
An Asynchronous Pipelined 32×32-bit Iterative Multiplier
Using Hybrid Handshaking Protocol

Yijun Liu
APT Group, the Department of Computer

the University of Manchester, Manchester M13 9PL, UK
yijun.liu@cs.man.ac.uk

Abstract

An asynchronous pipelined 32×32-bit iterative multi-
plier is presented in this paper. The multiplier supports
32×32-bit integer multiplication of both signed and un-
signed operands. A 2-phase micropipeline latch controller
is used which controls a 4-phase pipeline with standard
transparent level sensitive latches. The design employs the
modified Booth algorithm diminishing 8 bits at a time with
an iterative structure. A sign extension algorithm is also
employed in this work. Furthermore, the early termina-
tion scheme speeds up the multiplication operation. The
multiplier consists of a total of 10700 CMOS elements and
completes an 32×32-bit multiplication in 12 ns under the
typical conditions. This work is also very low power and
costs only 50% energy per operation of that of Amulet3i
multiplier.

1 INTRODUCTION

Asynchronous logic gained a resurgence of interest
among academic and industrial researchers due to its ad-
vantages in low power consumption, high operating speed,
less emission of electromagnetic noise (EMI), better com-
pensability and avoiding clock skew problems [1].

Synchronous design uses global clock to control
dataflow in the datapath. A clocked system can be viewed
as a finite-state machine (FSM) with registers (flip-flops)
holding the current state. The clocked system changes
from one state to the next state on the edges of the global
clock. The state is held in a set of registers, and combina-
torial logic is used to derive a new state and outputs. The
new state is copied through the registers on every rising or
falling edge of the global clock signal.

Asynchronous logic uses a different timing stratagem -
handshaking protocol. There are two common handshak-
ing protocols used by self-timed systems: 4-phase proto-
col [2] and 2-phase protocol [3]. Unlike 4-phase protocol,
which uses level-sensitive control signals, 2-phase proto-
col employs events (rising or falling edges) to indicate the
availability or absorption of data. The 4-phase protocol has
better adaptability to most of VLSI designs but its superflu-
ous return-to zero transitions cost unnecessary time and en-
ergy. In this work, we propose an asynchronous pipelined
multiplier using a 2-phase pipeline control circuit to con-
trol a 4-phase datapath with level sensitive latches. Thus,

we can keep the advantage of 4-phase protocol but gain a
faster and lower power result.

The remainder of this paper is arranged as follows: Sec-
tion 2 introduces hybrid handshaking protocol and asyn-
chronous micropipeline. Section 3 provides the architec-
ture of the multiplier. In section4, detailed circuit imple-
mentation is given and the performance is discussed. Sec-
tion 5 presents the conclusions, and finally, section 6 give
the acknowledgements.

2 HYBRID HANDSHAKING PROTOCOL
AND MICROPIPELINE

Compared to 2-phase protocol, 4-phase protocol has bet-
ter adaptability because most VLSI designs use level sen-
sitive datapath. The asynchronous circuits using 4-phase
handshaking protocol can easily use transparent latches in
the pipeline without two- to four-phase signalling convert-
ers. While 2-phase handshaking protocol is faster and costs
lower power because it eliminates the superfluous return-
to-zero transitions. The motivation of employing the hy-
brid handshaking protocol is to combine the advantages of
both 4-phase protocol and 2-phase protocol.

Figure 1 illustrates the block diagram of a hybrid latch
controller. Rin is the request signal from the sender and
Rout is the request signal to the receiver. While Ain is the
acknowledge signal to the sender and Aout is the acknowl-
edge signal from the receiver. Lt is the control line, which
control the states of level sensitive latches. The control flow
of the latch controller using hybrid handshaking protocol is
shown as follows:

Sender Receiver

Controller
Latch 

Latches

Ain Aout

Data Data

Rin Rout

Lt

Figure 1: Block diagram of a hybrid latch controller

• At the beginning, Lt controls the state of latches as
transparent (open).

• After the sender sets up data, it issues an event on Rin
indicating the validity of data.



• The latch controller changes the state of latches to
opaque (close) and let them absorb the data. Then
the latch controller sends an event on Ain back to the
sender to acknowledge the capture of data. At the
same time it issues an event on Rout to indicate the
availability of data.

• After some time, the latch controller detects an event
on Aout from the receiver and it changes latches to
transparent state again to prepare next cycle of data
transmission.

By choosing different events (rising or falling edge),
control circuits can be composed by different ways. The
Signal Transition Graph (STG) [4] description of a latch
controller is shown in Figure 2.

Lt−

Rin−

Rout+

Aout+

Lt−

Ain−

Rin+

Rout−

Lt+

Ain+

Lt+

Aout−

Figure 2: STG description of a latch controller

By a synthesis tool - Petrify [5], we can easily synthesize
the latch controller from the STG description. The latch
control circuit generated by Petrify is shown in Figure 3.

Rin

Rout

Ain

Aout

Lt

Figure 3: Latch controller implementation

But this circuit looks too big and not optimal. A better
latch controller called “mousetrap” is proposed by Singh
and Nowick in [6]. In this work, we use “mousetrap” as the
latch controller to control the micropipeline.

3 MULTIPLIER ARCHITECTURE

Array multipliers [7] and tree multipliers [7] are rather
fast but, on the other hand, are rather hardware hungry.
Serial multipliers [7] need less area but have a very low
throughput. Iterative multipliers are good choice consid-
ering the tradeoff between speed and silicon area. With
pipeline technique, iterative multipliers can gain an equal
throughput as that of parallel multipliers if we ignore the
delay of registers or latches [8].

The multiplier of Amult3i [9] uses a synchronous
pipeline structure clocked by an inverter oscillator. Com-
pared to synchronous pipeline, self-timed pipeline has
three main advantages:

• Higher speed: Asynchronous pipeline uses handshak-
ing protocol and it operating speed is determined by
actual combinational logic block latencies of each
stage rather than the critical delay of all the stages.

• Less silicon area: Standard transparent latches are
used in asynchronous pipeline whereas synchronous
pipeline must employ edge-trigged registers to hold
the stages. Edge-trigged registers occupy double sili-
con space compared to transparent latches. Further-
more, transparent latches are two times faster than
edge-trigged registers, which furthers self-timed the
pipeline’s advantage in high speed.

• More robust: Only after the availability and capture
of data, will the sender and the receiver send the re-
quest and acknowledge signals. While a synchronous
pipeline should satisfy the critical delay of all the
stage circuits, which perhaps changes from time to
time. For example, there comes a bug when the
Amulet3i multiplier changes its state from normal cal-
culation to early termination.

The multiplier in this paper uses modified booth al-
gorithm and supports 32×32-bit integer multiplication of
both signed and unsigned operands. The multiplier archi-
tecture is illustrated in Figure 4. This is a two-stage asyn-
chronous pipeline structure using bundled-data protocol.
The first stage includes a booth encoder, a pipeline latches
row and a 4-2 compressors row. The second stage includes
a pipeline latches row, a 4-2 compressors row and a shift
registers row. The pipeline latch controllers are “mouse-
trap” introduced in the second section.

4 CIRCUIT IMPLEMENTATION AND
PERFORMANCE

4.1 Booth multiplexer (Booth MUX)

The Booth MUX used in this multiplier is composed of 4
transmission gates. With elegant control signals, the Booth
MUX can minimise the short circuit currents for low power
reasons. The schematic of the Booth MUX is shown in
Figure 5.



Latch
Controller2

Latches row2
Lt

4−2 compressors row2

Shift registers row

D
el

ay
D

el
ay

Latch
Controller1

Latches row1

Booth encoder

4−2 compressors row1

Lt

8−bit multiplier

32−bit
multiplicant

Pipeline
Stage1

Pipeline
Stage2

Output

Figure 4: Multiplier micropipeline structure

Mi

+2* −2*−1*+1*

Outi

+1 −1 +2 −2 0

Mi+1

Figure 5: The Booth MUX

4.2 4-2 Compressor

With 4-2 compressors, we can build a multiplier with
more regular structure compared to the one using 3-2 com-
pressors. Moreover, 4-2 compressors row can diminish 4
partial products once compared to only 3 partial products
once for 3-2 compressors row. So the multiplier with 4-
2 compressors is faster than that using 3-2 compressors.
Since the Cout signal is independent on Cin, there does
not exist a propagation problem if several 4-2 compressors
with same weight are abutted into the same row, which is
the key idea behind 4-2 compressor. In this work, a new
proposed 4-2 compressor using differential pass-transistor
logic (DPTL) is employed and because of careful design,
one XOR gate delay is saved compared to the 4-2 com-
pressor constructed from two 3-2 compressors. Figure 6
shows the schematic of the 4-2 compressor. From Figure 6
we can see that the sum and carry are balanced for decreas-
ing glitches. Balanced delay also results a lower worst-case
latency.

4.3 Pipeline latch and shift register

Considering both speed and hardware consumption, we
choose true single-phase clocking (TSPC) register to com-
pose the shift register row. The pipeline latches are nor-

Figure 6: The schematic of the 4-2 compressor

mal tranparent latches, which is very simple and fast. The
schematic of TSPC register is illustrated in Figure 7.

D
Q

Enable

Figure 7: The schematic of TSPC register

4.4 Performance

The multiplier was analyzed using HSPIC on extracted
layout under the conditions of 3.3 volt supply voltage and
100 degree temperature. The simulation results of delay
(Typical process case and Worse process corner) are given
in table 1.

Table 1: Simulated results of the Components Delay
Components Typical Worse
Booth MUX 0.61 ns 0.72 ns
4-2 Compressor 1.10 ns 1.40 ns
Transparent latch 0.18 ns 0.22 ns
TSPC register 0.66 ns 0.88 ns

The critical path of the first pipeline stage includes one
Booth MUX, one 4-2 compressor and one pipeline latch
and is totally equal to 2.34 ns (Under the worst-case con-
ditions: Vdd = 3.3v, Vss = 0.1v, 100 degree temperature).
The critical path of the second pipeline stage include one
pipeline latch, one 4-2 compressor and one shift TSPC reg-
ister and is totally equal to 2.5 ns. From the data given



above, we can know that it takes 12.34 ns (2.34+2.50×4)
to complement a 32×32-bit multiplication without using
early termination. With 20% commercial timing margin,
the multiplier completes a multiplication in 14.8 ns under
worst-case conditions. The power of this work is about
80mw with full load in “peak time” and the average power
is about 50mw.

Up to now, we have not designed the layout of the mul-
tiplier. So we cannot give the performance of silicon area.

5 CONCLUSIONS

A high performance, low hardware cost and low power
asynchronous iterative multiplier has been developed in
this work. The multiplier totally consists of 10700 CMOS
elements and completes a 32×32-bit multiplication in 12 ns
under the typical-case conditions. It suits for both signed
and unsigned operands. The design uses the modified
Booth algorithm. An early termination scheme is employed
which efficiently speeds up the operation.

Table 2 shows the comparision between this multiplier
and Amulet3i multiplier (* The numbers mean the multipli-
cation cycles). Compared to Amulet3i multiplier, this mul-
tiplier is smaller. It contains 10700 CMOS elements, while
Amulet3i multiplier contains 13600 CMOS elements. This
dues to the simplify of the control circuit and the employ-
ment of transparent latches. And this multiplier is also 10%
faster than Amulet3i multiplier because the delay of trans-
parent latches is shorter than that of edge-triggled regis-
ters. Forthermore, this multiplier is more robust because
the handshaking protocol can match the exact latency of
each pipeline stage. Under the same conditions and with
the same operands, this multiplier costs only 50% energy
per operation of that of Amulet3i multiplier.

Table 2: The comparision between two multipliers
Multiplier This work Amulet3’s Ratio
CMOS 10700 13600 1/1.27

Latency(4*) 12.3ns 14.0ns 1/1.14
Latency(3) 11.4ns 13.4ns 1/1.18
Latency(2) 9.9ns 11.7ns 1/1.18
Latency(1) 8.0ns 10.7ns 1/1.34

Power(4) 80.0mw 86.2mw 1/1.08
Power(3) 67.4mw 82.1mw 1/1.22
Power(2) 50.0mw 82.7mw 1/1.66
Power(1) 25.1mw 66.0mw 1/2.63

Power×Latency is often used as a metric for the power
consumption of a CMOS system. Given two designs A and
B, if the Power × Latency of A is smaller than that of
B, then A consumes less power then B when they oper-
ate the same number instructions. From Figure 8, we can
see the average Power × Latency of this work is only
1/2 of that of Amulet3 multiplier. So this work is much
more power efficient than Amulet3 multiplier. The reason

is eliminating the propagation of the glitches through the
whole datapath. The unnecessary switches waste quite a
lot power especially when they are propagated through the
whole datapath. The immediately closing of the latches
provents glitches from propagating to the next stages, thus
saves power. From this example, we can see that the hy-
brid handshaking protocol is a good choice for low power
circuits. Another reason is that during early termination pe-
riod, only shift registers row consumes power, while com-
pressors rows are “free”. But for synchronous system, it is
very difficult to stop some parts of the datapath.

Moreover, this work introduces a STG description for
the hybrid pipeline latch controllers which uses 2-phase
protocol to control level sensitive latches and gives an ex-
ample of the latch control circuit synthesized by Petrify.
The hybrid pipeline latch controllers make datapaths run
faster comparing to those using traditional 4-phase latch
controlleres because they avoid the superfluous return-to-
zero transitions.

Figure 8: The comparision of Power × Delay

6 ACKNOWLEDGEMENTS

The author would like to thank Dr. Montek Singh for the
discussion on “mousetrap”.

Yijun Liu is funded jointly by a research studentship
from the Department of Computer Science at the Univer-
sity of Manchester and an ORS scholarship awarded by
Universities UK. The author would also like to acknowl-
edge with gratitude the grants from the Department of
Computer Science at the University of Manchester and
Universities UK.

7 REFERENCES

[1] J. Sparsø, S. Furber. “Principles of Asynchronous Circuit De-
sign: A systems Perspective”. Kluwer Academic Publishers,
2001

[2] Furber, S.B. and Day, P., “Four-Phase Micropipeline Latch
Control Circuits”, IEEE Trans. on VLSI, 4 (2), June 1996,
pp. 247-253

[3] Sutherland, I.E., “Micropipelines”, Communications of the
ACM, 32 (6), June 1989, pp 720-738



[4] T.-A. Chu, “Synthesis of self-timed VLSI circuits from
graph-theoretic specifications, PhD thesis”, MIT, 1987.

[5] J. Cortadella et al, “Petrify: a Tool for Manipulating Con-
current Specifications and Synthesis of Asynchronous Con-
trollers”, IEICE Transactions on Information and Systems,
E80-D(3): 315-325, 1997

[6] Montek Singh and Steven M. Nowick, “MOUSETRAP:
Ultra-High-Speed Transition-Signaling Asynchronous
Pipelines”, ACM/IEEE International Workshop on Timing
Issues in the Specification and Synthesis of Digital Systems
(TAU-2000), Austin, TX, December 2000.

[7] Amos R. Omondi, “Computer Arithmetic Systems: Algo-
rithms, Architecture and Implementations”, Prentice Hall,
1994.

[8] Santoro, M., “SPIM: a pipelined 64×64-bit iterative multi-
plier”, IEEE Journal of Solid-State Circuits, vol. 24, April
1989, pp. 487-493.

[9] J. Liu, “Arithmetic and Control Components for an Asyn-
chronous System, PhD thesis”, The University of Manch-
ester, 1997.


