
Applying the Concurrency Workbench to the Verification of DI Circuits
Hemangee K. Kapoor and Mark B. Josephs

SCISM, South Bank University, London
{kapoorhk, josephmb}@sbu.ac.uk

1 Introduction

On-chip modules that interact through “delay-
insensitive” (DI) interfaces (such as handshaking
ports) are becoming attractive to system designers.
There are several reasons for this:

1. Necessity. With multiple clock domains or
clockless logic, there need not be a common
clock on which modules can synchronise.

2. Convenience. Re-use of modules in different
designs and in different implementation tech-
nologies is facilitated by the removal of tim-
ing constraints.

3. Robustness. In deep sub-micron CMOS tech-
nology wire delays dominate over gate de-
lays.

In this extended abstract, we shall consider the
modelling of such delay-insensitive modules and
the verification of circuits that are composed out of
them. More specifically, we consider some small
asynchronous controllers and verify their imple-
mentation using a popular verification tool, the Con-
currency Workbench (CWB) [1, 12].

The CWB is an automated tool that helps in
the manipulation and analysis of concurrent system
specifications [1]. A variety of equivalence relation-
ships are supported including testing equivalence
[4]. Model checking can also be performed. The
CWB has been applied in modelling and verifica-
tion of asynchronous circuits and microprocessors
[9, 15] before, but the property of delay-insensitivity
has not been considered. The main modelling lan-
guage used by the CWB is the process calculus CCS
[11].

The remaining sections are organised as follows.
In section2 we explain how to model DI modules
in CCS. Section3 describes the modelling language
DI-Algebra. The translation procedure from DI-
Algebra to CCS supported by the tool di2ccs is de-
scribed in section4. Section5 presents an example
of verification, before we conclude. AppendixA
describes theMUST-testing preorder.

2 Defining DI Processes in CCS

A DI module communicates with its envi-
ronment through wires of unbounded delay. It

is considered erroneous
for two transitions to be
propagating along a wire
at the same time; this is
known as transmission

yx

Figure 1 Wire with input ter-
minal x and output terminal y.

interference [16, 17]. Such a wire can be modelled
in CCS as follows:
W = x . (′y . W + x . @),
where actionsx and ′y model the input and output
of transitions at the corresponding terminals, and
divergent process@ models interference, Figure1.
Thus, safe usage of a wire requires that input and
output alternate.

The connection of two wires in series should be-
have like a single wire. Unfortunately, this is not
the case under the standard equivalence (bisim-
ulation) of CCS. We shall therefore adopt a se-
mantic model in which this equivalence does hold,
namely, the failures/divergences model of CSP [5]
or, equivalently, theMUST-testing preorder [4] (see
Appendix), where the behaviour of a divergent pro-
cess is considered to be undefined. (Note that the di-
vergent process@ of CCS is calledCHAOSin CSP.)

By attaching a wire to each terminal of a processP ,
we can construct a DI versionDi P of P , Figure2.

bi
do d

ai

P
Newx

Wire

terminals
Original
terminalsco

xi,xo

Di_P

c

b

a

Figure 2 Delay-Insensitive model (DiP) for P, with original ter-
minals renamed and hidden

Example
Consider the following two processes in CCS:
P = a . b . ′c . P
Q = b . a . ′c . Q
The two processesP andQ are not equivalent, but
their delay-insensitive versionsDi P andDi Q are
equivalent underMUST-testing, as can be seen using
the CWB:
musteq(P, Q) = false
musteq(Di P, Di Q) = true

In general, a processP is defined to be delay-
insensitive if Di P is equivalent toP . This is
known as the Foam Rubber Wrapper postulate [13,
16]. In particular,Di P is delay-insensitive since
Di Di P is equivalent toDi P .

1

3 The Modelling Language DI-
Algebra

One approach to the modelling of a DI module is to
describe it as a processP in CCS and then verify
thatP is delay-insensitive, as defined above. An al-
ternative is to use a language in which only DI pro-
cesses can be described; DI-Algebra [8], a variant of
CSP, is such a language. Moreover, the denotational
semantics [6, 10] of DI-Algebra is compatible with
the failures/divergences model of CSP, so processes
can still be characterised byMUST-testing. The al-
gebra also has a complete set of algebraic laws [3].

We have adopted the following concrete syntax
for DI-Algebra:
declaration ::= id = proc
proc ::= highproc | lowproc
highproc ::= id [|| id]∗
lowproc ::= inputs , outputs stmt
guard ::= sig? | sig! | skip
stmt ::=

CHAOS | STOP | id
| stmt / sig? | guard ; stmt
| [guard → stmt [# guard → stmt]∗]
| stmt ND stmt | (stmt)

Here inputs and outputs are (disjoint) input
and output alphabets, respectively. In the paral-
lel composition (P || Q) of two processesP and
Q, the input alphabet ofP should be disjoint from
that ofQ; likewise the output alphabet ofP should
be disjoint from that ofQ. Note thatP ND Q de-
notes a non-deterministic choice betweenP andQ,
whereas[g1 → P1 # g2 → P2] denotes a guarded
choice.

The advantages of using DI-Algebra rather than
CCS for modelling DI modules are as follows:

1. There is no need to verify that a process is DI.

2. Point to point connection is directly modelled
by the parallel composition operator “||” of
DI-Algebra, rather than by the combination
of “ |” and “\” required by CCS.

3. The after-input operator of DI-Algebra is con-
venient for defining the behaviour of mod-
ules, especially their initial state.

4. There is a simple translation from processes
in DI-Algebra into Petri nets [7] from which
asynchronous logic can be synthesised using
the tool Petrify [2].

Of course, in order to verify designs modelled
in DI-Algebra using the Concurrency Workbench,
we first need to translate them into CCS. This trans-
lation procedure is automated by our tooldi2ccs,
which is discussed next.

4 The translation tool di2ccs

The translation of processes from DI-Algebra into
CCS has been automated in a tooldi2ccs (imple-
mented in Java).

4.1 Translation of “low” processes

The major tasks done by the tool are:

• Parsing of process declarations in DI-
Algebra.

• Application of transformation rules given be-
low to generate corresponding declarations in
CCS.

• Declaration of DI versions of the above pro-
cesses.

For example, the processP declared in DI-Algebra
by
P = {a, b}, {c} a? ; b? ; c! ; P
is syntactically transformed to the CCS process
P = a . b . ′c . P
To preserve its semantics, wires are then attached:
Di P =
(PBW [a/x, pa/px, ai/y] |
PBW [b/x, pb/px, bi/y] |
W [co/x, c/y] |
P [ai/a, bi/b, co/c])\{ai, pa, bi, pb, co}

4.1.1 Syntactic transformation rules on guards
and statements

• x? ⇒ x

• x! ⇒ ’x

• skip⇒ tau

• CHAOS⇒ @

• STOP⇒ 0

• P/x? ⇒ ’px . P

• g ; P ⇒ g . P

• [g1 → P1 # . . . # gn → Pn]
⇒ g1 . P1 + . . . + gn . Pn

• P ND Q ⇒ tau . P + tau . Q

This just leaves us to consider the connection of
wires to terminals.

2

4.1.2 Pushback wires

Since the
after-input opera-
tor P/x? is trans-
lated into’px . P ,
instead of attach-

px
x

y

Figure 3 Pushback wire with input ter-
minals x and px and output terminal y

ing a wire tox, we use a “pushback” wire, Figure3,
defined by
PBW = x . PBW′ + px . PBW′

PBW′ = ′y . PBW + x . @ + px . @
That is, actual inputx and pushed back inputpx are
merged.

4.2 Translation of “high” processes

In the case of parallel composition, the alphabets of
the processes being composed have to be analysed.
Let P andQ be two processes composed in paral-
lel with input (output) alphabetsA1 (B1) andA2
(B2) respectively. Letinternals be defined as the
set of shared signals betweenP andQ, as follows:
internals = (A1 ∩ B2) ∪ (A2 ∩ B1). This gives
us the translation
P || Q ⇒ (Di P | Di Q)\internals
whereDi P andDi Q are delay-insensitive CCS
translations of processP andQ respectively.

4.2.1 Optimisation

The CWB builds and analyses a transition system
representation of a process. We can observe from
the above translations that, if the size (number of
states) of a processP is SP , then the size ofDi P
has an upper bound ofSP × 3n, wheren is the to-
tal number of signals in the alphabets of processP .
Note that the size of bothW andPBW is 3, so far
as the CWB is concerned.

If we want to verify a possible implementation
involving several components composed in parallel,
the size of the implementation increases multiplica-
tively with the number of components. To reduce
this increase in the size (and make large circuits
verifiable), we have optimised our tool to generate
fewer wires. In the case of parallel composition of
two processesP andQ, instead of composingDi P
with Di Q which would have aW and aPBW per
internal signal, we generate a singlePBW . Thus
there is a reduction of size by a factor of3m, where
m is the number of internal signals.

4.2.2 Example

Consider the following declarations in DI-Algebra:
P = {a, b}, {c} a? ; b? ; c! ; P
Q = {c}, {d, e} c? ; d! ; e! ; Q
M = P || Q
Syntactic transformation of “low” processesP and

Q into CCS gives:
P = a . b . ′c . P
Q = c . ′d . ′e . Q
The “high” processM is then transformed using the
parallel combination ofP andQ along with the at-
tached wires. Note that only one pushback wire is
generated for the internal signalc.
Di M =
(PBW [a/x, pa/px, ai/y] |
PBW [b/x, pb/px, bi/y] |
PBW [co/x, pc/px, ci/y] |
W [do/x, d/y] |W [eo/x, e/y] |
P [ai/a, bi/b, co/c] | Q[ci/c, do/d, eo/e]

)\{ai, pa, bi, pb, ci, pc, co, do, eo}

5 Examples of Verification

In verifying an implementationI against a specifi-
cationS, we need only check thatI refinesS, i.e.
mustpre(S, I).

5.1 Verification of Call element

A call element can be declared in DI-Algebra as fol-
lows:
Call = [a0? → c!; C0 # a1? → c!;C1]
C0 = [b? → d0!;Call

a0? → CHAOS# a1? → CHAOS]
C1 = [b? → d1!;Call

a0? → CHAOS# a1? → CHAOS]
An implementation [18] of a Call element is

shown in Figure 4. Even with the optimisation of
section4.2.1, the CCS model generated by di2ccs
has almost107 states. As it was not possible to ver-
ify this directly on our machine (a 1.4 GHz Pentium
4 with 256 MB RAM), we adopted a hierarchical
approach. We divided the circuit into two compo-
nents, an abstract descriptionP (of the component
shown dotted in the figure) and the latch element.

F
a0?

a1?
d1!

d0!

b?
c!

F
p1

f0

f1

P Latch

p0

Merge

Figure 4 Call Element

P = [a0? → c!; p0!; P # a1? → c!; p1!;P]
Latch = [p0? → [p1? → CHAOS

b? → d0!;Latch]
p1? → [p0? → CHAOS

b? → d1!;Latch]]
M = P || Latch

3

We first verifiedP in parallel with the latch
against the specification of the Call element, as fol-
lows:
Size of Di CALL = 5833, Size of DiM = 196857
mustpre(Di CALL, Di M) = true
Time taken = 30 min, 36 sec

P is implemented as two forks and a merge as
shown below:
Fork0 = a0?; p0!; f0!;Fork0
Fork1 = a1?; p1!; f1!;Fork1
Merge = [f1? → c!; Merge

f0? → c!;Merge]
N = Fork0 || Fork1 ||Merge

We then verified the implementation ofP .
Size of Di P = 1216, Size of DiN = 39375
mustpre(Di P, Di N) = true
Time taken = 19.596 sec

Table 1 shows verification results for some other

circuits given in [18].

6 Conclusion

We have defined a method to verify delay-
insensitive processes using the CWB. As CCS is its
main modelling language, we have added a front-
end di2ccs that translates from DI-Algebra into
CCS. This involves attaching a pushback wire to
each input terminal and a wire to each output ter-
minal of a process. Delay-insensitive circuits can
thus be automatically verified using the tools di2ccs
and CWB.

As observed from experiments, using this
method the CWB suffers from the state explosion
problem even for small circuits. Hierarchical veri-
fication can help here, but alternative tools are also
worth investigating.

Specification (S) Size of S Implementation (I) Size of I Time (sec)
OR 190 XOR 82 0.084
Connector 325 OR || Mixer 1143 0.445
Connector 325 PAR || Join 1143 0.452
Mod-3 Counter 163 Mod-1 Counter|| Join|| 1596 0.775

Forks|| Merge|| Toggle
Duplicator 487 PAR || Mixer 2358 0.827
2-to-4 Converter 568 Merge|| Toggle 1953 0.851
Sequencer 973 Mixer || Join 6588 2.828
Latch 1459 Non-Receptive Mixer|| Join 6102 2.844

Table 1:Performance of the CWB on various DI circuits

References

[1] R. Cleaveland, J. Parrow, and B. Steffen.
The Concurrency Workbench: A Semantics-
based Verification Tool for Finite-state Sys-
tems. Proceedings of the Workshop on Au-
tomated Verification Methods for Finite-state
Systems, Lecture Notes in Computer Science,
407, 1989.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. Petrify: A
Tool for Manipulating Concurrent Specifica-
tions and Synthesis of Asynchronous Con-
trollers. IEICE Transactions on Information
and Systems, 3(E80-D):315–325, 1997.

[3] Rix Groenboom, Mark B. Josephs, Paul G. Lu-
cassen, and Jan Tijmen Udding. Normal Form
in a Delay-Insensitive Algebra.Proceedings
of the IFIP Transactions on Asynchronous De-
sign Methodologies, pages 57–70, April 1993.

[4] M. Hennessy.Algebraic Theory of Processes.
MIT Press, 1988.

[5] C.A.R. Hoare. Communicating Sequential
Processes. Prentice-Hall International Series
in Computer Science, 1985.

[6] Mark B. Josephs. Receptive Process Theory.
Acta Informatica, 29(1):17–31, 1992.

[7] M.B. Josephs and D.P. Furey. Delay-
insensitive interface specification and synthe-
sis. Proceedings of Design, Automation and
Test in Europe (DATE), pages 169–173, March
2000.

[8] M.B. Josephs and J.T. Udding. An overview of
D-I algebra.System Sciences, 1993, IEEE Pro-
ceeding of the Twenty-Sixth Hawaii Interna-
tional Conference, 1:329 – 338, January 1993.

[9] Ying Liu. AMULET1 Specification and Ver-
ification in CCS. PhD thesis, Department

4

of Computer Science, Univeristy of Calgary,
September 1995.

[10] Paul G. Lucassen. A Denotational Model
and Composition Theorems for a Calculus of
Delay-Insensitive Specifications. PhD the-
sis, Dept. of C.S., Univ. of Groningen, The
Netherlands, May 1994.

[11] R. Milner. Communication and Concurrency.
Prentice-Hall International Series in Computer
Science, 1989.

[12] Faron Moller and Perdita Stevens. Ed-
inburgh Concurrency Workbench user
manual (version 7.1). Available from
http://www.dcs.ed.ac.uk/home/cwb/.

[13] Charles E. Molnar, Ting-Pien Fang, and Fred-
erick U. Rosenberger. Synthesis of delay-
insensitive modules.In Henry Fuchs, editor,
1985 Chapel Hill Conference on Very Large
Scale Integration, pages 67–86, 1985.

[14] Roberto Segala. Quiescence, fairness, testing
and the notion of implementation.Information
and Computation, 138:194–210, 1997.

[15] Kenneth S. Stevens. Practical Verification
and Synthesis of Low Latency Asynchronous
Systems. PhD thesis, Department of Com-
puter Science, University of Calgary, Septem-
ber 1994.

[16] Jan Tijmen Udding. A Formal Model
for Defining and Classifying Delay-Insensitive
Circuits . Distributed Computing, 1(4):197–
204, 1986.

[17] Jan L. A. van de Snepscheut. Trace Theory
and VLSI Design .LNCS, 200, 1985.

[18] Tom Verhoeff. Encyclopedia of
Delay-Insensitive Systems (EDIS).
http://edis.win.tue.nl/edis.html.

A MUST-testing

After a processp has engaged in a traces, it may be
in one of several possible states, in each of which a
set of actions is enabled.A(p, s) denotes the set of
such so-called Acceptance sets. We writeA ⊂⊂ B
if for every Acceptance setX ∈ A there exists some

Acceptance setY ∈ B such thatY ⊆ X. After s, if
processp has infinite internal computation, it is said
to bedivergent; otherwise it is said to beconvergent,
denoted byp↓ s. TheMUST testing preorder is then
defined [4] as follows:
mustpre(p, q) if, for every sequences of actions
p↓s implies

i) q↓s, and

ii) A(q, s) ⊂⊂ A(p, s)

Thus, musteq(p, q) iff mustpre(p, q) and
mustpre(q, p).

Note that the idea of usingMUST-testing in the
context of I/O automata was considered in [14], but
divergence was not considered.

A.1 Two wires in series is equivalent to
a single wire

Figure 5 shows that two wires in series is equiva-
lent to a single wire. Figure 6 shows that a single
wire in series with a pushback wire is equivalent to
a pushback wire.

21

2

1

2

1

b

W = b . (’c . W + b . @)

W = a . (’b . W + a . @)

M = (W | W) \ b

ca

W = a . (’c .W + a . @)

ca

Figure 5 musteq(M, W) = true.

1
1

2M = (W | PBW) \ b

PBW’’ = ’ai . PBW + b . @ + pa . @2

2PBW = b . PBW’’ + pa . PBW’’

W = a . (’b . W + a . @)

PBW = a . PBW’ + pa . PBW’
PBW’ = ’ai . PBW + a . @ + pa . @

b
ai

pa
a

aipa
a

Figure 6 musteq(M, PBW1) = true.

5

	Introduction
	Defining DI Processes in CCS
	The Modelling Language DI-Algebra
	The translation tool di2ccs
	Translation of ``low" processes
	Syntactic transformation rules on guards and statements
	Pushback wires

	Translation of ``high" processes
	Optimisation
	Example

	Examples of Verification
	 Verification of Call element

	Conclusion
	MUST-testing
	Two wires in series is equivalent to a single wire

