
Testing in the Direct Mapping Domain*
Deepali Koppad, Alex Bystrov, Alex Yakovlev

University of Newcastle upon Tyne

Abstract—The application of asynchronous circuits has been restricted be-
cause of the lack of technology to test them. In this paper we introduce a tech-
nique to test circuits obtained by the direct mapping technique from 1-safe
Petri nets. Low-level physical faults in the cells implementing Petri net places
are analysed and mapped into the high-level specification, a Petri net. This
technique uses a “pseudo clock” in order to handle the hazards which may
occur under certain types of physical faults. The clock also helps to activate
faults which exhibit themselves only under some particular arrangement of
signals and to deliver the precise information about the fault location to the
test point.

I. INTRODUCTION

Circuits without a clock signal are often referred to as asyn-
chronous or self-timed. The clock replacement is a handshake,
whose simplest version involve two signals, Request and Ac-
knowledge. Although asynchronous circuits offer a number of
promising features for low power, low EMC, high security ap-
plications, their design and testing are more difficult [3,11,12].

Synthesis of these circuits is an important task. Various tech-
niques have evolved through the years. Direct mapping from
Signal Transition Graphs (STG) is one such synthesis technique
[1,7] which avoids algorithmic complexities and is based on out-
put exposition and environment tracking. It helps reducing out-
put latency.

Based on the technique of Direct mapping, a two level ar-
chitecture [8] has been introduced comprising a tracker and a
bouncer. The former introduces explicit context signals (ECS),
one per output signal and works in parallel with the environ-
ment (precomputation technique), thus reducing latency. The
tracker consists of David cells [2,3], which model places of a 1-
safe Petri net derived from the specification. The bouncer uses
minimum context signals from the tracker and produces the out-
put. It consists of registers and has minimum impact on latency.
Hence, it is necessary to study the tracker in detail in order to
reduce the latency and this is the main aim of this paper.

Testing is verifying if the circuit is performing according to
the specification by means of physical experiments involving
application of test inputs and reading responses. It is checking
for faults in the circuit. Because of potential hazards, which are
difficult to propagate to the test point, testing of asynchronous
circuits is challenging. Since there is no clock in these circuits,
controlling and observing each step change in the circuit is not
easy. Controllability is the circuit property reflecting the per-
centage of faults which can be activated (made to produce an
error) by applying test inputs. Observability refers to determin-
ing the response of the circuit after applying the test patterns.

Faults are classified as stuck-at, delay, bridging, parametric,
intermittent [4], which can be single or multiple. Our circuit
consists of David cell (DC) structures which are sequential,
self-timed, speed-independent [5] circuits. Since DC are sim-

*EPSRC supports this work in project STELLA (ER/S12036)

p2tp1
s

1

r2

a1 a2

0

0 0

0r1

p1

p2p1 <r1−,r2+>

Cell

David

r1

a1

p1

a2

r2

r1+ a1+ r1− a1−

p2

a2−

r2− s+ a1− a2+

r2+

r1−a1+s−r1+

p1

Fig. 1. David Cell Operation

ple structures we decided to test them using a special “pseudo
clock” in order to filter out hazards and to control the order of
signal application. In this paper, we look at the classical sin-
gle stuck-at fault model with faults located at the inputs of logic
gates.

In our approach, we look at the physical faults, i.e. stuck-at-
0 (s-a-0) and stuck-at-1 (s-a-1), present in a DC structure which
will be mapped at the interface of a DC. The interface faults will
subsequently be mapped at the Petri net level. In future we plan
to derive tests at the Petri net level.

Section 2 explains the DC structure, method of testing it,
physical faults present in it, how these can be mapped to in-
terface faults and subsequently to the Petri net level. In section
3, we introduce some typical David Cell structures and section
4 gives the conclusion.

II. DAVID CELL

David cells were introduced by Rene David [2] and used by
[3] in Direct Mapping and later by [1]. The idea introduced in
[3] is to associate each place in a Petri net with a David Cell
whose circuit diagram is shown in Fig. 1(c)

Place p1 in Fig. 1(a) is replaced by two wires (request, ac-
knowledgement) and a four phase handshake interface (Fig. 1
b). Interface (r2, a2) of previous stage is connected to inter-
face (r1, a1) of next stage. Fig. 1(c) uses logic 1 as active level.
Fig. 1(d) shows the STG for the token to move from place p1
to place p2. The PN can be modelled as shown in Fig. 1(e).
The dotted rectangle depicts the transition between p1 and p2,
containing an internal place where the token ’disappears’ for the
time �����������
	�� . This corresponds to one gate delay and so is
considered as negligible.

A. Testing David Cell Structures

The structures composed of David cells are tested in our ap-
proach by mapping physical faults of the logic gates into the in-
terface and further into the initial specification, a Petri net. The

single fault

fault in stage i fault in stage j

de
ad

lo
ck

..... to
ke

n
di

sa
pp

ea
r

start operation one DC stage

.....

st
uc

k−
at

−f
ul

l

Fig. 2. Fault model representation at the Petri net level

fault model of a DC represented as a Petri net is shown in Fig. 2.
It captures three main types of errors created by a physical fault.
A token disappearing error takes place when the DC executes
its input handshake, but do not start its output handshake. This
causes a deadlock in the system. A stuck-at-full error happens
if a DC has its output request wire in the stuck-at-active state,
which starts the output handshake prematurely and never fin-
ishes it. This also results in a deadlock. Finally there can be an
error when a DC waits for a token to arrive, then starts its output
handshake and freezes it. The model also reflects that only one
type of error may occur in a single DC, furthermore, the faults
are introduced before the system started its operation.

As one can see in Fig. 2 all faults result in deadlocks and
hence can be tested by running a single cycle of operation (as-
suming the system is live and deterministic).

Apart from these main types of errors there exist two faults
causing glitches at DC outputs. These are analysed below. In
order to test them certain timing assumptions should be intro-
duced. In our approach we use what we call a “pseudo clock” in
order to slow down the transitions and capture the signals after
the glitches have settled down.

This idea is illustrated in Fig. 3(a). The solid lines are read-
arcs, from the clock to the transitions of the PN. The dashed
lines are feedback from the places of the PN to the transitions
of the clock. When a token is present in place p7 of the clock,
transitions t1, t3, t5, t7, t8 and t9 are enabled. Transitions t2, t4,
t6, t10, t11 and t12 are enabled when a token arrives in place p8.

In the above example, transition t1 fires first, moving token
from place p1 to p2, which enables transition t7 and hence token
from p7 moves ahead to p8. So now transition t2 fires and token
moves from p2 to p3. This continues till token finally arrives
at t6. The introduction of clock makes the time discrete, and in
this example, the token arrives at the output after 5 half-cycles
of the clock. Thus, errors occurring in the main structure can be
detected. Every place and transition of the PN is associated with
a DC and an AND gate respectively (Fig. 3(b)).

As DCs are speed-independent, gate delay faults do not result
in errors.

B. Physical faults

As mentioned earlier, only single s-a-faults at the gate inputs
are considered here. Suppose, we have a 2-input AND gate, with

RA RA RA

p1 t1 t2p2 p3 t3 p4 t4 p5 t5 p6 t6

p8p7

t7

t9

t8

t10

t12

t11

RA RA RA
PETRI NET

"CLOCK"

(a)

r1

a1

RA RARA

r2

a2

RA RA RA

(b)

Fig. 3. Structure of PN and “clock”

a
b

c

Fig. 4. AND Gate

TABLE I
TEST PATTERNS FOR AND GATE

a b c Faults Tested
1 1 1 a=0|b=0|c=0
0 1 0 a=1|c=1
1 0 0 b=1|c=1

inputs a, b and output c (Fig. 4).
In order to test this gate for s-a-faults (s-a-0, s-a-1), we apply

the test patterns as shown in Table I. Similarly, test patterns for
an OR gate can be generated.

C. Testing a David Cell

A David Cell in Fig. 1(c) consists of NOR gates only. The
AND gate in Fig. 5 is needed to implement the feedback from
the bouncer as in [1] and also can be used to implement the
pseudo clock technique as described above.

Table II shows the physical faults (column 2), the behaviour
of these faults in a single David cell (column 3), errors caused by

a1

clock

b
a

a bI1 ba I2

a
b

I3I0

r1

a2

r2

Fig. 5. Single DC with Clock

RA1 RA2
t1 p2p1 p4p3 t2t2 t1

RA1 RA2

Fig. 6. Linear Structure

them in the structure without clock (column 4) and in a clocked
David cell chain (column 5) (Fig. 5) and how physical faults can
be mapped at the interface.

Table II shows that 83% of faults are tested in a single cycle
of circuit operation without implementation of any testability
features. Adding clock helps to test one more fault (#8), giving
93% testability. The fault #16, however, requires delaying the
reset phase of the input handshake, which can be implemented
by an additional AND gate in the circuit of a1.

III. TYPICAL DAVID CELL STRUCTURES

In this section certain models which include linear, fork, join,
choice and merge structures will be studied. These models will
be tested for the faults mentioned in Table II.

A. Linear structure

Linear Structures are simple and easy to test. All faults men-
tioned above are easily detected.

Consider Fig. 6, with 4 places and 4 transitions.
Associating each place with a DC and the transition to an

AND gate we have structure as shown in Fig. 7. The circuit
is cut at the initial marking.

The circuit is reset and the output is observed at r2 after 4
half-clock cycles, without applying the clock inputs. Next apply
all clock inputs and observe the output at r2.

The circuit is then initialised, i.e. a token is inserted at p1
(r1=1) and the output is observed at r2, both with and without
applying the clock inputs.

To test the AND gates, insert a token at p1 (r1=1), and de-
lay each clock input (read-arc RA) by one half-clock cycle and
observe the output at r2.

Observation

RA2RA1RA2RA1

r2

a2

r1

a1

Fig. 7. Linear Structure with DC

p04

p05

p09

p15

p17

p16

p18

p22

p23

p01a

p01b

p07

p10a

p10b

p10c

p10d

e01

hysreq=0

y0_nakpa=0

ack−

reqbus=1
hystreq1

enableda=1

reqbus=0

ack=1

enableda=0

busreq=0

busreq=1

y0_nakpa=1

Fig. 8. Original Specification

Without inserting a token, we observe the output at r2 after
4 half-clock cycles, with and without applying clock inputs, we
should not receive any token. Then we insert a token, and ob-
serve the output without and with the clock inputs. If the token
arrives at output r2 before the expected time, i.e. 4 half cycles
of the clock, then there is a s-a-1 fault in the tracker. If the token
does not appear at all at r2 then there is a s-a-0 fault.

B. Fork and Join Structures

Let us consider an example which involves Fork and Join
Structures, shown in Fig. 8. It is a benchmark called nakpa. Us-
ing the tool from [9] the Petri net is optimised and the redundant
places are removed.

Cut the circuit at the initial marking and then associate each
place with a DC (Fig. 9). The transitions are replaced by AND
gates, where each AND gate has one input as clock.
1. Reset the circuit and observe the output at r2 after 9 half-
clock cycles.
2. Apply all the clock inputs and observe the output at r2 after
9 half-clock cycles.
3. Then set the tracker, i.e. insert a token and observe output at
r2 without applying the clock.
4. Insert a token, apply all clock inputs and observe the output.
Token should arrive after 9 half-clock cycles at r2.
5. Next to test the AND gates, i.e. the inputs where the clock
is connected, delay the token at each AND gate, one at a time.
Eg. Insert a token at p23 (r1=1) (Fig. 9). Delay reqbus=1 by one
half-clock cycle and observe the output at r2 after 9 half cycles.
6. Now to test the fork paths, use a technique similar to 5 i.e.
delay the token in each path one at a time. Eg. insert a token
at p23 (r1=1), delay enableda=1 by one clock cycle, apply all
the other clocks correctly and observe the output at r2 after 9
half-clock cycles. If the token arrives at the expected time (9
half clock cycles), then the AND gate with input enableda=1 is
s-a-1. If a token does not arrive at all then there is a s-a-0 fault.
Under fault-free conditions token should arrive at output r2 after
10 half-clock cycles.
7. Similarly all the AND gates and fork paths can be tested, i.e.
by delaying each input by one half-clock cycle, except four gates
(a, b, c, d) (Fig. 9). For these four gates special techniques are
needed which are explained later.

Observation

TABLE II
PHYSICAL FAULTS

Physical Faults Single DC DC chain errors, no
clock

DC clocked chain errors

1 I0 a=1 - - Continuous firing: Every time clock input arrives the
AND gate is activated and hence it will fire.

2 I0 a=0 - - r1 s-a-initialisation deadlock: AND gate is never ac-
tivated hence the token cannot go further

3 I0 b=0 - - token jumps forward by 2 stages
4 I0 b=1 - - same as #2
5 I1 a=1 s=0, a1=1 on initial deadlock: acknowl-

edgement is received
without making a re-
quest, hence result-
ing in deadlock

Deadlock in Predecessor: r1 can be set to 1 only
when a1=0, since a1 is already 1 on initialisation to-
ken cannot go ahead

6 I1 a=0 r2 s-a-initial deadlock: NOR gate
cannot be activated
resulting in deadlock

r2 s-a- initialisation (deadlock): NOR gate I1 is
never activated and hence token will not go ahead.

7 I1 b=1 same as #5 same as #5 same as #5
8 I1 b=0 glitch at r2 after r1

reset
glitch at r2: this is a
token disappearing
error, where the
input handshake is
completed but the
output handshake
does not start. The
clock is used to
detect this fault.

r2 s-a-initialisation (deadlock): even though a glitch
will occur but the time period is small and hence the
AND gate of the next stage will not get activated,
resulting in deadlock.

9 I2 a=1 a1 s-a-initial deadlock: Explana-
tion same as #6

a1 s-a-initialisation (deadlock): a1 will never be set
to 1 i.e. NOR gate I2 is never activated, hence re-
sulting in deadlock.

10 I2 a=0 a1=1 on initialisa-
tion

deadlock: Explana-
tion same as #5

deadlock in predecessor: (Explanation same as 5)

11 I2 b=1 same as #9 same as #9 same as #9
12 I2 b=0 r2 stays active after

receiving a2
deadlock: r2 is 1 all
the time, indicating
presence of token
(stuck-at-full fault)

continuous firing: (Explanation same as 1)

13 I3 a=1 r2 s-a-initial deadlock: Explana-
tion same as #6

r2 s-a-passive (deadlock): as one input to I3 is al-
ways 1, output of I3 will never be set to 1

14 I3 a=0 r2 active on initiali-
sation

deadlock: Explana-
tion same as #12

continuous firing: r2 is always 1 so every time the
clock input of the next stage is applied the AND gate
is activated and it fires.

15 I3 b=1 same as #13 same as #13 same as #13
16 I3 b=0 r2+ || (a1+. r1-),

hazard at a1 (early
reset is possi-
ble if �
��	
��� ��	
� <
� �
����� �����)

gitch at a1 possible:
need to delay reset-
ting of a1 by includ-
ing an AND gate

Need to delay setting of a1 . Not present in fast im-
plementation of DC.

DC

hystreq=0

enableda=1p10d

DCDC

p18

DC

p17

DC

p10cack=1

DC

p10breqbus=0

DC

p16

p15

DC DC

p10a

DC

e01p22

DC

busreq=0
y0_nakpa=1

DC

p09p07

busreq=1

DC

p05p01b

DC

DC

p04

Output 9 half cycles

ack=0

a2

r2

DC
r1

a1

p23

reqbus=1

hystreq=1

DC

p01a

d

a

c

b

y0_nakpa=0

enableda=1

Fig. 9. Replacing places with DC

busreq=1

hystreq=1

p01b (ack)

p01a (req)

p01a (ack)

p01b (req)

cntpt1

cntpt2
a
b2

1a
b

a2
3

1

enableda=1

ackDC

p04req

req

ack
DC

p05

ack
DC

p07req

Fig. 10. Testing AND gate a using gates 1 & 2

No token should be received, with or without the clock, at
output r2 after 9 half clock cycles when no token in inserted at
input. When a token is inserted, we can observe that if the token
does not appear at r2 then there is s-a-0 fault in the circuit. If it
arrives early (i.e. before 9 half clock cycles) at r2 then there is a
s-a-1 fault in the circuit.

Now we explain the special technique needed to test gates a,
b, c, and d.

Gate a (Fig. 10)
In order to test gate a, gates 1 and 2 are used. The inputs to

these gates are acknowledgement from p07 and control points
(cntpt1 and cntpt 2). The control points are used to delay the
acknowledgement from p07 to p04 and p05.

Initially, cntpt1=1, cntpt2=0. Gate a is activated when token

a1

reqbus=1

r1

3

4cntpt4

cntpt3

2b1

req

ack
DC
p01a

DC
p01b

req

ack

ackDC
p23

req

Fig. 11. Testing AND gate b using gates 3 & 4

arrives at p04, p05 and busreq=1. Request pin of p07 is set high.
When p07 is ready to accept the token it sets its acknowledge
pin to high i.e. pins 1b and 2a are set to 1. As cntpt1=1, gate 1
is enabled and gate 2 is disabled. So p04 receives an acknowl-
edgement and then resets it request pin. So now gate a should
get disabled and reset the request pin of p07. If this does not
occur, i.e. request pin of p07 is still high then we can conclude
that pin 1 of gate a has a s-a-1 fault.

Next we make cntpt1=0 and cntpt2=1, and repeat the above
procedure for s-a-1 fault at pin 2 of gate a.

Similarly to test gate c we can include 4 gates and 4 control
points.

Gate b (Fig. 11)
Input of gate b are acknowledgements from p01a and p01b.

dtack

lds

ddtackdsr

dsw lds dtack

(a)

d

lds dtack

dsr

dsw

dtack

lds dtack

a2a1

r1
r2

Output after 5 half−clock cycles

(b)

Fig. 12. VME bus

Gates 3, 4 and two control points (cntpt3 and cntpt 4) are used
to test gate b.

Initially cntpt3=1, cntpt4=0. Token arrives at p23 and re-
qbus=1, so the first AND gate is activated. Since cntpt3=1, gate
3 is activated and a request is sent to p01a. When it is ready to
accept the token it sends an acknowledgement on pin b1. But
since cntpt4=0, no request is made to p01b and so pin b2 is not
activated. Gate b should be disabled. But if pin b2 is s-a-1 then
gate b is activated and p23 receives an acknowledgement.

Next, we make cntpt3=0 and cntpt4=1 and test pin b1 for s-a-
1 fault.

Similarly, we can include 4 gates and 4 control points to test
gate d.

During the normal operation of the circuit, cntpt1, cntpt2,
cntpt3 and cntpt4 are all set to 1.

C. Choice and Merge Structures

Now we will see how the faults mentioned in Table II can
be detected in choice and merge structures. For these struc-
tures we make use of the well known benchmark VME bus con-
troller. Fig. 12(a) shows the petri net after removing the redun-
dant places and optimising the structure.

Replacing each place by a DC and the transition by AND gate,
we have a structure as shown in Fig. 12 (b)

In order to test choice and merge, we use a technique similar
to fork and join.
1. First reset the circuit and observe the output at r2 after 5 half-
clock cycles. (No clock inputs are applied)
2. Apply all clock inputs and observe the output at r2 after 5
half-clock cycles.

3. Then set the circuit, i.e. insert a token, without the clock
inputs, observe the output at r2 after 5 half-clock cycles.
4. Insert a token, apply all clock inputs and observe the output
at r2.
5. Next to test the input to the AND gates, delay each clock
input, by one half-clock cycle and observe the output at r2 after
5 half-clock cycles.
6. Finally, to test the choice paths, stop the token from passing
in one branch at a time. Observe the output at r2 after 5 half-
clock cycles.
Observation

When no token in inserted at input, no token should be re-
ceived at output, with or without clock. Again with and without
clock, after a token is inserted if more than one token is received
at the output at r2 then there is a s-a-1 fault. If no token arrives
at output r2 then there is a s-a-0 fault.

IV. CONCLUSION

We can say that 83% of the faults occurring in a DC can be
tested without the use of any additional features in a single cy-
cle of circuit operation. Introduction of the “pseudo-clock” im-
proves testability to 93%. In order to achieve full testability,
introduce an AND gate in the reset phase to delay the resetting
of acknowledgement a1. All the faults occurring in a DC could
be mapped to the higher level specifications, i.e. PN level. There
are a few issues that need further studies such as partitioning of
DC structures into acyclic parts, implementation of test points
and proper algorithmic techniques. Structures such as linear,
fork, join, choice and merge were studied.

REFERENCES

[1] A. Bystrov and A. Yakovlev, Asynchronous Circuit Synthesis by Direct
mapping: Interfacing to Environment. Technical Report CS-TR-743 (ac-
cepted to ASYNC2002), University of Newcastle upon Tyne, UK 2001.

[2] Rene David, Modular design of asynchronous circuits defined by graphs,
IEEE Transaction on Computers, 26(8):727-737, August 1977.

[3] Michel Kishinevsky, Alex Kondratyev, Alexander Taubin and Victor Var-
shavsky, Concurrent Hardware: The theory and Practice of self-timed de-
sign, Series in Parallel Computing. John Wiley & Sons, 1994.

[4] Gordon Russell, Ian Sayers, Advanced Simulation and test methodologies
for VLSI design, London: Van Nostrand Reinhold (International), 1989.

[5] Al Davis, Steven M. Nowick, An Introduction to Asynchronous Circuit
Design

[6] Petlin O, Random Testing of Asynchronous circuits, MSc Thesis, Univer-
sity of Manchester, 1994.

[7] Lee A. Hollaar, Direct Implementation of asynchronous control units,
IEEE Transactions on Computers, C-31(12):1133-1141, December 1982.

[8] A.Bystrov, A. Yakovlev, Synthesis of Asynchronous Circuits with pre-
dictable latency, Technical Report CS-TR-754, University of Newcastle
upon Tyne, 2001.

[9] D. Sokolov, A. Bystrov, A.Yakovlev, STG Optimisation in Direct mapping
of Asynchronous circuits, University of Newcastle upon Tyne, DATE’03
March, 2003.

[10] Henrik Hulgaard, Steven M Burns and Gaetano Borriello, Testing Asyn-
chronous Circuits, A Survey, Department of Computer Science and Engi-
neering, University of Washington, Seattle, Technical report 94-03-06.

[11] Scott Hauck, Asynchronous Design Methodologies: An Overview, Depart-
ment of Computer Science and Engineering, University of Washington.

[12] Alexandre V. Yakovlev and Albert Koelmans, Petri Nets and Digital Hard-
ware Design, Department of Computer Science, University of Newcastle
upon Tyne.

[13] A. V. Yakovlev, A. M. Koelmans, A.Semenov, D. J. Kinniment, Modelling,
analysis and synthesis of asynchronous control circuits using Petri nets,
Integration, the VLSI journal 21 (1996) 143-170.

