
ACMS IN MATLAB

Fei Hao, E. Graeme Chester
School of Electrical, Electronic and Computer Engineering, Univ. of Newcastle upon Tyne, UK

ABSTRACT

MATLAB® is a popular tool for the engineers in the
electrical and electronic fields. ACMs can also be
modelled in MATLAB® in order to investigate the
applications in control system. An approach of
converting a Petri net model into a Simulink model is
studied. As an example, a Signal ACM model is created
in Simulink with Stateflow. The simulation results show
that the model maintains all the required asynchronous
properties.

Key words: ACM, Signal, Petri net, MATLAB®

1. INTRODUCTION

1.1 ACM

An Asynchronous data Communication Mechanism
(ACM) is a scheme, which manages the transfer of data
between two processes not necessarily synchronised for
the purpose of data transfer [1]. The provider of data is
called the “writer” , and the user of data is referred to as
the “reader”. The general scheme of these kinds of data
communication mechanisms is shown as follows:

Figure 1 ACM Using Shared Memory and Possibly
Control Variables

1.2 MATLAB, SIMULINK and Stateflow

MATLAB® is a commercial "Matrix Laboratory"
package which operates as an interactive programming

environment. It is a high-performance language for
technical computing. It integrates computation,
visualization, and programming in an easy-to-use
environment where problems and solutions are
expressed in familiar mathematical notation.

Simulink is a graphical extension to MATLAB for the
modelling and simulation of systems. In Simulink,
systems are drawn on screen as block diagrams. Many
elements of block diagrams are available (such as
transfer functions, summing junctions, etc.), as well as
virtual input devices (such as function generators) and
output devices (such as oscilloscopes). Simulink is
integrated with MATLAB and data can be easily
transferred between the programs.

Stateflow is a graphical design and development tool
for control and supervisory logic used in conjunction
with Simulink. It provides clear, concise descriptions
of complex system behaviour using finite state
machine theory, flow diagram notations, and state-
transition diagrams all in the same Stateflow diagram.
Stateflow brings system specification and design closer
together. [2]

MATLAB® is a popular tool for the engineers in the
electrical and electronic fields. Most of the control
systems can be modelled in MATLAB and Simulink.
To investigate the applications of ACMs in control
system, it is one approach to model ACMs in
MATLAB®, and apply the model into a control system
model.

The algorithms of ACMs are always representing by
Petri Net models. Is it possible to convert a Petri Net
model into a stateflow model? To answer this question,
a comparison should be made between the Petri Net
and the stateflow.

2. PETRI NET AND STATEFLOW

Petri net is a mathematical representation of a system
with interacting concurrent components. The basic
components are places (also represent states) and
transitions. Stateflow is a graphical design and
development tool for control and supervisory logic. It
plays games with states and transitions. Table 1 shows
the comparison of the Petri Net and stateflow:

Reader Writer

Shared
memory

Control
variables

ACM

TABLE 1 -Petri Net and Stateflow

 Petri Net Stateflow

Place

Transition

As the basic protocol of asynchronous communications,
handshake is the key part of modelling ACMs in the
stateflow. A four phase handshake follows this order:
send a request, wait for the acknowledgement send from
the other side, release the request, and release the
acknowledgement from the other side.

In the stateflow, the handshake can be modelled as
following: the requests can be generated in the state enter
actions, which are executed when entering the states;
then wait for the acknowledgements in the transition
conditions, which lead to the executions of the transitions;
if the conditions are satisfied, the requests are released in
the state exit actions, which are executed when exiting
the states; and finally release the acknowledgements. The
diagram of the handshake in stateflow is shown in the
figure 2.

Figure 2 Handshake in Stateflow

3. MODELLING OF A 3-SLOT SIGNAL ACM

The algorithm of the 3-slot Signal ACM is shown in
Figure 3, which can be found in [3]. For the Petri Nets of
its read side and writ side, please refer to [4] for the
details.

Figure 3 Algorithm of 3-Slot Signal

In the common cases, to convert a Petri Net into a
stateflow, just replace the circles in Petri Net with the
rectangles in the stateflow and the bars with the arrows.
However, there is one case must be mentioned. If to fire
one transition requires two places holding tokens
simultaneously, the converting does not obey the rule.
The reason is that in the stateflow only one state can be

active at a time. In this case, one of these two places
must be regarded as a transition condition in the
stateflow.

Figure 4 One Special Case

According to these two rules, a stateflow model for is
established. Figure 5 shows the model for the write
side.

4. RESULTS AND DISCUSSIONS

The simulation of the model was carried out in the
Simulink environment. The resulting waveforms are
shown in Figure 6.

In this sequence, after data items 7 and 13 were read by
the reader, another read request arrived. The reader did
not respond to the requests until new data items were
available. During this period, the read request stayed
high. On the other hand, when the writer delivered the
data items quickly, such as 8 to 13, overwriting
occurred (9, 10, 11 and 12 were overwritten). The time
taken by the reader and writer outside the ACM was
controlled by two independent random number
generators written in MATLAB codes. An exponential
distribution was assumed and the same mean value was
set for both w0 to wr and rd to r0. This gave enough
variation for reader waiting and writer overwriting to
appear.

5. CONCLUSIONS AND FUTURE WORK

An approach of converting Petri Net model into a
stateflow model is presented. A 3-slot Signal ACM
model is created by this approach. The simulation
shows the reasonable results. Pool, Channel and
Message also have Petri Net models, so they can be
modelled with the same method easily. The success of
modelling ACMs in MATLAB provides the possibility
of investigating the applications of ACMs in
MATLAB.

Write Side:
 wr: write slot w;
 w0: l:=w;
 w1: w=differ (l, r);

Read Side:
 r0: wait until (r!=l) r:=l;
 rd: read slot r;

EEnn::rreeqq11==11;;

EExx::rreeqq11==00;;

EEnn::rreeqq22==11;;

EExx::rreeqq22==00;;
[[AACCKK====11]]

rr==33

[[rr====33]]

More works need to be done on creating general models
of each type ACMs. Furthermore, Applications of ACMs
in control systems are to be investigated.

6. ACKNOWLEDGEMENT

This work is part of the Coherent project
(http://async.org.uk/coherent) at the Newcastle
University supported by the EPSRC grant (GR/R32666).
The authors wish to thank Alex Yakovlev, Fei Xia, Ian
Clark and other members of the Coherent project for
their valuable ideas and comments.

7. REFERENCES

[1] Fei Xia, Alex V. Yakovlev, Ian G. Clark, Delong
Shang. "Asynchronous communication mechanisms:
classification and hardware implementations", MPCS'02,
Fourth International Conference on Massively Parallel
Computer Systems, sponsored by Euromicro, 10-12 April
2002, Ischia, Italy.

[2] MATLAB Help manual

[3] Fei Xia, Ian Clark. "Algorithms for Signal and
Message Asynchronous Communication Mechanisms
and their Analysis", Volume 50, Number 2 (2002),
pp.205-222, Fundamenta Informaticae, IOS Press

[4] F. Hao, A. Yakovlev, E.G. Chester, F. Xia, I.G. Clark,
D. Shang. "Implementation of a three-slot signal ACM",
13th UK Asynchronous Forum, 16-17th December 2002,
University of Cambridge, Computer Laboratory.

sl
ot

w
ith

e
nv

/3
sl

ot
si

gn
al

/W
rit

e
si

de

P
ri

nt
ed

 1
1-

Ju
n-

20
03

 1
2:

32
:0

2

w
2/

en
:w

r2
_

s=
1;

ex
:w

r2
_

s=
0;

w
r1

_d
o

ne
/

en
:R

W
1=

1;
ex

:R
W

1=
0;

w
1S

/
en

:w
r_

d
on

e=
1

;
ex

:w
r_

d
on

e=
0

;

w
1/

en
:w

r1
_

s=
1;

ex
:w

r1
_

s=
0;

w
r2

_d
o

ne
/

en
:R

W
2=

1;
ex

:R
W

2=
0;

w
2S

/
en

:w
r_

d
on

e=
1

;
ex

:w
r_

d
on

e=
0

;

w
3/

en
:w

r3
_

s=
1;

ex
:w

r3
_

s=
0;

w
3S

/
en

:w
r_

d
on

e=
1

;
ex

:w
r_

d
on

e=
0

;

w
r3

_d
o

ne
/

en
:R

W
3=

1;
ex

:R
W

3=
0;

S
ta

rt
/

a/

b/ c/
[G

W
3

=
=

1]
/l=

3;

[G
W

2
=

=
1]

/l=
2;

[G
W

1
=

=
1]

/l=
1;

[r
eq

=
=

1&
&

r!
=

2
]

[r
eq

=
=

1&
&

r=
=

1
]

[r
eq

=
=

1&
&

r!
=

1
]

[r
eq

=
=

1&
&

r!
=

3
]

[r
eq

=
=

1&
&

r=
=

3
]

[w
r2

_d
=

=
1

]

[w
r3

_d
=

=
1

]

[w
r1

_d
=

=
1

]

[s
ta

rt
=

=
1&

&
re

q=
=

1]

[r
eq

=
=

1&
&

r=
=

2
]

[r
eq

=
=

0]

[r
eq

=
=

0]

[r
eq

=
=

0]

F

ig
ur

e
5

St
at

ef
lo

w
 M

od
el

 f
or

 W
ri

te
 S

id
e

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

05

1
0

1
5

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0

-10123

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

05

1
0

1
5

T
im

e

In
p

u
t

D
a

ta

R
e

a
d

 R
e

q
s

O
u

tp
u

t
D

a
ta

O
W

O

W

O
W

O

W

O
W

 O
W

W
a

it
in

g
 f

o
r

n
e

w
 d

a
ta

W
a

it
in

g
 f

o
r

n
e

w
 d

a
ta

F

ig
ur

e
6

R
es

ul
ti

ng
 W

av
ef

or
m

s

