
QDI Implementations of Boolean Graphs

W.B. Toms
Dept. of Computer Science, The University of Manchester,

Oxford Road, Manchester M13 9PL, UK.
tomsw@cs.man.ac.uk
e

-

o

ns

cti-
st

c-
is
the
d

g-
a-
or

in

s it
se

not

ic
ac-
se

or
e
g a
est
ep-

by
Abstract

Implementing combinational logic efficiently in QDI
designs is hard, due to the need to acknowledge every transi-
tion, and naive approaches are often used. The paper demon-
strates the problem of using Delay-Insensitive Minterm
Synthesis on anything but the smallest designs.These prob-
lems can be overcome by employing techniques from Multi-
Level Logic synthesis. An initial method using Roth-Karp
decomposition is described.

1. Delay-Insensitive Circuits

Delay-insensitive circuits make no assumptions about the
delays within either the circuit or its environment, except that
they are finite and positive. As such they are more robust than
other circuit styles whose operation is based on (and optimised
for) worst case constraints. Apart from this increased operat-
ing ability, delay insensitivity has many other advantages:

• DI circuits need no timing validation once they are de-
signed. Circuit styles such as single-rail can only be vali-
dated by comprehensive simulation.

• DI circuits can be scaled to any process easily and are not
constrained by layout timing issues.

These factors make delay insensitivity particularly desira-
ble in a synthesis environment as it allows designers to produce
designs that need little post-layout verification, can be ported
between technologies with ease and surrendered to automatic
place and route software without any danger of it breaking
delay assumptions.

However, eliminating the assumptions made in a design
also has its costs. Delay-insensitive circuits:

• generally face extra overheads in area due to the need to
disseminate timing information throughout the circuit.

• usually have higher power consumption due to the need to
transmit data validity explicitly

• may suffer a speed penalty due to the extra logic and
switching involved in their operation.

In order for a circuit to be DI certain conditions must be
upheld [4]:

• Stability - Once the conditions that allow a gate to transi-

tion (guards) are met, they cannot be falsified before th
gate has transitioned

• Non-Interference -The two guards of any gate must be mu
tually-exclusive.

In order to uphold these conditions Martin defined tw
properties all DI circuits must adhere to:

• Acknowledgement Theorem -Each non-final transition in a
circuit must beacknowledged by a subsequent transition.

• Unique Successor Set Theorem -The set of nodes that tran-
sition as a result of a transition on a node,x, must be unique
and the same for both up-going and down-going transitio
on that node.

In practice these properties are so restrictive that no pra
cal DI circuits can be built. So Martin suggested the weake
compromise to delay-insensitivity, theisochronic fork. An iso-
chronic fork is a fork where only one transition need be expli
itly acknowledged, with the assumption that if a transition
seen on one end of the fork, it will also have appeared on
other end. Circuits implementing isochronic forks are calle
Quasi-Delay-Insensitive (QDI) circuits. Research [11] su
gests that isochronic fork assumptions need careful verific
tion and can be violated by mismatched threshold voltages
gate capacitances on the receiving gates.

Isochronic forks can be extended through gates, resulting
QnDI circuits, wheren is the number of gates through which
an unacknowledged signal travels. QnDI circuits often employ
asymmetric forks, where a path a deemed to be slower a
travels through less gates. Again [11] showed that the
assumptions need careful verification as their operation is
always predictable.

Theseus Logic Inc. [3] extended the notion of isochron
forks and extended isochronic forks, and traded the un
knowledged path against the cycle time of the circuit. The
assumptions are known as Orphans.

Data in QDI systems is encoded in a delay-insensitive,
unordered, code[12]. This encodes validity directly into th
data, eliminating the assumptions necessary in transmittin
valid signal separately. There are many DI codes, the simpl
are the one-hot codes, where a single transition on a wire r
resents the arrival of valid data, with a set ofn wires represent-
ing n values.The efficiency of such a code can be increased

ial
to
,
e

h-
w.

h-
ng

d
es

on

a
-
ll
im-
st

&

concatenating many such codes together into a larger code
called a 1-of-n. This idea can be generalised to anm-of-n code
where transitions uponm wires from a set ofn represents the
arrival of valid data. Often theRate(number of data symbols
per wire) of a datapath can be increased by employingm-of-n
codes (m>1), but the logic is generally more complicated due
to the encoding complexity.

2. Combinational Logic in QDI Systems

Implementing QDI logic is generally more complicated
than in other design styles as traditional optimisation tech-
niques cannot, in general, be used, as these techniques make
use of don’t care values to try and reduce the size of implemen-
tations. In a QDI circuit, if a transition has no part to play in
the output of a function, it becomes unacknowledged and
therefore introduces extra assumptions into the circuit.

2.1. Delay-Insensitive Minterm Synthesis

A very simple method for performing logic in QDI circuits
is called Delay-Insensitive Minterm Synthesis(DIMS)[10].
Here the function is implemented by a simple S-O-P of all the
valid products. It should be noted that in Return-To-Zero DI
systems, the spacer (zero) value of a wire represents an
absence of data on that wire, so all products are generated with
only the active literals in that value, and there are no inverters.
To correctly acknowledge the return-to-zero phase of the cir-
cuit, each product is instantiated with a c-element. Because
each product is unique only one c-element will be activated in
any cycle and will be properly acknowledged by the or-gate
network. The circuit is QDI, the only assumption being the
fan-out of the inputs to multiple gates. This method, because
of its simplicity, is very easy to use for the synthesis of general
function and has become popular[]. It’s main drawback is its
size, which increases exponentially with function size.

However, the DIMS technique can become invalid for QDI
networks employing complex codes or a number of input code
groups. In a DIMS function each product is unique as it is
implemented by a single gate element. However, for anything
but the simplest functions, fan-in restrictions mean the prod-
ucts have to be decomposed over several gates (fig1). When the
products are decomposed, the products cease to be unique as
the partial products may be shared amongst several products as
in fig 1. This means when an input set is applied to the circuit
several intermediate gates will be activated, but only one prod-
uct will actually fire, leaving several unacknowledged transi-
tions on the gates of the unactivated products, resulting in
QnDI circuits. Clearly this problem increases with the use of
m-of-n codes and increased inputs, causing further decompo-
sitions, and possibly shared trees of c-elements. This results in
dangerous Orphan assumptions, particularly in synthesis sys-
tems where the amount of sharing is not known, and may go

unchecked.

The problem can be solved by sharing common part
products between all the products. This problem is similar
extracting common divisors in multi-level logic synthesis
with the extra constraint that all common products must b
shared. A simple example of how traditional synthesis tec
niques may be used to implement QDI circuits is given belo

3. Functional Decomposition

Functional decomposition was first suggested by R.L. As
enhurst in the 1950’s [1], and can be thought of as transformi
a function,f(X), to the form

(fig) where X is as set of variables{X1,X2,...,Xn} and Y and
Z are subsets of X. Y is known as theboundset of X andZ the
freeset. The functiong is known as the image. The idea behin
the decomposition is to calculate a set of compatible class
from the input vectors ofY, which are encoded in the outputs
of the functionα.

Ashenhurst describes a simple, disjoint decompositi
whereYandZ are disjoint and theα function only yields a sin-
gle binary value. Ashenhurst’s method involved generating
partition matrix, which contains an entry for all possible val
ues of theY andZ sets. The matrix is reduced to remove a
duplicate rows and columns. Ashenhurst stated that for a s
ple decomposition to exist a partition matrix must have a mo
two distinct columns.

The notion of decomposition was extended by J. P. Roth

Figure 1: Decomposed DIMS Dual-Rail Full Adder

Figure 2: General Function Decomposition

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Y1

Y0

X1

CI0

CI1

X0 C0

C1

Z0

Z1

fg

α

Z

Y

g α Y() Z,()

f
o

ria-

et-

n
ge
d

red
on-
s are

in
he

t
f

ced

er
its

n
is-
il

rk

xi-
al

ce.

and

le

nd
in
R. M. Karp[6] to include non-disjoint complex decomposition,
involving multipleα functions.

The method described by Roth & Karp is preferred as it
avoids creating a large partition matrix.

In more recent times, decomposition has been used to
implement functions on Field Programmable Gate Arrays
(FPGA). FPGA’s are built up from small lookup tables (LUT)
that can implement any function ofm inputs (usually around
5). Roth-Karp decomposition was suggested as a way of opti-
mising functions for FPGAs by decomposing them into anm-
feasiblenetwork i.e. a network where each node has asupport
of m and can be implemented by a single LUT.

Murgai et al. [5] suggest a method using recursive decom-
position of the image,g, to achieve anm-feasible network,
where the logic of the image function is minimised by select-
ing a suitable encoding for each of the compatibility classes
using existing input/output state encoding techniques. Murgai
simplified the problem by allowing the values in a compatibil-
ity class to be encoded to different values, if necessary, and,
because the procedure was targeting FPGAs (which can imple-
ment any function of up tomvariables in a single LUT), ignor-
ing the complexity of the functions generating theα variables.

4. QDI Decomposition

In essence, the problem of generating QDI networks can be
thought of as being similar to that of implementing efficient
FPGA m-feasible networks. In a QDI network each node is
implemented by of up tom inputs, wherem is the maximum
fan-in of the gate. For the network to correctly acknowledge
each transition all common nodes must be shared throughout
the network.

It is hypothesised that a QDI network can be built using
Roth-Karp decomposition by applying some constraints to the
α-functions and the encoding of compatible classes.

A lot of previous research has been done on the decompo-
sition of Speed-Independent networks (for library binding).
The technique described here differs slightly from previous
work by only considering Return-To-Zero combinational net-
works, the transitions involved are always monotonic and
unate, so can be thought of as a simplification of previous
work. The decomposition differs from [9] in looking at multi-
ple outputs and trying to perform common decompositions
among them rather than trying to decompose single gates inde-
pendently. It is believed that the decomposition is similar to the
special cases of [2]:unate second operator, always acknowl-
edging second operatorand clearly thegeneralised c-element
decomposition. It remains to be determined whether this tech-
nique fulfils the tautologies described and how Montage would
fair on a QDI combinational network, as it too appears to
decompose single nodes at a time.

5. Assigningα-Functions

During decomposition the legal input vectors of a set o
input variables (Y) are assigned to compatibility classes, tw
valuesy1 andy2 are compatible if for all (legal) values of the
free set,Z, f(y1) = f(y2). Once all the compatibility classes been
determined they must be encoded into a set of boolean va
bles,α, which form inputs to the image function. How theα-
variables are implemented determines whether or not the n
work will be QDI.

As all QDI combinational networks, apart from completio
detectors, have multiple outputs; each decomposition sta
consists of calculating compatibility classes for all outputs an
encoding all of these in theα-variables. As the set of values
each class represents may not be disjoint and maybe orde
(i.e. some classes may be contained within others) certain c
straints are necessary to ensure no unacknowledged node
created in the network.

Firstly all values for all classes have to be represented
full, don’t care values among classes cannot be exploited. T
values are represented by a set ofδ-variables. Eachδ-variable
represents a product of the initial input vectors of up tom lit-
erals. i.e. the literal 0110010 from a set of variables, x1...x6,
could be represented by theδ-variablesδ1, δ 2 whereδ1 repre-
sents the literal x2x3 andδ2 represents x5.

A set,∆, of δ-variables may be combined, by a c-elemen
tree, if no element of∆ occurs in any value where the whole o
∆ is not present. The values, now represented byδ-variables,
are assigned to compatibility classes. Values may be redu
to a single encoding, by an or-tree, only if they are singleδ-
variables, i.e. they do not component nodes with any oth
value, and as before the set is instantiated in every class in
entirety.

Building up α-variables in this way ensures that all the
logic will be implemented in a QDI manner, where commo
components shared between compatibility classes will be v
ible in theα-variables. If the decomposition is continued unt
the image function is realisable by anm-feasible network, all
common products will be combined and the resultant netwo
will be QDI.

The decomposition recursion terminates when the ma
mum number of literals in the products of the image are equ
or greater to the number before the decomposition took pla
If the image is not immediatelym-feasible when recursion ter-
minates, the products can be implemented from theα-varia-
bles and the free-set by decomposing them intoδ-variables and
reducing as before. Here, however, the products are unique
so a QDI realisation can be achieved.

6. Example

Fig shows a 1-of-4/Dual-Rail full-adder. This has a sing
1-of-4 input (a0, a1, a2, a3)and two Dual-Rail data inputs(b00,
b00 and b10, b11) as well as a Dual-Rail carry input (ci0,ci1).
The DIMS implementation requires 32 4-input c-elements a
12 4-input and 6 2-input or-gates. This can be implemented

f X() g α1 Y() α2 Y() … αn Y() Z, , , ,()=

se
d-

l-
DI
b-
m-

od
ch-
ted.

-

te

an
s

,

,

-
-
.

r
s
.

-

4 levels of logic by 16 3-input and 32 2-input c-elements and
18 3-input and 6 2-input or-gates using only gates of up to 3
inputs. The decomposed implementation uses, 32 2-input c-
elements and 18 3-input and 21 2-input or-gates, and has
between 4 and 6 logic levels.

The design was initially partitioned:

The compatibility classes for this partition where:
Zo,Z1 ={(001001, 010001, 001010, 010010),
 (000101, 100001, 000110, 100010)}
Z2,Z3 ={(001010, 010010),(000110, 100001),
(001001, 010001), (000101, 100010)}
Z4,Z5 ={(001010, 010010),(000110, 100001),
(001001, 010001), (000101), (100010)}
Resulting in 5 alpha variables:
Zo,Z1 ={(10000,01000),
 (00001, 00010, 00100)}
Z2,Z3 ={(01000),(00100),
(10000), (00010, 00001)}
Z4,Z5 ={(01000),(00100),
(10000), (00010), (00001)}
Next the design was initially partitioned:

With the compatibility classes:
Zo,Z1 ={(1001, 0101),(1010, 0110)}
Z2,Z3 ={(1001),(0101),(1010), (0110)}
Z4,Z5 ={(1001),(0101),(1010), (0110)}
Resulting in 5 alpha variables:
Zo,Z1 ={(1000, 0100), (0010, 0001)}
Z2,Z3 ={(1000),(0100),(0010), (0001)}
Z4,Z5 ={(1000),(0100),(0010), (0001)}

A final partition was attempted but this lead to an increa
in the number of classes and literal count of the image pro
ucts. The image products were formed by 20δ-variables and
the or-tree calculated for each output separately.

7. Conclusion

An initial method was presented for performing techno
ogy-dependent decomposition in order to implement a Q
circuit in a cell-library. This approach presents many pro
lems, boolean decomposition has a high computational co
plexity and is restrictive for large circuits, calculating theα-
variables is complex and library dependent. A better meth
based on algebraic decomposition and extraction, that is te
nology independent has been postulated and will be presen

8. References

[1] Ashenhurst, R.L., The Decomposition of Switching Func
tions.Proc. Int. Symp. on the Theory of Switching.1959

[2] Burns, S. General Conditions for the Decomposition of Sta
Holding Elements.Proc 2nd Int. Symp. Asynchronous Cir-
cuits and Systems1996.

[3] Fant K.M., Stephani R., Smith R., Jorgenson R. The Orph
in 2 Value NULL Convention Logic. Tech. Rep. Theseu
Logic Inc. 140, 485 N. Keller Rd. Maitland, FL 32751

[4] Martin, A.J, The Limitations to Delay-Insensitivity in Asyn-
chronous Circuits.6th MIT Conference on Advanced
Research in VLSI Processes, 1990.

[5] Murgai, R., Brayton, R. K., Sangiovanni-Vicentelli, A. Opti-
mum Functional Decomposition Using EncodingProc 31st

ACM/IEEE Design Automation Conference, June 1994.
[6] Roth, J.P., Karp, R. M., Minimisation Over Boolean Graphs

IBM J. Res. Develop, 1962.
[7] Plana, L.A, Riocreux, P.A, Bainbridge, W.J, Bardsley, A

Garside, J.D, Temple, S. “Spa - A Synthesisable Amulet
Core for Smartcard Applications”Proc 8th Int. Symp. Asyn-
chronous Circuits and Systems 2002.

[8] Saldanha, A., Villa, T., Brayton, R. K., Sangiovanni-Vicen
telli, A. Satisfaction of Input and Output Encoding Con
straints.IEEE Trans. Computer-Aided Design Vol. 13 No. 5
1994.

[9] Siegel, P. Micheli, G. D. Decomposition Methods Fo
Library Binding of Speed-Independent Asynchronou
Designs.Proc. IEEE. Int. Conf. Computer-Aided Design
1994.

[10] Sparsø, J.Staunstrup. J., Delay Insensitive Multi Ring Struc
tures. Integration, the VLSI Journal. Vol. 15. 1993.

[11] van Berkel, C.H. Beware the isochronic fork.Tech. Rep.
UR 003/91, Philips Research Laboratories 1991

[12] Verhoeff, T. Delay-insensitive codes- an overview.Distrib-
uted Computing, 3(1):1-8, 1988.

Figure 3: Decomposed 1-of-4/Dual-Rail Full Adder
(Sum Function Only)

Y a0 a1 a2 a3 b00 b11, , , , ,{ }=

Z b00 b11 ci0 ci1, , ,{ }=

Y b00 b11 ci0 ci1, , ,{ }=

Z α0 α1 α2 α3 α4, , , ,{ }=

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A0
A1
A2
A3

Ci1
Ci0

B11
B10

B01
B00

Z0

Z1

Z2

Z3

	QDI Implementations of Boolean Graphs
	W.B. Toms
	Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK. tom...
	Abstract
	1.� Delay-Insensitive Circuits
	2.� Combinational Logic in QDI Systems
	2.1.� Delay-Insensitive Minterm Synthesis
	Figure 1: Decomposed DIMS Dual-Rail Full Adder
	Figure 2: General Function Decomposition

	3.� Functional Decomposition
	4.� QDI Decomposition
	5.� Assigning a-Functions
	6.� Example
	Figure 3: Decomposed 1-of-4/Dual-Rail Full Adder (Sum Function Only)

	7.� Conclusion
	8.� References
	[1] Ashenhurst, R.L., The Decomposition of Switching Functions. Proc. Int. Symp. on the Theory of...
	[2] Burns, S. General Conditions for the Decomposition of State Holding Elements. Proc 2nd Int. S...
	[3] Fant K.M., Stephani R., Smith R., Jorgenson R. The Orphan in 2 Value NULL Convention Logic. T...
	[4] Martin, A.J, The Limitations to Delay-Insensitivity in Asynchronous Circuits. 6th MIT Confere...
	[5] Murgai, R., Brayton, R. K., Sangiovanni-Vicentelli, A. Optimum Functional Decomposition Using...
	[6] Roth, J.P., Karp, R. M., Minimisation Over Boolean Graphs, IBM J. Res. Develop, 1962.
	[7] Plana, L.A, Riocreux, P.A, Bainbridge, W.J, Bardsley, A, Garside, J.D, Temple, S. “Spa - A Sy...
	[8] Saldanha, A., Villa, T., Brayton, R. K., Sangiovanni-Vicentelli, A. Satisfaction of Input and...
	[9] Siegel, P. Micheli, G. D. Decomposition Methods For Library Binding of Speed-Independent Asyn...
	[10] Sparsø, J.Staunstrup. J., Delay Insensitive Multi Ring Structures. Integration, the VLSI Jou...
	[11] van Berkel, C.H. Beware the isochronic fork. Tech. Rep. UR 003/91, Philips Research Laborato...
	[12] Verhoeff, T. Delay-insensitive codes- an overview. Distributed Computing, 3(1):1-8, 1988.

