<

getput<write.0,ack_write>,
getput<read,data.0>>,

put<ack_write>,
(until got<write.0>) doany<

getput<write.1,ack_write>,
getput<read,data.1>>,

put<ack_write>>

Figure 1. example of syndi source code

#petrinet+ and #circuit+ instruct syndi to
create two output files, one containing a Petri net list-
ing for this circuit in petrify compatible format,
and one containing a human readable netlist of DI
primitives suitable for analysis with diana.

Other features of the language not conveyed by
this example are the ability to invoke built in func-
tions for families of circuits (e.g., arbiter(7) or
majority(3,6)), and to build up complex specifi-
cations such as pipelines or wavefront arrays through
the use of various functional and object-oriented style
abstraction mechanisms.

4.2 Black Boxes

One further feature of the language worthy of par-
ticular mention, because it is likely to be a make-or-
break issue for some prospective users, is its ability
to coexist with circuits designed by other means. In
a real world application, only the control logic might
need to be delay insensitive, with the data path follow-
ing a bundled data protocol or perhaps being based on
synchronous IP cores with asynchronous wrappers as
in a GALS style design.

A technique that could be used with no special sup-
port from the compiler would be to design the control
path in isolation, treating its interface signals with the
data path as external inputs and outputs. This tech-
nique is not ideal because it would make it difficult to
verify the system as a whole for obvious reasons.

In the syndi language, the #blackbox+ direc-
tive is suitable for this situation. Any statement an-
notated with this directive is taken to mean that the
user intends to make other arrangements for its im-
plementation, and that no attempt should be made to
synthesize it as a DI circuit. When the netlist file is
written for a circuit containing black boxes, they are
listed by name as if they were primitive components,

3



even though the rest of the netlist may have been au-
tomatically synthesized. However, if a Petri net file is
written, it will incorporate a coherent description for
the whole system based on the interface information
associated with the black box. In this way, it may still
be possible to analyze or verify the system as a whole
using diana or other Petri net tools.

5 Verification

As indicated already, the analysis tool diana can
be used effectively in conjunction with syndi for
graphical rendering of Petri nets and state machines.
Its other main use is for automated verification. Sys-
tems designed by hand or different systems that have
been automatically synthesized can be compared with
one another and tested for equivalence or refinement.
By using novel techniques for transforming a speci-
fication between different intensional process models,
diana can compare Petri nets with Petri nets, circuits
with circuits, or Petri nets with circuits. In fact, the
testing of the sparse decision wait synthesis algorithm
mentioned above has been carried out using it.

A key feature diana is its ability to generate Petri
net reachability graphs with somewhat improved effi-
ciency by using a method similar to stubborn sets [10].
In an ordinary reachability graph, each node repre-
sents a Petri net marking, and an edge connects one
node to another if and only if the firing of a single tran-
sition will transform the origin to the terminus. The
method used by diana is based on an abbreviated
form of the ordinary graph wherein one marking can
be adjacent to another whenever the collective firing
of a set of “independent” transitions effects the trans-
formation. Markings reached only by firing individ-
ual members of such sets need never be constructed,
which reduces the necessary size of the graph and per-
mits verification of slightly larger specifications than
would otherwise be feasible.

6 Conclusions and Further Work

An alternative tool chain based on the two pro-
grams syndi and diana brings some new capabili-
ties to the table that were previously unavailable for DI
circuits. These include fully automated synthesis from
high level specifications, and verification not only of
equivalence but refinement.
diana has been beta tested by Mark Josephs and

Hemangee Kapoor over the past few months, but
syndi is in a late stage of alpha testing at this writing.
Both are are planned for free distribution on the web at
http://www.sbu.ac.uk/˜fureyd by the time
of the forum.

Many thanks to all participants for peer reviewing
my ideas, as this will probably be the last forum I at-
tend.

References

[1] A. Bardsley and D. Edwards. Compiling the lan-
guage Balsa to delay-insensitive hardware. In
C. D. Kloos and E. Cerny, editors, Hardware
Description Languages and their Applications
(CHDL), pages 89–91, April 1997.

[2] C. H. (Kees) van Berkel, Cees Niessen, Martin
Rem, and Ronald W. J. J. Saeijs. VLSI program-
ming and silicon compilation. In Proc. Inter-
national Conf. Computer Design (ICCD), pages
150–166, Rye Brook, New York, 1988. IEEE
Computer Society Press.

[3] Erik Brunvand and Robert F. Sproull. Translat-
ing concurrent programs into delay-insensitive
circuits. In Proc. International Conf. Computer-
Aided Design (ICCAD), pages 262–265. IEEE
Computer Society Press, November 1989.

[4] Jordi Cortadella, Michael Kishinevsky, Alex
Kondratyev, Luciano Lavagno, and Alexan-
dre Yakovlev. Petrify: a tool for manipulat-
ing concurrent specifications and synthesis of
asynchronous controllers. In XI Conference
on Design of Integrated Circuits and Systems,
Barcelona, November 1996.

[5] Jo C. Ebergen. Translating Programs into
Delay-Insensitive Circuits. PhD thesis, Dept. of
Math. and C.S., Eindhoven Univ. of Technology,
1987.

[6] R. M. Fuhrer, S. M. Nowick, M. Theobald,
N. K. Jha, B. Lin, and L. Plana. Minimal-
ist: An environment for the synthesis, verifica-
tion and testability of burst-mode asynchronous
machines. Technical Report TR CUCS-020-99,
Columbia University, NY, July 1999.

[7] C. R. Jesshope, I. M. Nedelchev, and C. G.
Huang. Compilation of process algebra expres-
sions into delay-insensitive circuits. IEE Pro-
ceedings, Computers and Digital Techniques,
140(5):261–268, September 1993.

[8] Alain J. Martin. A synthesis method for self-
timed VLSI circuits. In Proc. International Conf.
Computer Design (ICCD), pages 224–229, Rye
Brook, NY, 1987. IEEE Computer Society Press.

[9] Priyadarsan Patra and Donald Fussel. Efficient
building blocks for delay insensitive circuits. In
Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems,
pages 196–205, November 1994.

[10] A. Valmari. State Space Generation: Efficiency
and Practicality. PhD thesis, Tampere Univer-
sity of Technology, 1988.

4


