Newcastle
+ University

‘ School of Electrical, Electronic
and Computer Engineering

Proceedings of the
Eighteenth UK Asynchronous Forum

School of Electrical, Electronic and Computer Engineering

University of Newcastle

Newcastle upon Tyne, NE1 7TRU, U.K.
4-5 September, 2006

18t UK Asynchronous Forum. Preliminary Programme

Day 1
13.20
13.40
14.20

14.40

15.00

15.20

15.40
16.00

16.20

16.40
17.00
17.20
17.40
19.30
Day 2

09.00

09.40
10.00
10.20

10.40

11.00

11.20

11.40

12.00

12.20

Monday 4*™ September 2006
Registration

Tutorial 1: Demystifying Data-Driven and Pausible Clocking Schemes

Robert Mullins and Simon Moore, University of Cambridge

Modeling and Performance Analysis of GALS Architectures

S. Dasgupta, A. Yakovlev, University of Newcastle

Delay Insensitive Chip-to-Chip Interconnect Using

Incomplete 2-o0f-7 NRZ Data Encoding

Jian Wu and Steve Furber, University of Manchester

An asynchronous spiking neural network which can learn temporal sequences
Joy Bose, S.B Furber, M. Cumpstey, University of Manchester

Error Checking and Resetting Mechanisms for Asynchronous Interconnect
Yebin Shi and Steve Furber, University of Manchester

Coffee

On-chip Phase Regeneration Circuits

C. D?Alessandro, A. Bystrov, A. Yakovlev, University of Newcastle
Fault Tolerant Techniques to Minimise the Impact of Crosstalk on Phase
Encoding Communication Channels

Basel Halak, Alex Yakovlev, University of Newcastle

C-element Latch Scheme with Improved Fault Tolerance

K. T. Gardiner and A. Yakovlev, University of Newcastle

An Information Redundant Asynchronous Concurrent Error Detecting ALU
M_.J. Marshall, G. Russell, University of Newcastle

Presentation by attendees

Business Meeting

Forum Dinner

Tuesday 5™ September 2006

Tutorial 2: Unfolding models of asynchronous systems:
applications to analysis and synthesis,

Victor Khomenko, University of Newcastle

CSC-Aware STG-Decomposition

Mark Schaefer, University of Augsburg, Germany

Validation of an Asynchronous Synthesis Back-End

Nitin Gupta, Doug Edwards, University of Manchester

Blame Passing for Analysis and Optimisation

Charlie Brej, University of Manchester

Completion Detection Optimisation based on Relative Timing
A. Mokhov, D. Sokolov, A. Yakovlev, University of Newcastle

Coffee

Comparative Analysis of Stuck-at Test Generation

for Asynchronous Speed Independent Circuits

D.P. Vasudevan, A. Efthymiou, University of Edinburgh

On-FPGA Communication: An Opportunity for GALS?

Terrence S.T. Mak, Peter Y.K. Cheung, Pete Sedcole,

Imperial College London

Metastability in FPGA Devices

N.Minas, D.J.Kinniment, G.Russell, A.Yakovlev, University of Newcastle
Asynchronous Timing in the Survivor Memory Unit of a Viterbi Decoder
Weil Shao and Linda Brackenbury, University of Manchester

13.00 Close

Demystifying Data-Driven and Pausible Clocking Schemes

Robert Mullins and Simon Moore
Computer Laboratory, University of Cambridge
Robert.Mullins@cl.cam.ac.uk

Abstract

VLSI systems are often constructed from a multitude
of independently clocked synchronous IP blocks.
Unfortunately, while a synchronous design style may
produce efficient block level implementations it does little
to support their composition. The addition of asynchronous
interfaces to each synchronous block is one way to simplify
and strengthen their integration. Asynchronous interfaces
allow blocks to be composed without the need to consider
synchronisation failure rates, permit data-driven operation
and provide greater freedom when designing on-chip buses
and networks. This paper surveys the significant body
of published work in this area. We highlight similarities
between schemes that are often concealed by differences
in specification or circuit style. We also present a number
of new local clock implementations and provide solutions
to mitigate the impact of clock-tree insertion delays.
The ultimate goal of this work is to permit multi-clock
synchronous systems to be composed simply, robustly and
efficiently.

1. Introduction

Current architectural trends are driven by the observation
that simply creating larger and more complex monolithic
IP blocks is rarely the best use of growing transistor
budgets. A more flexible and scalable approach is to
create a network of simpler IP blocks. Technology scaling
is subsequently exploited by adding additional blocks
rather than increasing the complexity of each individual
block. This communication-centric methodology aims to
exploit a block size that produces an efficient circuit-level
implementation and isolates the designer from the need
to consider multi-cycle interconnect delays. Furthermore,
by restricting each blocks complexity we aim to avoid the
pitfalls of employing ever more complex and power hungry
techniques to obtain ever decreasing performance gains.
The IP network also provides the flexibility necessary
to operate in a fault-tolerant manner, manage power and
thermal goals and produce the multi-use platforms dictated
by rising design and NRE costs.

Much of the complexity in such a system is shifted
from the design of individual IP blocks, concentrating
on computation, to their interconnection, management

and scheduling. In this environment the simplifying
assumptions that a synchronous design style traditionally
offers are less evident. In contrast to simply optimising
combinational logic within a single clock domain, the
process of integration requires us to consider a physically
distributed system, span clock domains and handle
multi-cycle interconnects. System timing is often further
complicated by the application of voltage and frequency
scaling and static power reduction techniques such as
power gating. The challenges posed by the broad range
of timing and communication requirements are perhaps
more naturally tackled by adopting an event-driven control
paradigm.

The techniques presented in this paper are designed
to allow independently clocked IP blocks to be
interconnected asynchronously, without the complexity of
imposing additional clocks and synchronisers during the
integration process. The schemes could also be used to
construct a data-driven IP network in order to minimise
synchronisation overheads, latency and superfluous
switching activity. The use of asynchronous techniques also
provides a robust framework for power reduction schemes,
such as the voltage scaling of on-chip interconnects and IP
blocks. The systems described here are often characterised
as Globally Asynchronous Locally Synchronous (GALS).

2. Local Clock Generators

A ring oscillator constructed from a tunable delay line
and an inverter (Figure 1(a)) may be used as the basis
for a flexible on-chip clock generator. The frequency of
such a clock generator may be periodically calibrated to
an off-chip reference clock, as demonstrated in [15]. In a
GALS system, each synchronous block is clocked from a
local clock generator of this type.

When a free-running oscillator is employed, the
datapath clearly plays no role in the generation of the clock.
However, by making small modifications to this basic
oscillator circuit we will demonstrate how interesting and
useful interactions with the datapath may be developed.

The circuit illustrated in Figure 1(b) is the starting point
for many of the published schemes and those presented
here. In this circuit, the ring oscillator has been extended to
require both an event on the req input and on the output of
the delay-line before the next clock edge is generated. This
is enforced by the use of a C-element that operates as an

delay line
Clock Clock
(a) Ring Oscillator (b) Data-Driven Clock
Req Grant

Clock

(c) Ring Oscillator (IT) (d) Pausible Clock

Figure 1. Pausible and Data-Driven Local Clocks

AND-gate for events [24]. By enforcing a strict four-phase
handshake on the interface we are guaranteed a minimum
clock period determined by the delay-line. In addition, we
now have the opportunity to stretch the clock period by
delaying the completion of the handshake. The circuit may
also be viewed as a single stage of a micropipeline with
the output handshake ports connected together [25]. We call
this circuit a data-driven clock. As is, this clock simply
generates a single clock cycle in response to each incoming
input request.

If we complete the handshake by simply inserting an
inverter between the ack and req ports, as illustrated in
Figure 1(c), we produce a simple ring oscillator. A well
documented approach to producing a pausible clock is
to interrupt this cycle with a mutual-exclusion element
(MUTEX) [24] (see also Appendix A.). This produces a
clock that will normally oscillate unless we interrupt it by
holding req high. This is in contrast to the data-driven
clock where a complete handshake must take place during
every clock cycle. This pausible clock circuit is illustrated
in Figure 1(d).

The majority of the clock generator circuits described
are based on either a data-driven or pausible clock template.
The ability to stretch or delay the clock may be exploited in
a number of ways. The original purpose of clock pausing
was to create additional time for metastability to resolve,
e.g to permit the safe transfer of data between different
clock domains. An additional reason may be to create a
data-driven clock that produces clock edges only when
data is available for processing. This type of data-driven
operation mimics a high-speed global clock without the
associated synchronisation overheads and superfluous
switching activity.

3. Input Ports
We distinguish between three different behaviours for

handling locally-clocked IP blocks with multiple inputs. In
each case we assume that once an input request is made it

remains asserted until it is serviced.

e Arbitrated Inputs: At most one input request may be
serviced per clock cycle. This requires the inputs to
arbitrate for access to the IP block.

e Sampled Inputs: An event is used to trigger a
sampling of all input ports. This sampling determines
which inputs have data that is ready to be admitted on
the next clock cycle. The sampling event is either a
(delayed) clock-edge or the arrival of an input request.
The precise choice of sampling event depends on the
type of local clock generator.

e Synchronised Inputs: A request to admit data is only
generated when valid data is present on all inputs.

Each of the behaviours described could be supported
by a subset of a block’s inputs. The synchronised input
behaviour could also be trivially extended to wait for some
subset of the blocks inputs to become ready.

Scheduled communications could also be supported
by the clock generators presented here, requiring data to
be read from a specified input (or written to a specified
output) port on a particular clock cycle. The design of
deterministic GALS systems supported by a mechanism
for communicating at regular intervals (or recycle periods)
is described in [9].

4. Data-Driven Clocks

The data-driven clock circuit (Figure 1(b)) may be
extended to support each of the input behaviours described
in Section 3. Each of these circuits is illustrated in Figure 2.
While arbitrated and synchronised inputs are trivial to
implement, the sampled inputs scenario requires some
explanation.

A data-driven clock with sampled inputs may be useful
in an environment where an IP block may make forward
progress regardless of the number of inputs that are ready.
One example of such a block may be a locally-clocked
router in an on-chip network. In this scenario, the detection
of an input port request forces a decision to be made on
whether to admit data from each input port on the next
clock cycle. In the case of an on-chip router additional clock
cycles would have to be generated to guarantee packets
buffered within the router made forward progress when
no new input data was forthcoming. The way in which
these additional cycles could be generated is discussed in
Section 4.1.

The circuit illustrated in Figure 2(b) supports a
data-driven sampled-input behaviour using a circuit that
takes inspiration from the static priority arbiter introduced
in [3]. The circuit is quiescent until a request is made by
one of the input ports. A lock request is then asserted to
force each MUTEX to grant either the lock or input port
request. Only after it has been determined from which
input ports data will be admitted in the next clock cycle,
will a new rising clock edge be generated. To improve

Rin0 —»f
Ain0 <+—

Arb-Call

Rin1 —|
Ain1 <+—

Clock

(a) Data-Driven Clock with Arbitrated Inputs

clk_req

92 c

PaN

L Clock

(b) Data-Driven Clock with Sampled Inputs
Rin0

RinN

Ain

(c) Data-Driven Clock with Synchronised Inputs

Figure 2. Data-Driven Clock Generators

performance the lock signal is prevented from asserting
before the falling clock edge. This prevents inputs from
being ‘locked out’ early in the clock cycle.

4.1. Pipelines and Flushing

In contrast to a pausible clock generator where the clock
is normally running, a data-driven clock only produces
clock edges in response to input data. In some cases the
architecture of the IP block may required additional clock
cycles to be generated to complete an operation, e.g. in the
case of a pipelined IP block or one that buffers data. These
additional clock cycles may be generated in a variety of
ways:

o Eager Flushing ensures a further clock cycle is
generated without delay if the IP block has useful
work to complete. In the case of a pipelined block
a counter may be used to request these additional
cycles. The counter is initialised to the pipeline depth
after each successful input request. The counter
subsequently requests clock cycles, decrementing its

value on each cycle, until it reaches zero. If a sampled
data-driven approach is used the counter would be
responsible for asserting a lock request in the case
when no valid input data was present. In some cases
it may be preferable to replace the counter with logic
that examines datapath signals directly to determine if
useful work is outstanding.

e Time-Out Flush: A slightly different approach is to
wait for some predetermined time before initialising
the counter. Only when the time-out occurs are the
additional clock cycles generated. This approach
potentially reduces the total number of clock cycles
generated by providing an opportunity for new data to
push previous values through the pipeline.

e Uninterrupted Flush: Depending on the
requirements of the IP block it may be useful to
implement an uninterrupted pipeline flush mechanism.
In this case the pipeline is flushed before any new
input data is allowed to enter the IP block.

e Pull-Driven Flush: It is suggested in [12] that it
may be possible to switch from a data-driven (push)
to pull-driven mode when no new input requests
are forthcoming. Although no details of such an
implementation are explored.

4.2. Related Work: Active Clock Handshake
Interfaces

The handshake interface on the data-driven clock
illustrated in Figure 1(b) is passive, i.e. it can only respond
to an external request. By swapping the req and ack ports
we can create a data-driven clock with an active handshake
port. The clock now acts as a request that the environment
must acknowledge. In order to be able to generate a clock
the incoming req signal must be inverted (or held high to
indicate that the environment is ready). Such an approach
is explored in [11] to enable communication between a fast
processor and slow memory.

An active clock handshake interface can still support
the full range of input behaviours previously discussed. In
addition, it is perhaps more natural in some cases to think
of some communications as conditional [11], rather than
scheduled. Arbitrated access to a single passive resource
from multiple clock modules may now also need to be
considered.

4.3. Related Work: Request-Driven Clocking

A data-driven clocking mechanism with a time-out
based flushing mechanism is presented in [12, 13]. The
term request-driven clock is used to describe their scheme.

4.4. Related Work: Clock Stretching

Clock stretching is a form of data-driven clocking
where the handshake interface is replaced with a single
stretch control signal that is asserted synchronously. The
relationship with the basic data-driven clock circuit may

be highlighted by redrawing the clock stretching circuit
as illustrated in Figure 3(a). The clock handshake port is
now an active one as discussed in Section 4.2. Figure 3(b)
simply removes the AND-gate by converting the C-element
into an asymmetric gate. Both these circuits are equivalent
to Bormann’s stretchable clock generator as illustrated
in[1, 2].

A clock stretching feature to permit asynchronous
communication between synchronous systems is discussed
by Seitz in [22] (Ch. 7, Sec. 8.4). Seitz indicates that this
approach has been used in various proprietary designs
since 1968.

Péchoucek observes that the ability to stretch the
clock is the only solution which guarantees value-safe
communication between independently clocked modules.
He describes a system for extending the clock period of
a system until metastability has resolved [20]. Péchoucék
also outlines a data-driven clocking scheme where the
generation of a fixed number of clock cycles is triggered
by the arrival of input data. This type of clocking scheme
was more recently employed to create an on-chip clock
generator for a DSP [18] and a data-driven GALS clocking
scheme for a low-power reconfigurable processor [28].
There are no synchronisation issues with such a scheme as
the clock is always quiescent when the initial asynchronous
data input arrives. This could be achieved in a robust
manner by ensuring the ack signal from the data-driven
clock is not deasserted until the processing of the data has
completed.

Chapiro investigates the use of stretchable clock
generators and introduces the term Globally-Asynchronous
Locally-Synchronous (GALS) to describe synchronous
system composed using such interfaces [4].

Lim describes the use of a stoppable clock generator
in [14], again a single input to the clock generator is used
to delay the generation of the next rising clock edge until
data is available. Lim also describes the use of a MUTEX
to provide an arbitrated input behaviour.

Stretch
g

Stretch {>0Ack !
T
I
I
I

Req/ Clock

() (b)

Figure 3. Equivalent Stretchable Clock Circuits

5. Pausible Clocks

Pausible clock circuits may be constructed using the
simple template provided in Figure 1(d) as a starting point.
Figure 4 illustrates how a pausible clock can support each
of our input behaviours.

The tree arbiter shown in Figure 4 allows an input
request to be initiated while it is determined which input

port should be granted access [10]. If necessary, the
eager request generation could be omitted. A tree-arbiter
implementation is provided in Appendix A.

Tree Arbiter — with Eager Output Request

Rin0
Ain0
Rin1 TA
Ain1

(c) Pausible Clock with Synchronised Inputs

Figure 4. Pausible Clock Generators

Previous work has illustrated how pausible clock
generators may be used to facilitate point-to-point
value-safe communication between independently clocked
IP blocks [16]. Figure S illustrates the receiver side of such
a communication (note, the handshake protocol used here
is a two-phase one). Data is latched safely in the first input
register while it is guaranteed no rising clock edge can take
place. After this operation is complete and the input request
is removed, a rising clock edge is generated that safely
transfers the input data into the synchronous domain. It is
our belief that all existing high-throughput pausible clock
schemes latch the input data in this manner.

An alternative is to replace the MUTEX element with
an arbitrated call (see Figure 6). A new rising clock edge
may now be requested by either the inverted clock or
new input data. If the input port is granted we can safely
enable the input register and allow new data to enter the
synchronous block. This approach reduces the chance
that the clock period is extended by removing the need to
block the generation of the next rising clock edge while
the data is latched and the handshake is completed. An

implementation of an arbitrated-call element is provided in
Appendix A.

Ack =

Req >’7—«L—> >

INPUT DATA SYNC
DATA

Figure 5. Consumer side interface driven by a pausible
clock generator

Clock

l

SYNC
EN DATA

Grant Input 1

INPUT DATA

req — ¥

ack ¢——

Figure 6. An alternative arbitrated-call based pausible
clock generator

5.1. Related Work: Lim’s Operation Module

Lim [14] describes an extension to a data-driven
clocking scheme where the synchronous block is designed
to make forward progress without requiring a constant
stream of input data. The clock is now normally enabled
to run by allowing the module itself to make requests for
further clock edges. The scheme is illustrated in Figure 7.
If the check input port signal is low, the start clock input to
the clock generator will remain high allowing the clock to
oscillate. Input data may only be admitted when the check
input port signal is asserted. Lim suggests this may be done
periodically or every cycle.

To enable input data to be admitted on every clock
cycle the clock itself could be used as the check input
port signal. This produces a circuit close to our pausible
clock template. The idea of generating a new rising clock

Interrupt

input request
Start Clock

check input port

Figure 7. Lim’s Operation Module

edge independently of which MUTEX input is granted is
also exploited in our arbitrated-call based pausible clock
generator. In general, the approach may be classified as a
pausible clock generator with a scheduled sampling of
input ports.

5.2. Related Work: Asynchronous Synchroniser
Elements, Q-Elements and DFLOPs

The sampling or synchronising mechanism of the
pausible clock may be applied at the level of a single
register. The Amulet3 interrupt synchroniser is one
example of this approach [7]. The synchroniser circuit is
reproduced in Figure 8. This circuit is one component of
the synchronous consumer circuit shown in Figure 5. It
may be useful to think of this circuit as one that augments a
register with an asynchronous (write) handshake interface.
The handshake interface is required as the time required to
synchronise an input is unknown (and unbounded).

Interrupt

—>
Synchronised
Interrupt

L)>—

Request —»f

Done

Figure 8. Amulet3 Interrupt Synchroniser (reproduced
from [7])

Rosenberger et al developed a technique to build
delay-insensitive modules by exploiting input registers
with asynchronous handshake interfaces [21]. These
Q-modules operate in two distinct phases initiated by
falling and rising clock edges. On a falling clock edge
each input register (Q-element) samples its input and
records this value — without updating its output. The
subsequent rising clock edge is now delayed until each
input register has acknowledged the completion of this
operation. A rising clock edge is then generated prompting
each Q-element to copy the synchronised input value to
its output. Finally, when this ‘update output’ operation has

been acknowledged by all registers, time is scheduled for
the computation itself to take place.

We may construct a Q-element from the synchroniser
circuit shown in Figure 8. We simply need to add an
additional output register that is updated on receipt
of a rising clock edge. The acknowledge output (A)
is implemented with a SR-latch. Note, the Q-module
specification requires this acknowledge to make a transition
from high to low to indicate the current input value has
been synchronised or read. The acknowledge is reset when
the output is updated by a rising clock edge. The circuit is
illustrated in Figure 9(a).

The Q-element described by Rosenberger et al is a
more direct implementation of the required behaviour.
A static-logic reimplementation of this is provided in
Figure 9(b). This circuit is in the style of the original
Q-element, although the emphasis here is on the major
components of the circuit and their interfaces. Other
possible implementations and optimisations are explored
in [26].

The derivation of a synchroniser circuit is also
undertaken in [19]. Here the circuit is designed to also cope
with the removal of an input before it has been sampled.

Synchronizer

(a) A synchroniser based Q-element

: '
write_req write_acl
A Y i
Xbar ; |
|
D~ DFF MSF :
I
I
I
|

CD

CLK

,,,,,,,,,,,,,,,,,

1-bit register
—

(b) A static-logic reimplementation of a Q-element

Metastability
Filter

(Async. Clear - both outputs)

Figure 9. Possible Q-element implementations

5.3. Related Work: Pausible Clocks

The pausible clock circuits described generate a clock
even when no input data is present. For some applications
it may be desirable for the clock generator to enter a sleep
state with the clock stopped until new data arrives. A sleep

mechanism of this type is explored in [16]. Here the sleep
request is asserted synchronously by the clocked module.

The pausible clock control (PCC) circuit implemented
by Yun and Dooply [27] closely resembles the pausible
clock circuit shown in Figure 4(a) — a pausible clock with
arbitrated inputs.

An overview of the many different GALS test chips
produced at ETH Zurich using the pausible clock approach
is described in [8]

6. Output Ports

In this section we briefly discuss a number of different
output port behaviours.

e Scheduled: This type of port is used when an output
operation must be completed on a particular clock
cycle, e.g. when the output of the synchronous block is
not registered. This port type will stall the generation
of the next clock cycle until the data is successfully
consumed.

o Registered: The addition of an output register permits
the output operation and the next computation to take
place concurrently. A registered output port only need
stall the clock when the output becomes blocked for an
extended period. At this point any further clock edges
must be prevented to ensure data in the output port
register is not overwritten.

e Polled: This type of port polls the output to determine
when it is safe to send data. The clock is interrupted
only in cases where additional time is required
to resolve any metastability occurring due to the
sampling of the asynchronous output port ready
signal. The synchronous block is responsible for
coping with blocked output ports.

The implementation of each of these output port
behaviours requires no new techniques. Each may be based
upon the existing input port and clock generator templates.

An example of how previously discussed approaches
may be combined to produce specific input and output port
behaviours is illustrated in Figure 10. This clock generator
supports both a sampled input port (based upon a pausible
clock) and a registered output port implemented using a
stretchable clock. In general, each new port of a different
style will require its own handshake port on the clock
generator. A clock generator with N handshake ports is
shown in Figure 2(c). It should be noted that combining
different port types may alter the behaviour of individual
ports or prevent some ports accepting any new data. Special
care must be taken when combining both ports based on
data-driven (stretchable) clocking templates and those
constructed from the pausible clock template.

The circuit in Figure 10 is a simple example that could
be improved in a number of ways. One extension would
be to allow the output port to be clocked as soon as the
computation is complete, even in the case when the input

port is pausing the clock. An in-depth discussion of such
optimisations and each of the possible output port circuits
is beyond the scope of this paper.

7. The Impact of Clock Tree Insertion Delays

In all the previous examples it has been assumed that
the delay imposed by the clock tree is insignificant. In
reality this clock insertion delay may vary from a few
gate delays to many clock cycles. The precise delay will
depend on the number of sequential elements in the
synchronous block and its physical size. The design of a
traditional synchronous system is mostly unaffected by
this delay as there is no reason to distinguish between
different clock edges produced by the clock source. If
clock gating or the techniques described here are adopted,
an association is made between particular clock edges and
datapath operations. This forces us to consider the clock
tree insertion delay in any analysis of the circuit.

This section outlines how the impact of clock tree
insertion delays may be minimised. The analysis is
presented for a simple data-driven clock, but applies
equally to any local clock wrapper.

Clock ¢

Clock Tree
Insertion ——
Delay

Figure 11. Accounting for the clock insertion delay
when generating a data-driven clock

The circuit illustrated in Figure 11(a), shows a simple
data-driven clock generator clocking a single input register.
The clock tree insertion delay is shown as a chain of buffers.
To guarantee that input data is correctly latched we must
ensure an input request is only acknowledged after the input
register has been clocked. This ack signal must therefore be
delayed by at least the time taken to propagate a clock edge
through the clock tree [6].

The concern now is that if the clock insertion delay is
greater than half the clock period the clock will always be
extended. In this case the clock period is increased from
twice the delay of the delay-line to at least twice the clock
tree insertion delay.

If we are certain the clock tree insertion delay is less than
one clock cycle we can simply add an additional register to
buffer the input data. This scheme is illustrated in 11(b). The
additional latch holds the input data until it can be clocked
into the synchronous module, allowing the handshake to
complete quickly. If the clock insertion delay was to exceed
one clock cycle this scheme would fail as new data would
be latched in the first input register before the previous data
item had been copied to the second. The constraint that there
is at most one rising clock edge in the clock tree applies to
many of the published aperiodic clocking schemes.

The time between the clocking of the first input
register and the second is equal to the clock tree insertion
delay. As this delay is fixed we may insert combinational
logic between the registers in order to complete useful
work during this period. Naturally, the delay of this
combinational logic plus the register setup time must be
less than the insertion delay (tgxy + ts < t;).

It should be noted that an input register in most cases
will require some buffering to distribute clock and enable
signals, forcing the ack to be delayed to some degree.

7.1. Hiding Small Insertion Delays

In some cases the additional latency incurred by even
a relatively small insertion delay will be unacceptable.
In these cases, latency can be minimised by considering
the clocking of the synchronous module’s input registers
separately from the clocking of its output and state
registers. Two clock trees are now generated, one small
low-latency tree to clock the module’s input registers and a
larger one to clock the modules state and output registers.
The larger insertion delay is hidden by initiating a new
clock edge early from a tap within the delay-line. The
total delay to the tap plus the clock-tree insertion delay
ensures the state/output registers are clocked one clock
period after the input register. This “skewed tree” scheme
is only applicable in cases where the insertion delay of
the state/output register clock tree is less than half a clock
cycle.

Depending on the output port style employed it may
in some cases be necessary to stall the clocking of the
output registers. In general, schemes could be developed
that clocked input, state and output registers at different
times from different clock trees. For example, it may be
possible in some designs to clock output registers before
state registers — thereby reducing latency while maintaining
correct operation. The introduction of additional clocks and
matched delays moves the design methodology towards a
bundled-data asynchronous one.

7.2. Multi-Cycle Clock-Tree Insertion Delays

If a synchronous IP block is sufficiently large the clock
insertion delay may exceed a single clock period. In this
case additional input buffering is required to prevent the
clock period from being extended significantly. The single
input register added in Section 7 must now be extended to a

Input Port Interface

Clock
data_in
d_i do
req_in
ri ro
) ack_in l}
alao Clock
Asynchronous
FIFO ji

sync_req

Output Port Interface

sync_data_in

Clock
sync_data_out data_out
SYNCHRONOUS di do
CORE
sync_newdata
reg_out
i ro
Clock
ack_out X
ai ao
Clock - =
Asynchronous
FIFO

Async. FIFO

New Data
Flags

Local Clock Generator
and Wrapper

Clock Generator Template

Figure 10. A locally-clocked synchronous block with a sampled/pausible-clock input port and registered/stretchable-clock
output port. The example also shows asynchronous FIFOs used to buffer incoming and outgoing data. Note: the FIFOs

employ a 2-phase handshaking protocol.

FIFO memory. The number of elements in the FIFO reflects
the maximum number of rising clock edges which may be
present in the clock tree at one time. Any newly arrived
input data must wait at least this number of clock cycles
before it is admitted into the synchronous block. We must
also guarantee that data is always able to arrive at the head
of the input FIFO before the clock edge used to admit it into
the synchronous block.

In some schemes, e.g. pausible clocks, data is not
necessarily admitted on every clock cycle. In these cases,
we must carefully record on which clock cycle data has
been scheduled to be admitted. The decision to admit
data or not is readily available in many of the clock
generators presented. This dual-rail value may be queued
and subsequently used to admit data on the correct clock
cycle at the associated input register. An outline of this
scheme is shown in Figure 12.

Additional input buffering guarantees correct operation
without extending the clock cycle time. The additional
latency is unavoidable and can only be tackled by making
input requests early with prior knowledge of the delays in
the clock generator and clock tree.

The reader may consider the idea of ‘promoting’ data in
the data FIFO so it may be read on an earlier clock cycle.

Unfortunately, the clock cycle a data item will be admitted
cannot be rescheduled in bounded time. Furthermore, the
clock edges delineating these clock cycles will have already
been dispatched. As they are already travelling through the
clock tree their arrival time at the clock tree leaf cells cannot
be influenced.

It should be noted that applying GALS techniques to
systems composed from a small number of very large
synchronous IP blocks is probably counterproductive even
before clock-tree insertion issues are considered.

7.3. Related Work: Clock Tree Delays

Sjogren and Myers are first to highlight the issues
associated with clock insertion delays and stoppable clocks
in [23]. They focus on the need to handle substantial
insertion delays but those of less than one clock cycle.
Clock insertion delays are hidden in their handshaking
protocol with the use of additional pipeline buffering.

It is useful to note that the ‘state-holding gate’ used in
their stoppable clock circuit (and illustrated at the transistor
level) is in fact an implementation of the asymmetric
C-element as shown in Figure 3(b).

Input Port 1

Input Port n

Clock Tree
Insertion
Delay
™ admitted
not-admitted

Data for Input Port 1

= HTH

data—admitted? !
Admit record for Input Port 1

Input Port 1

Figure 12. A record of arbitration decisions allows
multi-cycle clock-tree insertion delays to be supported

8. Summary

A wide variety of ingenious aperiodic clocking schemes
have been published to date. The aim of this paper has
been to illustrate the similarities between many of these
approaches. The paper has also presented a number of new
mechanisms for supporting different kinds of input and
output port and coping with clock insertion delays.

Current work is exploring the verification of local
clock generators using the Veraci asynchronous circuit
verifier [5]. Verified implementations of different port types
together with formalised techniques for their composition,
will form the major components of a GALS wrapper
synthesis system. The use of data-driven clocks in the
construction of on-chip networks with independently
clocked routers is also being explored [17].

Acknowledgements

This work is supported by EPSRC (EP/D036895/1). The
authors would also like to thank Alex Yakovlev and David
Bormann for their comments on early drafts of this work.

References

[1] D. Bormann. GALS test chip on 130nm process. In
Proc. of the Second Workshop on Formal Methods for
Globally-Asynchronous Locally-Synchronous Design, 2005.

[2] D. Bormann and P. Cheung. Asynchronous wrapper for
heterogeneous systems. In Proc. Intl. Conf. on Computer
Design (ICCD), 1997.

[3] A. V. Bystrov, D. J. Kinniment, and A. Yakovlev. Priority
arbiters. In Sixth Intl. Symp. on Advanced Research in
Asynchronous Circuits and Systems (ASYNC), 2000.

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

D. M. Chapiro.
Locally-Synchronous Systems.
University, Oct. 1984.

P. A. Cunningham. Verification of Asynchronous Circuits.
PhD thesis, University of Cambridge, Jan. 2002.

R. Dobkin, R. Ginosar, and C. P. Sotiriou. Data
synchronization issues in GALS SoCs. In Tenth Intl.
Symp. on Advanced Research in Asynchronous Circuits and
Systems (ASYNC), 2004.

J. D. Garside. Processors. InJ. Sparsg and S. Furber, editors,
Principles of Asynchronous Circuit Design: A Systems
Perspective, chapter 15. Kluwer Academic, 2001.

F. K. Giirkaynak, S. Oetiker, H. Kaeslin, N. Felber, and
W. Fichtner. GALS at ETH Zurich: success or failure? In
Twelfth Intl. Symp. on Advanced Research in Asynchronous
Circuits and Systems (ASYNC), 2006.

M. W. Heath, W. P. Burleson, and 1. G. Harris.
Synchro-tokens: A deterministic GALS methdology for
chip-level debug and test. IEEE Transactions on Computers,
C-54(12), Dec. 2005.

M. B. Josephs and J. T. Yantchev. CMOS design of the tree
arbiter element. [EEE Trans. on VLSI Systems, 4(4), Dec.
1996.

J. Kessels, A. Peeters, P. Wielage, and S.-J. Kim. Clock
synchronization through handshaking. In Eighth Intl.
Symp. on Advanced Research in Asynchronous Circuits and
Systems (ASYNC), 2002.

M. Kirstic and E. Grass. New GALS Technique for Datapath
Architectures. In International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS),
2003.

M. Kistic, E. Grass, and C. Stahl. Request-Driven GALS
Technique for Wireless Communication System. In Eleventh
Intl. Symp. on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), 2005.

W. Lim. Design methodology for stoppable clock systems.
IEE Proceedings Computers and Digital Techniques, 133(pt.
E)(1), Jan. 1986.

S. W. Moore, G. S. Taylor, P. Cunningham, R. D. Mullins,
and P. Robinson. Self-calibrating clocks for globally
asynchronous locally synchronous systems. In Proc. Intl.
Conf. on Computer Design (ICCD), 2000.

S. W. Moore, G. S. Taylor, R. D. Mullins, and P. Robinson.
Point to Point GALS Interconnect. In Eighth Intl. Symp. on
Advanced Research in Asynchronous Circuits and Systems
(ASYNC), 2002.

R. D. Mullins. Asynchronous versus synchronous design
techniques for NoCs. Tutorial at the International
Symposium on System-on-Chip, 2005.

P. Nilsson and M. Torkelson. A monolithic digital
clock-generator for on-chip clocking of custom DSPs. /IEEE
Journal of Solid-State Circuits, 31(5), May 1996.

M. Nystrom and A. J. Martin. Crossing the
synchronous-asynchronous divide. In Workshop on
Complexity-Effective Design (WCED), May 2002.

M. Péchoucék. Anomalous response times of input
synchronizers. [EEE Transactions on Computers, C-25(2),
Feb. 1976.

F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang.
Q-Modules: Internally clocked delay-insensitive modules.
IEEE Transactions on Computers, 37(9), Sept. 1988.

Globally-Asynchronous
PhD thesis, Stanford

(22]

(23]

[24]

[25]

[26]

(27]

(28]

C. L. Seitz. System timing. In C. A. Mead and L. A. Conway,
editors, Introduction to VLSI Systems, chapter 7. Addison
Wesley, 1980.

A. E. Sjogren and C. J. Myers. Interfacing synchronous
and asynchronous modules within a high-speed pipeline. In
Advanced Research in VLSI, Sept. 1997.

J. Sparsg and S. Furber. Principles of Asynchronous
Circuit Design - A Systems Perspective. Kluwer Academic
Publishers, 2001.

I. Sutherland. Micropipelines: Turing award lecture.
Communications of the ACM, 32(6):720-738, June 1989.
W. S. VanScheik and R. F. Tinder. High speed
externally asynchronous/ internally clocked systems. /EEE
Transactions on Computers, 46(7), July 1997.

K. Yun and A. Dooply. Pausible clocking based
heterogeneous systems. [EEE Transactions on VLSI Systems,
7(4):482-487, Dec. 1999.

Zhang et al. A 1-V heterogeneous reconfigurable DSP IC for
wireless basebanddigital signal processing. IEEE Journal of
Solid-State Circuits, 35(11), Nov. 2000.

Appendix A: Asynchronous Arbiters

Bistable Metastability
Filter

Figure 13. Mutual-Exclusion Element [22]

gnt1 =

reql —»r1 gl

C
MUTEX req
C

req2 —»{r2 g2 grant

gnt2 =

Figure 14. Arbitrated-Call [10]

grant

Figure 15. Tree-Arbiter Element with Eager Request
(speed-independent implementation based on [10])

10

Modeling and Performance Analysis of GALS
architectures

Sohini Dasgupta, Alex Yakovlev
School of EECE, University of Newcastle, UK
{Sohini.Dasgupta, Alex.Yakovlev}@ncl.ac.uk

Abstract— In this paper we present a comparison of three
clock control schemes and how it can be applied to an ex-
isiting partitioned synchronous architecture to obtain a re-
liable, low latency and efficient Globally Asynchronous and
Locally Synchronous architectures. The comparison high-
lights the advantages and disadvantages of one scheme over
the other in terms of logical correctness, circuit implemen-
tation, performance and relative power consumption. We
also present here circuit solutions for stretchable and data
driven clocking schemes. These circuit solutions can be eas-
ily plugged into existing partitioned synchronous islands. To
enable early evaluation of functional correctness, this paper
proposes the use of Petri net modeling technique to model
the asynchronous control blocks that constitute the interface
between the synchronous islands.

I. INTRODUCTION

Clocking circuits are becoming increasingly hard to de-
sign with larger chip sizes, higher clock rates and larger wire
delays. The integration of various IP (intellectual property)
cores on complex systems on chip requires a multitude of
clock frequencies on a single die. Such integrations are en-
abled by modern deep sub-micron fabrication technologies
in the form of chips with more than a billion transistors [12].
Globally asynchronous and locally synchronous (GALS) ar-
chitectures aid such integration allowing synchronous inde-
pendent blocks to interact through asynchronous commu-
nication channels.

The GALS paradigm can be customised to meet the
power and performance requirements to suite the target
technology. There are a range of clocking strategies that
can be applied to meet the above requirements. The mod-
eling of the control circuit, enabled by tools like PEP [11]
and its rendition into a gate level model using logic synthe-
sis tools like Petrify [8], aids the exploration of the designs
at a higher level of abstraction. This type of modeling ab-
stractions are useful for analysis and validation of different
design alternatives.

Contribution of the paper: The main goal of this pa-
per is to present the comparison between three different
GALS approaches. This comparison highlights the advan-
tages and disadvantages of the three design solutions based
on logical correctness, circuit implementations, power and
performance analysis. The implementation of synchronous
computational blocks are not cycle accurate, while the com-
munication blocks are modeled in a cycle accurate manner.
Petri net excels in its usefulness to model systems at higher
levels of abstraction and tools like Petrify aid their trans-

This research is supported by EPSRC grant (GR/S12036)

lation into a gate level implementation. This type of mod-
eling provides the designer with fast verification and im-
plementation of the system. This paper presents the Petri
net models of the three GALS architectures. These models
are verified for correctness using in-house verification tools
PUNF/CLP [9]. The verified models are fed to Petrify to
produce logic equations for gate level implementation. We
use two pre-synthesized blocks, namely, Mutual Exclusion
Element [10] and FIFO [4] and these are plugged into the
circuit implementation of each model obtained from Pet-
rify. The gates are implemented on AMS 0.35um technol-
ogy library. This paper presents novel design solution for
stretchable and data driven clocking scheme from preva-
lent conceptual models. GALS architecture with pausible
clocking scheme is obtained from [3] and compared for ef-
ficiency and power consumption with the above mentioned
approaches.

II. GALS SYSTEMS AND THEIR MODELS

To obtain a GALS implementation for a given multi pro-
cessor system, three communication architectures can be
employed. This section presents the conceptual Petri net
models of the architectures and its implementation. This
implementation is extended to a system with two clocked
domains, one producer and the other receiver, to repli-
cate communication between two synchronous islands. The
two clocked domains communicate via a two stage asyn-
chronous FIFO. For simplicity, the interaction of the com-
munication interface with the synchronous module is not
shown in the petri net models. This includes the signal
sync_ack going to the synchronous module), which in turn
releases an enable signal send data, denoting the avail-
ability of data to send on the producer side. Similarly, on
the Consumer side, the synchronous request(sync_req) is
sent to the synchronous module after the reception of en-
able signal accept _new from it. Fig.1 depicts the Petri net
models of the consumer block, i.e. the async-sync interface,
of each of the three GALS clocking schemes. The dotted
lines in three models denote that signal b+ — Al+and
b— — Al— take place in the presence of an enable signal
accept _new, produced by the synchronous module, which
is not depicted in Fig.1. These models were verified for
functional correctness before feeding them into Petrify for
a gate level implementation. The verification statistics can
be found in [1]. Circuit level implementation of the async-
sync interface models together with their sync-async coun-
terpart, communicating via an asynchronous FIFQO, thus

(a) Pausible clocking scheme

(b)

scheme

Stretchable

R1+

R1-
Al-

clocking (c) Data driven clocking scheme

Fig. 1. Petri net models of GALS architectures

send_data

Al accept_new

(a) Pausible clocking scheme

accept_new

—

syne_req

send_data

y Al .
ack_rec(b) (Do R AL req_rec(b
!
sync’ad
st F s D

=

F [&
Y ng

clk_ d clk

(b) Stretchable clocking scheme

Fig. 2. Clocking schemes: Pausible and Stretchable

obtained from Petrify is depicted in Fig.2 and 3.

Pausible clock: The pausible clocking scheme offers an
elegant solution to metastability issue which comes into
play when there is cross domain communication. Pausible
clocks are characterised by a free running clock. A Mutual
Exclusion element is inserted in the circuit to allow the
clock to be interrupted when a data is ready to be trans-
ferred. The interruption of the clock enables safe transfer
of asynchronous data. As shown in Fig.1, signals g1 and
g2 are mutually exclusive and granting of g1 interrupts the
clock. This leads to an asynchronous data transfer. This
request is acknowledged on reception of the positive edge
of the clock signal. The leftmost block and the FIFO block,
depicted in Fig.2(a), constitute the interface between syn-
chronous producer and asynchronous receiver. The inter-
face arbitrates between granting in favour of the r1 sig-
nal, to transfer data to subsequent synchronous blocks or a
clock request, to generate clock (clk__A) for its locally syn-
chronous module. If the r1 is granted the data is latched in
the first latch and the hold is released on the mutex. This
allows clock request to win over the mutex. Therefore,
data is stable before the clock arrives at the next stage of
latch avoiding metastability at the second latch. The syn-
chronous module always waits for a synchronous syn__ack.
On reception of the synchronous sync_ack, the module re-

sync_req

(VAN Jﬁ
§accept_ned

Fig. 3. Data driven clocking scheme

l

send_data

leases an enable signal for new data transfer. This type of
design methodology is also explored in [2].

Stretchable clocking scheme: A stretchable clock can also
be viewed as a free running clock like the pausible clock.
The difference between two is that a stretchable clock
knows in advance that the next clock cycle should wait for
an asynchronous input. Therefore only in the absence of
input request signals, the clock would be free running. This
type of architecture leads to an increased throughput, since
the request does not compete with the clock for an asyn-
chronous data transfer. As shown in Fig.2(b), the assertion
of the stretch signal prevents the clock from going high and
remains asserted until signal R1 id deasserted. The syn-
chronous module waits for a synchronous sync_ack, in a
manner similar to pausible clocking scheme. The signals

vy

vy

- o -
me (8) - tme (s)

(a) pausible clock (b) stretchable clock
Fig. 4. Phase relationship at the producer block

ack _rec+(also denoted by b) and clk+ are mutually ex-
clusive on the producer side due to signal str (this can
also be seen on the consumer side, in the Petri net model
shown in Fig.1(b), where req_rec+ is mutually exclusive
to clk+). Therefore, positive edge of signal ack rec can-
not be synchronized on the positive edge of signal clk. If
the signal ack rec is synchronized to the negative edge of
the clock cycle with a flip-flop, the system could run into
a deadlock. This is due to the fact that if signal clk has
already gone low before the triggering of signal str+, and
then str+ occurs preventing signal z+(which causes clk+),
from firing, signal ack+ would wait for the faling edge of
signal clock, which would not be triggered till str— occurs.
Hence, ack rec+ will never meet the set up and hold time
of the falling edge of clock signal. Therefore the only so-
lution is to use a latch, instead of a flip flop. The latch is
made to sample the signal ack_rec when the clock is low.
This synchronized ack _rec is then sent to the synchronous
module which in turn sends an enable signal to indicate a
data-ready-to-send status. This enable signal latches the
ack _received’ (also denoted by ¢) in the final set of latches
to assert the request signal for sending new available data.
A similar technique is presented in [6].

Phase relation between signals clk A, ack, ack_rec,
Sync_ack at the sync-async interface for stretchable and
pausible clocking schemes, is depicted in Fig.4(a), (b). The
shaded portion denotes the window when asynchronous
data is received.

Data driven clock: In data driven clock scheme clock
edges are produced in response to the presence of data at
the input ports of the IP block. Therefore, the clock is
not free running, unlike pausible and stretchable clocking
schemes. The Petri net model of the async-sync interface
of such an architecture is shown in Fig.1(c). Its gate level
implementation is depicted in Fig.3. Since, power is an
important issue in SoC applications, design methodologies
which provide circuit solutions with reduced power con-
sumption becomes highly attractive. This scheme signifi-
cantly reduces power consumption as clock is only started
when enough inputs have been received to carry out a par-
ticular computation. The circuit is switched off at other
times. An extensive design solution for this approach can
be found in [7].

A detailed description of the model and circuit level im-
plementation of the three clocking schemes have been pre-
sented in [1].

III. PERFORMANCE ANALYSIS

To avoid the complexity of distributing a single global
clock across the entire chip area and the varying power re-
quirements for different blocks, the synchronous blocks can
employ an independent internal clock. The frequency can
be scaled depending on the performance requirements of
the system. In this paper, it is assumed that the system
is partitioned logically into synchronous islands commu-
nicating with other synchronous blocks through an asyn-
chronous interface. The asynchronous interface interacts
with the clock generator circuit of these synchronous blocks
for cross domain data transfer. The Petri net models of the
asynchronous interface and clock control circuit developed
are fed to Petrify to give logic equations to build the gate
level implementation of the architecture. These circuits
are simulated on Cadence. We used mixed signal simula-
tions to aid the monitoring of several signals using digital
specification, while other parts of the circuit run analog
simulations. This technique enables us to simulate a com-
bination of both analog and digital signals. We avoided us-
ing complete analog simulation technique in order to write
functional blocks in verilog to be incorporated in the sys-
tem and small verilog codes to monitor and evaluate the
metrics, discussed above, for analysing the system. Hence,
the inputs and outputs could be monitored digitally. The
core analog blocks of the circuit can be efficiently wrapped
by digital blocks which preserves the precise estimation of
delays within these analog blocks.

GALS system characterization parameters:

To characterize any design based on SoC applications, we
need to define some metrics that are applicable to power
and performance of a system. Similarly, for GALS systems
we need to define such metrics. These are evaluated to
analyze architectures for studying the effects of different
system parameters on the performance of the system.

The metrics that are relevant for the analysis of pausi-
ble clock circuitry of GALS architecture are the number of
times a clock is paused for a given simulation time and the
average latency incurred due to such clock pauses. Another
important system analysis metric for efficiency comparison
is the throughput of the system, i.e., the average produc-
tion /processing capacity of a system.

Due to increasing clock frequencies and smaller device
sizes, it is becoming particularly important to consider the
total power consumption metric in deciding on a particu-
lar design methodology. GALS based architectures reduce
power consumption due to the ability to shift to an asyn-
chronous mode when the local clock of the synchronous
system is paused. Hence, a comparison of energy consump-
tion in different GALS architecture would help choose be-
tween the different asynchronous communication circuitry.
Therefore, an analysis of these metrics is useful for the de-
signers to estimate the performance penalties in using one
clocking scheme over the other.

IV. CirculT LEVEL: EXPERIMENTAL RESULTS

This section presents the results of power and perfor-
mance analysis of GALS architecture with the three clock-

2 100

80
70
60
50

Power (mW)

Throughput (

—8— Data Driven scheme 2
—a— Stretchable Clock scheme
—— Pausible clock scheme

NS

o

Number of write pauses

—e— Data Driven scheme
—a— Strechable clock sceme
—a— Pausible clock scheme

o M & O ®

0.0 0.5 1.0 15 20 25 3.0 35 1

0.0
Clock ratio(Producer/Consumer)

(a) Throughput analysis

0.5 1.0 1.5 . .
Clock ratio(Producer/Consumer)

(b) Power consumption at interfaces

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
Clock ratio (Producer/Consumer)

25 3.0 35

(c) No. of clock pauses in producer for pau-
sible clock

=

Number of write pauses
write pause latency (ns)

40

Write pause latency (ns)
N w
8 8

o

o

0 05 10 15 20 25 30 35 0.0 05 10 15
Clock ratio (Producer/Consumer)

o

(d) No. of clock pauses in producer for

stretchable clock clock

20 25 3.0 35 0.0 0.5
Clock ratio (Producer/Consumer)

(e) Clock pause time in producer for pausible

1.0 1.5 20 25 3.0 35
Clock ratio (Producer/Consumer)

(f) Clock pause time in producer for stretch-
able clock

Fig. 6. Performance Analysis for GALS architectures

Write Req Read Ack

Fig. 5. FIFO design

<
Write Ack +

ing schemes.

In our experimental setup, we use a 2 stage FIFO inter-
module communication scheme. In the experiments we
vary an input parameter, namely, the producer clock fre-
quency. It is varied from 125 MHz to 1.75 GHz to observe
the behaviour. The frequency of the consumer clock is
maintained at 500 MHz. Higher frequencies are possible
depending upon the complexity of the producer and con-
sumer blocks. The ratio between the producer clock and
consumer clock is called clock ratio. The clock ratio is var-
ied from 0.25 to 3.5 in steps of .25. This allows to study
the different phase relationship between the consumer and
producer clocks.

Fig.6(a) shows the impact of changing clock ratio on
the throughput of the communication channel. We ob-
serve that as the frequency of the consumer clock increases
the throughput increases linearly up to clock ratio 1. This
is because more data is being read by the consumer in
the same period of time. After this time, the throughput

reaches a saturation point. This is because the consumer
clock operates at a lower clock frequency compared to the
producer clock. Hence, there is no additional increase in
throughput.

The throughput values obtained for stretchable and data
driven clock are higher than pausible clock. This is due to
the delay between two consecutive rising edges of the re-
quest signal R+. A detailed phase relation between signals
that cause this delay is exemplified in [1]. It is observed
that this delay is 12ns and 8ns for pausible and stretchable
clocks, respectively. The throughput is maximum for data
driven clock. It is higher than stretchable scheme since
the signal A in the stretchable clocking scheme waits for
synchronization for crossing over to synchronous domain
to produce Sync_ack. On the contrary, no such synchro-
nization is needed for data driven clock as the clock starts
when there is data to transfer and hence the signal A thus
produced is already synchronized to the clock. This ex-
plains the trend of the curves in the graph that depicts the
throughput of the different clocking schemes.

Fig.6(b) shows the power consumption, at an operating
volatge of 3.3V, with varying clock ratio. This plot refers to
the effective power consumed over the time period needed
to send a packet(same for all three protocols). We ob-
serve that as the clock ratio increases power consumption
increases. This is because, as clock ratio increases, the
throughput and operating frequencies of the synchronous
islands, increases leading to an increased power consump-

tion. It is observed that the lowest power consumption is
demonstrated by data driven clocking scheme as it doesn’t
have a free running clock and can be switched off when
there is no data to send. Since, the implementation of the
FIFO is same for all the protocols, complexity of port con-
troller implementation of pausible and stretchable clocking
schemes is also a factor that gives rise to such observations.

Fig. 6(c) and (d) shows the number of clock pauses in
the producer for pausible and stretchable clocking schemes,
as the clock ratio is increased. We see that as the frequency
of the producer clock increases, the number of pauses in-
creases. The asynchronous data transfer logic operates at a
particular frequency. This frequency depends on the rate of
production of R signal from the producer block and rate of
reception of A signal from the consumer block. The trans-
fer frequency becomes smaller than the frequency of the
producer clock as the producer clock frequency increases
and becomes higher than the consumer clock frequency.
Hence, it takes longer to finish the cycle that de-asserts
the grant on the arbiter. Due to this we observe more
clock pauses as the period of the clock is too small to mask
this delay. At lower frequencies, the time period is large
enough to mask the pause during its lower half period.

The number of clock pauses in pausible and stretchable
clocking scheme are comparable due to the scenario de-
scribed above. But it can be observed from the graphs
shown in Fig.6 (e) and (f), depicting total time incurred
by these latencies that they are no longer comparable. The
stretchable clocking scheme incurs longer latencies than
than pausible clock. This is because the clock is only as-
serted when signal str is low. The arrival of signal A on
the producer side or signal R1 on the consumer side, asserts
signal str. When the producer frequency increases and be-
comes more than the consumer frequency, the FIFO gets
filled up as more requests are produced than it can be con-
sumed by the consumer module. Hence, the de-assertion
of signal A is delayed. This phenomenon is exemplified in
Fig.5. The FIFO is made up of a set of C-elements [5]. The
shaded lines depict the signals that are asserted, while the
non-shaded lines depict de-asserted signals. It can be ob-
served that when the FIFO is full Write Ack (A) remains
asserted and is only de-asserted when an item of data is
read from the FIFO, i.e. Read Ack(A1) is asserted. The
delay in the de-assertion of A, delays the de-assertion of
signal str, which in turn delays the assertion of signal clk.
This leads to a prolonged clock stretch. Such an occur-
rence is not observed in pausible clocking scheme. This is
because, the reception of b+ immediately releases the grant
on the arbiter and at this stage, the clock can arbitrarily
win the grant to assert itself.

V. CONCLUSION

This paper presented the classification of different clock-
ing schemes for Globally Asynchronous and Locally Syn-
chronous architectures. These schemes have been modeled
using Petri nets. A Petri net model of these interconnect
architectures allows the designer to use existing logic syn-
thesis tools, like Petrify to obtain gate level design solu-

tions. Such solutions for GALS systems with stretchable
and data driven clocking schemes have been presented in
this paper. All the three clocking schemes exhibited reli-
able data transfer between the synchronous domains. A
complex SoC can exploit any of the above given architec-
tures depending on the requirements of the target system.
These models can be plugged into existing partitioned syn-
chronous blocks. These schemes can be extended to em-
ploy various power reduction methodologies in the wrapper
without affecting the synchronous IP blocks.

In addition to the classification and design solutions for
the three clocking schemes this paper also analyses the
three systems on performance and power consumption cri-
teria. Stretchable and data driven clocking schemes demon-
strated higher throughput and lower power consumption
charateristice, respectively, compared to the prevalent pau-
sible clocking scheme. The stretchable and pausible clock-
ing schemes are further compared on two other met-
rics, namely, the number of times the clock is paused or
stretched and the total latency incurred by these pauses.
Such an analysis aids the designer to make different design
decisions based on power and performance.

Future work includes the development of a library of such
Petri net models of each of the GALS clocking techniques,
for different input coupling schemes (e.g. arbitrated, syn-
chronized and sampled). We are also in the process of de-
veloping an automated GALS design tool which plugs these
interconnects to already partitioned synchronous islands.
This tool would ease the integration of the different inter-
connect models with the existing partitioned synchronous
islands.

REFERENCES

[1] S. Dasgupta, A. Yakovlev, Performance Analysis of Point-to-
Point GALS interconnects. Technical Report NCL-EECE-MSD-
TR-2006-114, Microelectronic System Design Group, School of
EECE, University of Newcastle upon Tyne, UK, June, 2006.

[2] K. Yun, R. P. Donhue, Pausible clocking: A First Step Towards
Heterogeneous Systems. In proceedings of International Confer-
ence on Computer Design, October 1996, Austin, TX.

[3] S.W. Moore, G.S. Taylor, R. D. Mullins, P. Robinson, Point-to-
Point GALS Interconnect. In proceedings of Eighth International
Symposium om Advanced Research in Asynchronous Circuits
and Systems, 2002.

[4] I. Sutherland, Micropipelines: Turing Award Lecture. In Com-
munications of the ACM, 32(6):720-738, June 1989.

[5] J. Sparso, S. Furber, Principles of Asynchronous Circuit Design
- A System’s Perspective. Kluwer Academic Publishers, 2001.

[6] J. Kessels, A. Peeters, P. Wielage, S. Kim, Clock Synchroniza-
tion through Handshake Signalling. In International Symposium
on Asynchronous Circuits and Systems, 2002.

[7] M. Krstic, E. Grass, C. Stahl, Request Driven GALS Technique
for Wireless Communication Systems. In proceedings of 11th In-
ternational Symposium om Advanced Research in Asynchronous
Circuits and Systems, 2005.

[8] J. Cortadella, M. Kishnivsky, A. Kondratyev, L. Lavagno, A.
Yakovlev, Synthesis of Asynchronous Controllers and Interfaces.
Springer, Berlin, 2002.

[9] V. Khomenko, Model checking based on prefixes of petri net

unfoldings, PhD thesis, University of Newcastle, (2003).

C. Mead, L. Conway, Introduction to VLSI systems. Addison-

Wesley Publication, October 1980.

S. Melzer, S. Romer, and J. Esparza, Verification using PEP. In

Proceedings of AMAST, 1996.

S. Naffziger, The Implementation of a 2-core Multi-threaded Ita-

nium Family Processor. In Proceedings of ISSCC, 2005.

[10]
[11]

[12]

Delay Insensitive Chip-to-Chip Interconnect Using
Incomplete 2-of-7 NRZ Data Encoding

Jian Wu and Steve Furber
School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
Email: wuj@cs.man.ac.uk, steve.furber@manchester.ac.uk

Abstract— This paper proposes an incomplete 2-of-7 non-
return-to-zero (NRZ) transmission method for high-performance
and low power inter-chip communication. We use this method in
the design of interfaces, including a link transmitter interface
(‘“Tx i/f’) and a link receiver interface (‘Rx i/f’), which are
employed to send and receive packets throughout a universal
Spiking Neural Network chip multi-processor [1]. The focus of the
design is on the protocol conversion between the delay-insensitive
1-of-4 return-to-zero (RTZ) on-chip CHAIN protocol [2] and
the delay-insensitive incomplete 2-of-7 non-return-to-zero (NRZ)
inter-chip protocol. In this design, the new protocol improves
the performance and lowers the power consumption by reducing
the inter-chip wire transition rate. Simulation shows that our
communication interfaces are effective for low power and high
inter-chip throughput.

I. INTRODUCTION

Advances in integrated circuit technology allow more pro-
cessors to be integrated onto a chip or a multi-chip system to
achieve higher computing parallelism. A massively parallel
multi-chip system incurs very high chip-to-chip capacitive
loads. This causes the delay and power consumption of inter-
chip communication to play an increasingly key role in the
performance of a parallel system. However, conventional bus
systems have difficulties in supporting such high connectivity
because of their limited bandwidth. A solution to this prob-
lem is to use delay-insensitive point-to-point communication
channels [3].

SpiNNaker is such a scalable multi-chip system designed
specifically for the real-time simulation of large-scale spiking
neural networks [4]. A major challenge in designing this large-
scale neural network is to emulate the very high connectivity
of the biological system. The high fan-in and fan-out of
neurons suggests that an efficient asynchronous communi-
cation fabric is required. Delay-insensitive data encoding is
therefore considered for use in the point-to-point asynchronous
communication.

For the on-chip communication of the SpiNNaker multi-
chip system, we use CHAIN technology which has an efficient
delay-insensitive fabric for on-chip asynchronous communica-
tion [2]. However, a more power-efficient and time-efficient
implementation is needed in inter-chip communications be-
cause an inter-chip transition has a more significant energy
cost and inter-chip wire delays are longer.

In this paper, we propose the design of a link transmitter
interface (“Tx i/f”) and a link receiver interface (‘Rx i/f”) which

extend the CHAIN communication system via inter-chip links.
The function of the transmitter interface is to convert the on-
chip CHAIN protocol into an inter-chip 2-of-7 NRZ protocol.
The receiver interface performs the inverse conversion. The
CHAIN protocol incurs four chip-to-chip transitions per 2-
bit symbol, whilst the 2-0f-7 NRZ protocol incurs only three
chip-to-chip transitions per 4-bit symbol and therefore is more
time-efficient and power-efficient.

Il. DELAY-INSENSITIVE COMMUNICATION

Delay-insensitive (‘DI”) communication is an attractive so-
lution for system-level interconnection. In a delay-insensitive
communication system, the receiver will return an acknowl-
edge signal when it absorbs the data. The sender is allowed to
issue the next data only after it has received the acknowl-
edge signal. This feature makes the sending and receiving
of the data able to operate at different speeds. Therefore
delay-insensitive communication allows very flexible physical
organization of chips [3].

Delay-insensitive codes are unordered, in which no code
word is contained in another code word. Therefore the arrival
of the delay-insensitive code can be recognized by the receiver,
and then the receiver will respond to the sender after the
detection. With this feature, the interpretation of the code word
is not affected by delays. There are two main types of delay-
insensitive codes: 1-of-n codes and m-of-n codes.

A 1-of-n code uses a group of n wires to transmit informa-
tion. At each time, only one wire is allowed to be “1” to signal
data. To detect the arrival of a 1-of-n data is easy because
it only needs a simple n-input OR of the wires to perform
the completion detection [5]. CHAIN uses such a 1-of-n data
encoding protocol.

Another type of delay-insensitive code is the m-of-n code.
The m-of-n code has a weight m out of length n [6]. That
means each data word is encoded by m wires at level “1”.
An m-of-n code offers CJ:, possible symbols. There are many
choices for m-of-n encoding, such as 2-of-4, 3-of-6 and 2-of-7
codes.

I1l. THE CHAIN ARCHITECTURE

CHAIN [2] is an architecture for SoC interconnect using
delay-insensitive data encoding combined with a return-to-zero
signalling protocol. Connections are built from narrow, high-
speed, point-to-point links forming a network rather than a

bus. The data transferred through the CHAIN links is in a
defined packet format in which an end-of-packet (EOP) signal
is used to indicate the end of a data packet. Thus there is no
need to ensure timing closure across the whole chip.

eop
do
dl
d2
d3

ack

SENDER
Yyvvyvy
RECEIVER

Fig. 1: CHAIN Link

A single CHAIN link is illustrated in Fig. 1. It has five
forward-going wires plus one backward-going acknowledge
wire. Four of the five forward-going wires are for normal data
transmission using a delay-insensitive 1-of-4 code for the data
encoding. When there is a transmission activity on one of
the four wires, one of the two-bit codes 00, 01, 10, or 11 is
represented. The fifth wire is used for carrying the end-of-
packet (EOP) symbol, which is a packet control marker to set
up the packer length. An acknowledge signal uses the 6th wire
to realize self-timed control.

IV. INCOMPLETE 2-0OF-7 NRZ PROTOCOL
A. 2-of-7* code

Compared to a 1-of-n code, an m-of-n code can carry more
bits every cycle but requires fewer wires and can have less or
the same repeater stage logic size [5]. Because the throughput
of DI communication is determined by the number of the bits
transferred in a cycle, the m-of-n code is more efficient for a
large message set. Table | shows a comparison of the cost and
performance of some 1-of-n and m-of-n codes.

CODE Possible Useful Throughput Energy Area
Symbols | Symbols bits/cycle transitions/bit | wire/bit
(RTZ)
Dual-Rail

(1-0f-2) 2 2 1 2 2
1-of-4 4 4 2 1 2
1-of-6 6 4 2 1 3
3-0f-6 20 16 4 15 15
2-of-7 21 16 4 1 1.75
3-of-7 35 32 5 12 1.75

TABLE I: A Comparison of The Cost and Performance of Some DI Codes

As can be seen from Table I, the 2-of-7 code has a
throughput of 4 bits per cycle. Therefore it is 2 times faster
than the 1-of-4 code (2 bits per cycle) when having the same
cycle time. In addition, the 2-of-7 code has the same transitions
per bit (1 transition per bit) as the 1-of-4 code (CHAIN) but
with 10% fewer wires (1.75 wires per bit) when representing
a same group of binary values.

However, it is often not necessary to use all the symbols of
an m-of-n code. For example, a 3-of-6 code has 20 possible
symbols but only 16 of them are useful when used to present

4-bit binary codes. If only some of the symbols of an m-
of-n code are used for data encoding, the code is called an
incomplete m-of-n code (represented as m-of-n*).

In addition, the m-of-n* code also has some good features
in code mapping and completion detection. In code mapping,
the 2-of-7* code can be decomposed into a 1-of-3 code and a
1-of-4 code [5]. So the translation from two 1-of-4 codes into
a 2-of-7* code is simple because there is no need to convert
one of the two 1-of-4 codes. The arrival of a 2-of-7* code can
be seen as the arrival of a 1-of-3 code and a 1-of-4 code or
that of a 2-of-4 code. Hence the completion detection of the
2-of-7* code is also easier because the completion detection
circuit for a 1-hot code is very simple. The implementation of
the mapping and completion detection is described in section
V. Furthermore, unlike in CHAIN, there is no need for an
additional wire to carry an EOP signal in the 2-of-7* code
because it has unused symbols. Therefore, we choose the 2-
of-7* code for the chip-to-chip interconnect in our multi-chip
system.

B. Transition Sgnalling Protocol

Both return-to-zero (RTZ) signalling and non-return-to-zero
(NRZ) signalling can be used in delay-insensitive communi-
cation. RTZ signalling is a commonly-used encoding method.
But NRZ signalling is more power-efficient and time-efficient.
Fig. 2 shows the signal waveforms of the RTZ protocol and
the NRZ protocol.

Empty Data Empty Data Empty

Data

Return-to Zero
Data Data Data Data Data

e NI NI

Non-Return-to-Zero

Fig. 2: Return-to-zero Protocol and Non-return-to-zero Protocol

In the RTZ protocol, the wires use Boolean levels to encode
information. So each codeword or acknowledge signal has to
use two transitions: The first one is from 0 to 1. The second
one is from 1 to 0. In the NRZ protocol, the information
is encoded as transitions. The transitions from 0 to 1 and
from 1 to O both represent a logic 1 on the data wire or an
acknowledge signal on the acknowledge wire. As a result, the
NRZ protocol saves 50% of the transitions incurred by the
RTZ protocol. Because the power required to generate a signal
is nearly proportional to the signal’s transition rate in CMOS
logic [5], the NRZ protocol can reduce the power consumption
by half.

In addition, the cycle time of data transmission can also be
reduced because the NRZ protocol only uses one end-to-end
cycle to send one symbol, whilst the RTZ protocol uses two
end-to-end cycles.

The implementation of the NRZ protocol is often more
complex and costs more chip area compared to that of the RTZ

protocol. But it is still a preferred solution in a system with
high speed and low power requirements [8]. Therefore, the
NRZ protocol is used as the inter-chip communication protocol
in the SpiNNaker multi-chip system. The RTZ protocol is still
used in the system for the on-chip communication because it
is simple for implementation.

V. IMPLEMENTATION

Fig. 3 shows a block diagram of the structure of the Tx
i/f and the Rx i/f. The multiplexer and demultiplexer perform
as interconnection adapters between the CHAIN fabric and
the NRZ 2-of-7 fabric. The encoder converts CHAIN 1-of-5
(including EOP) return-to-zero symbols to 2-of-7 non-return-
to-zero symbols. The decoder performs the inverse conversion.

Link Transmitter ('Tx i/f") Link Receiver ('Rx i/f’)

a-channel a-channel

ENCODER
DECODER

2-of-7* NRZ DATi

ACK

Select
Controler

Fig. 3: Interface Architecture

Fig. 4 shows a diagram of the pipelined encoder and the
pipelined decoder. The reason for adding the 2-of-7* pipeline
latches is to increase the throughput of the interfaces by mini-
mizing the cycle time. The loop between these latches defines
the cycle time, which is determined by the lengths of the wires
between the chips and the response time of the latches. The
data rate of any delay-insensitive scheme is limited by the
end-to-end cycle time of the system. A way to shorten the
latches’ response time is to add the latches in front of the
phase converters. But because the code between the phase
converters is NRZ code, completion detection is too complex
for implementation. Therefore we add the pipeline latched in
front of the code converters so that they can respond with
the acknowledgement as early as they can without performing
code convertion.

ENCODER

DECODER

DATA DATA

Pipeline
Pipeline

RTZ to NRZ
Phase Converter
|
NRZ to RTZ
Phase Converter

Code Converter

2-of-7* to Chain
Code Converter

CHAIN to 2-of-77|

ACK ACK
-

Fig. 4: Encoder and Decoder

A. The 2-of-7* Code Mapping

The 2-of-7* code can send 4 bits at one time, whereas the
1-of-4 code can only send 2 bits at one time. Given this, one
2-of-7* code can represent a pair of 1-of-4 codes.

The 2-of-7* encoding / decoding circuits are implemented
using the approach of Delay-Insensitive Minterm Synthesis
(DIMS) [9]. However, the implementation can be quite com-
plex and inefficient if we select an unsuitable mapping of
the binary values to code symbols. A method for choosing
a suitable mapping is to decompose the 2-of-7* code into a
1-of-3 plus a 1-of-4 code, which represent 12 (3x4) symbols,
and a 2-of-4 code plus the idle state (000), which represent 6
symbols [5]. To represent the EOP code, any other symbol of
the rest of the 2-0f-7 code can be used. In this case, we use
1100000. The mapping of the codes is shown in Table II.

EOP | 1-of-4 code A | 1-of-4 code B 2-of-7* code

Control] Body
C6C5C4 | C3C2C1CO

E

e

A

[

OOOOOOOOOOOOOHHHI—\>
o

B

[y

OCOO0OO0OFrPROO0OORrROOORrOOORrm
(=]

POOOO0OO0OO0OO0OO0OO0ODOO0OO0OOOOO0
ORRPRPRRPOO0ODO0OO0ODO0O0OO0O0O0O0OOYW
OOOOOHI—‘HHOOOOOOOOE
CO0OO0OO0O0O0OO0O0OORRRPRRLOOOODPD
OrRPO0OO0OO0OrROO0OORrROOORrROOOW
OOHOOOI—‘OOOHOOOI—‘OO%
OCO0OO0ORrROO0OOrOoOOOrOocOORrO@

POOOORRPRPPPOOOODOOOO
POOOOO0OO0OOORRFRPRFRPPFPOOOO
[eNeNololeNoloNololoNoloNol S ool o
OFRPrPFPOORFRPROO0OORFRPROOORFR,ROOO
OCOPRPPFPOOFRPROOORPROOORFR OO
OCOORPRPFRPOOFRPROOORPROOORrR O
OFRPO0OO0ORPROO0OORFRPROOORPROOOR

TABLE II: The 2-of-7* Code Mapping

This mapping method can significantly simplify the en-
coding and decoding circuits because it is not necessary
to convert the 1-of-4 code of CHAIN. The encoding and
decoding circuits are shown in Fig. 5.

C6 C5 C4 C3 C2 CL CO

BO ’ co
B<3:.0>
5

o2 |] o

- *Di"D

IA0 c4

IAL
A<3:0> (=)
o >

A2

C6 EOP

S

CHAIN to 2-0f-7* encoding 2-0f-7* to CHAIN decoding

Fig. 5: Encoding and Decoding

The completion detection circuitry is also simplified thanks
to this mapping method. The arrival of the 2-of-7* code
is detected when the 1-of-3 code and the 1-of-4 code are
detected. Furthermore, the 2-o0f-4 code can also be treated as
two dual-rail codes in the completion detection circuitry. The

arrival of the EOP code is detected by the circuitry simply
using a C-element. The implementation of the completion
detection circuitry is shown in Fig. 6.

co

Completion

o

Fig. 6: Completion Detection Circuitry

B. Interconnection Adapters

In order to sustain the CHAIN link throughput, each con-
version maps two 2-bit CHAIN symbols to a single 4-bit 2-of-
7 symbol. Therefore, interconnection adapters are needed to
perform the serial<parallel conversion between the CHAIN
fabric and the encoder/decoder.

To convert two serial CHAIN data streams into parallel
transitions, we use a micropipeline demultiplexer (DEMUX)
in the Tx i/f, which allocates the two data streams into the a-
channel (A [3:0]) and the b-channel (B [3:0]). A micropipeline
multiplexer (MUX) does the inverse operation in the Rx i/f by
steering the data into CHAIN.

The operations of the DEMUX and the MUX are controlled
by selection controllers. On receipt of the activation, the con-
troller controls the sequential execution of two select actions
(sel_0, sel_1) which determine into which channel the CHAIN
data is sent by the DEMUX, or which channel the MUX data
is received from. The selection controller is constructed from
two S-elements, as shown in Fig. 7.

Fig. 7: Selection Controller

V1. EVALUATION BY SIMULATION

To evaluate the proposed 2-of-7* NRZ scheme, we designed
two chip-to-chip interfaces for comparison. One uses the 2-of-
7* NRZ protocol. The other uses the CHAIN protocol. Both
of them were designed using the 0.13um UMC CMOS gate
library and simulated using Verilog with typical gate delays.
The chip-to-chip wires were modelled with delays of 1.5ns in
each direction and with a capacitance of 5pF.

The simulation results show that the 2-of-7* NRZ interface
has a cycle time of 6.602ns and the CHAIN interface has a
cycle time of 11.971ns. Because the chip-to-chip 2-of-7* en-
coding sends 4-bits in each direction per cycle, it gives a total
throughput of over 605Mbits/s. Under the same conditions,

the CHAIN interface, which sends 2-bits in each direction per
cycle, gives a total throughput of only about 167Mbits/s. Thus
the throughput of the 2-of-7* NRZ interface is about 3.6 times
higher than the CHAIN interface. The energy consumption of
the 2-of-7* NRZ interface is about 1/3 of that of the CHAIN
interface. Both the higher speed and the lower power come
at a price of larger area. Table Ill shows a comparison of the
two interfaces.

Throughput | Power Area
(Mbits/s) (pJd/bit) | (Number of transistors)
2-of-7* NRZ 605 18.6 1971
CHAIN 167 54.1 164
Relative 3.6 34.4% 12.0
Performance

TABLE Il1: Simulation Results

VII. CONCLUSION

In this paper we described a new chip-to-chip interface with
a 2-of-7* NRZ protocol. Designing high throughput chip-to-
chip communication interfaces requires careful design of both
the architecture of circuits and code mapping. The simulation
results show that this interface increase throughput by about
360% compared with the conventional CHAIN interface. At
the same time, it decreases the power consumption by 1/3.

However, the implementation of the NRZ 2-of-7* encoder,
decoder, and the completion detector increased circuit area
and complexity. The extra area cost is acceptable because of
the rapid shrink of transistor dimensions in modern integrated
circuits.

REFERENCES

[1] S. B. Furber, S. Temple and A. D. Brown, On-chip and Inter-Chip
Networks for Modelling Large-Scale Neural Systems, Proc. ISCAS’06,
Kos, May 2006.

[2] W. J. Bainbridge, S. B. Furber, Chain: A Delay-Insensitive Chip Area
Interconnect, IEEE Micro, v.22 n.5, p.16-23, September 2002.

[3] S. B. Furber, A. Efthymiou and M. Singh, A Power-Efficient Duplex
Communication System, Proc. of Int. Workshop on Asynchronous
Interfaces, 2000

[4] S. B. Furber, S. Temple and A. D. Brown High-Performance Computing
for Systems of Spiking Neurons, Systems of Spiking Neurons Proc.
AISB’06 workshop on GC5: Architecture of Brain and Mind, Vol.2, pp
29-36,3-4 April 2006.

[5] W.J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B. Furber, Delay-
Insensitive, Point-to-Point Inter-connect using m-of-n Codes, Proc. of Int.
Symp. On Asychronous Circuits and System, 2003.

[6] T. Verhoeff, Delay-insensitive codes - an overview, Distributed Comput-
ing, 3(1):1-8, 1988.

[7]1 R. Drost, Architecture and Design of a Simultaneously Bidirectional
Single-ended High Speed Chip-to-Chip Interface, Ph.D. Thesis, Stanford
University, Palo Alto, CA, Nov. 2001.

[8] S. B. Furber, J. Sparsg, Principles of Asynchronous Circuit Design - A
Systems Perspective, Kluwer Academic Publishers, 2001

[9] J. Sparsg, J. Staunstrup. J., Delay Insensitive Multi Ring Structures.
Integration, the VLSI Journal. Vol. 15. 1993.

An asynchronous spiking neural network
which can learn temporal sequences

Joy Bose, S.B Furber, M. Cumpstey

School of Computer Science, University of Manchester, M13 9PL, UK
Email: {bosej@cs.manchester.ac.uk, sfurber@manchester.ac.uk, cumpstem@cs.manchester.ac.uk }

Abstract—We describe the design of an asynchronous spiking
neural network that can learn and predict temporal sequences
online. We concentrate on issues regarding the asynchronous
functioning of the model such as timing relations between
different autonomous components of the system.

I. PROBLEM SPECIFICATION

Our aim is to implement a memory in spiking neurons that
can learn any given number of sequences online (a sequence
machine) in a single pass or single presentation of the
sequence, and predict any learnt sequence correctly. A
sequence is a series of symbols in temporal order, such as
‘abc’.

The high-level description of the system (the functionality
which is to be implemented in spiking neurons) is as follows:
it takes as input a series of symbols constituting an input
sequence, and for each input symbol it outputs a symbol
which is the prediction for what the next symbol should be. If
the input symbol is not part of a sequence previously learnt by
the machine, the prediction will be incorrect but the machine
will learn to predict correctly the next time the same sequence
is presented.

Clearly, the prediction of the next symbol depends on the
history of the sequence as well as the input symbol presented.
In a system with infinite memory, the machine would be able
to look as far back in the history as needed to produce an
unambiguous prediction. However, we are using a finite
neural memory which learns (writes to the memory) to
associate the context or history of the sequence with the input,
and so some noise is expected. The context or history itself is
represented as a finite state machine, in which the new history
is a function of the old history and the present input.

For example, if the sequence learnt is ‘abcbd’, the grammar
learnt by the system can be represented as follows:

(Starting symbol) S > a

a>b c2>b b=>d
ab—>c¢ bc>b cb>d
abc>b bcb>d
abcb 2> d

In this high-level description of the system, all the steps are
assumed to take place in a perfectly synchronised way.
However, in this paper we are interested in implementing this

functionality using spiking neurons, which are essentially
asynchronous, to get some insights on engineering and
modelling issues in similar systems, as well as throw some
light on the dynamics of interactions between biological
neurons.

II. SPIKING NEURONS

A spiking neuron is a simplified model of a biological
neuron that fires spikes or electrical impulses if an internal
quantity of the neuron known as the activation exceeds a
threshold. The activation is increased every time a spike fires
at an input of the neuron, thus a neuron can be thought to
accumulate input spikes. All spikes are of the same shape and
information conveyed is only in the time of their firing. We
assume that each spiking neuron fires only in response to its
input spikes, i.e. there are no global control variables in the
system that apply to all neurons. The neurons form layers,
each layer performing a specific function and being connected
to other layers, the spikes being transferred through the
connection wires which may have different connection
strengths, but we assume no wire delays.

III. SIMILARITY WITH BETWEEN A SPIKING NEURAL NETWORK
AND ASYNC LOGIC CIRCUIT

In asynchronous logic design, communication takes place
by transmission of electrical signals through wires, which can
be considered similar to transmission of spikes in neural
models. The electrical signals transmitted are in one of the two
levels 0 and 1 (following binary logic), and the switching of
levels could be considered as an event similar to firing a spike.

A standard asynchronous logic circuit has the handshake as
its defining component. If we consider groups of spiking
neurons interacting with each other, they show interactions
similar to handshaking, in the sense that they can excite each
other to generate corresponding bursts of spikes, which may
be thought as the ‘request' and ‘acknowledge' signals. A latch,
a standard component in asynchronous logic, can be
implemented by a pair of spiking neurons which excite each
other to fire a spike which keeps oscillating between them.
The stored spike is released with the help of a third neuron
that acts as a gate and resets the pair of neurons on receiving a
‘request’ control spike from another neuron. The released

spike can be considered as the ‘acknowledge’ signal in
response to the ‘request’ signal.

IV. IMPLEMENTING THE SYSTEM USING NEURONS

In the high-level specification of the sequence machine,
input symbols are associated with the context of the sequence
and a prediction of the next symbol is generated. In the neural
implementation, these symbols are encoded as bursts of spikes
fired by layers of neurons. These spike bursts propagate like a
wave through different layers of the system, each layer
generating an output burst after receiving its input burst from
the previous layer. The operation of the system is
asynchronous, because there is no global mechanism such as a
clock to synchronise the firing times of spikes and bursts of
spikes across different layers.

In our system, we use a coding scheme known as rank
ordered N-of-M code, in which we specify that N out of a
total of M neurons in the layer can fire spikes in a burst, and
the choice of the N firing neurons as well as the time order of
their firing determines the code. The N-of-M code can be
implemented by having a neuron that takes inputs from the M
outputs of the layer and fires a resetting spike when N output
spikes have fired in that layer that resets all the neurons. A
neuron can be sensitised to a specific input firing order by
multiplicatively decreasing the effect on activation increase
for each successive input spike, and keeping the threshold of
the neuron such that it fires when it has received the specific
code. Finer details of the implementation of such a code using
spiking neurons can be found elsewhere [2].

We use the wheel or spin model of the neuron in our
implementation, in which the neuron can be visualised as a
wheel spinning at a constant rate. The neuron has a quantity
called activation or phase, which keeps on increasing at a
constant speed, unless the neuron gets an input spike, which
increases its activation (or phase) by an amount corresponding
to the connection weight of the input neuron. The activation
increases linearly till it reaches the threshold, which it will
eventually, even if it gets no input spikes.

V. COMPONENTS OF THE SYSTEM

The system consists of the following neural layers as
components: input, encoder, context, delay, address decoder,
data store and output. Figure 1 shows the different component
neural layers in the network and the connections between the
components.

L —
Input ﬂ ﬂ Output
Context
— — :Di_’zb
Encoder T Address Data
fa k= Decode Store

Delay

Fig. 1. Component neural layers of the sequence machine.

Most of these layers have fixed connection weights at their
inputs and are essentially lookup tables, except for the data
store (which is where the associations are written) and the
context, which is like a finite state machine. We shall not
mention here the detailed implementation of different
components of the system, but the interested reader can find
this elsewhere [1].

VI. TIMING DEPENDENCIES

For simplicity, we will consider only the input (ip), context
(cxt), delay (del) and data store (store) layers, which are
sufficient to achieve the basic implementation of the sequence
machine. The spike bursts from these layers have to observe
certain time constraints to enable the system to function.

; —
{ L
ip ﬂ:> cxt store —>°P
— del &

\E{\

TIME

»
»

Fig. 2. The primary components of the system and their timing dependencies.
Both the inputs to the cxt layer increase only the activation of the neurons,
while the store layer has a normal input from the cxt layer to increase the
activation, and a special learning input L which signals writing of the
association of the ip and the cxt to the data store memory.

The timing dependencies between the bursts from different

layers in the system can be summarised as follows:

1. The two input bursts to the context layer (fed back old
context from the delay layer and the new input from
the input layer) have to be approximately coincident,
else the context neurons could start firing before
receiving all the inputs, which would destroy the code
transmitted by the burst, which is in the rank of the
spikes. Therefore, the delay time (which is internal to
the system) has to be matched to the gap between
different inputs (which is external to the system).

2. The outputs of the store layer, which form the
prediction of the next inputs to the system, must come
before the next inputs to the system. So the gap
between inputs should be bigger than the time taken
for a spike burst to propagate through all layers of the
system in the forward direction (excluding the

feedback through the delay layer).

The store neurons function in two modes: the normal
or recall mode, in which they get input spikes from the
context layer which increase the activations, and the
learning mode, in which the association of the past
context and the new input gets written to the memory.
The learning mode gets triggered by the firing of the
learning spikes from the input layer. We need to store
the order of the context burst spikes until the next
input burst comes and the association can be written to
the memory. We do so by storing the order in the
synapses of the neurons.

Also, in the learning mode, we have to make sure that
the store neurons receive all the spikes from learning
inputs (and complete writing the association) before
receiving the spikes from the context (which are to be
stored for the next association, when the new input
burst comes). The latency of the context layer can
ensure this.

Initially, the delay layer has no inputs (because there is
no previous context) and consequently the context
layer will fire slower (since its delay inputs are
missing) than it would normally. We have to ensure
that this does not destabilise the system, and the inter-
burst interval stabilises after passing through a few
layers.

VII. OTHER ISSUES

There are some other issues concerning implementation by
asynchronous spiking neurons in general as well as some
issues specific to the sequence machine system, which we
have to deal with. They are briefly summarised below.

1.

We need a signal to indicate the beginning and end of
a burst, because all the neurons in a layer reset their
phases when the burst begins. We consider the first
input spike as the beginning of the burst to reset the
phase of all neurons, and the output of the counter
signifying that N neurons in that layer have fired,
which is the maximum permissible according to the N-
of-M code.

We need to store the rank ordering of the two input
bursts to the context (from the delay and input layers)
separately, since the increase of activation of the
context on receiving any input depends on the position
of that input in its respective burst. This is done by
having two different feed-forward desensitisation
neurons on the two kinds of inputs to the context,
which keep track of the rank of the input spikes from
both the layers.

The bursts of spikes have to be stable (not blow up or
die out) and coherent (not interfere with each other,
and clearly separated) as they pass through different
neural layers in the system. This can be achieved by
using a combination of feed-forward and feedback
inhibition, as shown earlier [2].

We have to ensure that output spikes of any layer do
not start firing before it has received all the input

10.

spikes from the layer before it, else this will spoil the
code being transmitted. This can be arranged by
having large thresholds and axonal or wire delays to
ensure that this case does not happen.

We assume for now that the danger of the system
being caught waiting forever will not happen, as long
as the bursts are stable and coherent as described
above.

The system is very sensitive to noise in the spike trains
and so needs to be carefully engineered so that the
times of firing are precise. However there is a degree
of redundancy gained from using ordered N-of-M
code, as the number of actual codes used in the
alphabet is far less compared to the total possible
number of codes, so some error is tolerable.

It is better to have the latencies (average time between
the input and output bursts) of each layer comparable,
in order to increase the stability of the system as a
whole. To enable this, layers with more inputs should
have higher thresholds and vice versa, because more
inputs mean that the activations will rise quicker and
the intra-burst separation will be small for that layer.
In our implementation of the system using spiking
neurons, we have to ensure that the output spike burst
from a layer in response to an input burst is equivalent
(with respect to the code being considered, i.e. the
rank and choice of neurons firing in this case) to what
we would expect in the high-level model we are
implementing (using ordered N-of-M coded symbols).
The wheel model of spiking neurons that we have
chosen meets this requirement.

The layers have control over their output spikes, but
have no knowledge of their input spikes (unless each
layer asks the layer before it). Therefore we have to
ensure that the output spikes follow the correct code
and there are no errors in generation of the output
spikes, else the neurons in the next layer could keep
waiting indefinitely for the expected number of input
spikes. Having an N-of-M code solves this problem, as
it is self error-correcting.

The robustness of the system depends on the stability
of the bursts, so bursts emitted by different layers and
the same layer during different waves should be well
separated in time. Similarly, the inter-burst and intra-
burst time separations should remain stable.

To ensure that the system works as planned, we have to use
certain control mechanisms as discussed (while not
compromising on the requirement that there should be no
global variables in the system and neurons should fire based
only on input spikes), but we have to minimise them as
much as possible, in order to increase the flexibility of the
system.

VIII. SIMULATION

We used a spiking neural simulator developed by M.

Cumpstey [3] to simulate the complete system. The simulator
is generic, event-driven, object-oriented and suitable for most
common spiking neural models. We specify the network

configuration and the simulation file, and the simulator
outputs a series of spikes from different layers along with their
time of spiking. We had to make a few changes to the original
simulator to incorporate some of the issues discussed.

Below is a diagram of the output of the simulator (with
spike outputs of different neural layers against time) on being
given a repeated input sequence 715171517151. The first time
the sequence 7151 is given the output prediction is incorrect,
but the system learns to predict correctly and the next time the
prediction is correct. The sequence 7151 is used because it is
the simplest sequence where we need to have knowledge of
context to determine the successor of the symbol “1”.

o

Neuron number

—| — ABDRESS
DECODER

00
Time (in seconds)

Fig. 3. Plot of spikes emitted by different layers in the sequence machine
against time. The arrows denote causality, how a burst of spikes causes firing
of another burst in the next layer after a delay. Spikes of the same shape and in
parallel vertical bands belong to the same layer, and ellipses enclose bursts of
spikes. The figure plots 12 different waves of spike bursts each triggered by
an input spike, and forming the sequence 715171517151. After the first 7151
input when the system learns the sequence, the prediction of 15171517 on the
output is correct.

In figure 3, spikes from different layers are plotted on the
Y-axis and time on the X-axis. Spikes of the same colour
belong to the same layer, and the arrows show how a burst of
spikes from one layer causes the next layer to fire a burst after
some time. We can see from the diagram that the spike bursts
from different layers are coherent, stable, well behaved, and
follow the timing dependencies mentioned. They also
implement the high-level sequence machine by learning the
given sequence 7151 in a single pass, and predicting it
correctly in the second and third presentation of 7151.

IX. CONCLUSION AND FUTURE WORK

We have shown that it is possible to build a system out of
asynchronous spiking neurons that can perform the high-level
functionality of the sequence machine.

We have mentioned how common components in
traditional asynchronous design, such as the latch and the
handshake protocol, might be implemented in spiking
neurons. If we adapt traditional asynchronous design
components such as latches to take into the additional
constraints of spiking neural implementation, we could

potentially reach a stage where it is possible to translate any
spiking neural network into its equivalent asynchronous logic
circuit, enabling us to make use of the synthesis tools
available in asynchronous logic design to analyse a spiking
neural network.

REFERENCES

[1] An associative memory for the on-line recognition and prediction of
temporal sequences, by J. Bose, S. B. Furber and J. L. Shapiro, in
proceedings of International Joint Conference of Neural Networks
(IJCNN 2005), Montreal, Canada, 31 July - 4 August 2005.

[2] A system for transmitting a coherent burst of activity through a network
of spiking neurons, by J. Bose, S. B. Furber and J. L. Shapiro, in
proceedings of 16th Italian workshop on Neural nets (WIRN 2005),
Vietri sul Mare, Italy, 8-11 June 2005.

[3] SpikeNetwork: A spiking neural simulator, by M. Cumpstey, private
communication.

Error Checking and Resetting Mechanisms for Asynchronous
Interconnect

Yebin Shi and Steve Furber
School of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK
Email: shiy@cs.man.ac.uk, steve.furber @cs.man.ac.uk

Abstract - Shrinking process technology and the increasing
complexity of integration pose many challenges to the SoC
industry. There has been a growing interest in asynchronous
interconnect which can provide better support for Intellectual
Property core reuse without the problems caused by synchronous
interconnect. Meanwhile advanced integrated circuit fabrication
is leading to the unreliability of circuit, which in turn leads to a
demand for fault tolerant VLSI circuit. CHAIN is a packet
switched on-chip network based on asynchronous interconnect
using 1-of-4 return-to-zero (RTZ) code, and we use 2-of-7
non-return-to -zero (NRZ) code for inter-chip links. In this paper,
we investigate the transient errors that could occur on both
CHAIN and the inter-chip interconnect, and propose
mechanisms for checking and resetting the links to correct or
contain the errors.

I. INTRODUCTION

A variety of Systems-on-Chips (SoCs) are widely used in
many fields such as communication, computers and
multimedia devices. As process technology shrinks, the
complexity of SoCs has been increasing dramatically.
Unfortunately, this poses some special problems. The most
significant problem is clock synchronization since the clock
skew will deteriorate continuously with increasing chip
complexity [1]. It has become a difficult task to design a
balanced clock tree to provide a global clock with reasonable
clock skew, even impossible. Globally asynchronous
interconnect is a promising alternative [2], which enables
designers to integrate a number of synchronous modules into a
Globally Asynchronous Locally Synchronous system,
removing the problem of global clock synchronization.

Moreover the shrinking feature size of VLSI has important
impact on on-chip communication architecture and the
reliability of a circuitry. Shared buses, as used in a traditional
on-chip communication infrastructure do not meet the
demands of modern complex SoC design for high performance
and low power consumption. Recently switched networks on
chip have been proposed as a means to increase performance
and to reduce the power used by on-chip communication [3].
Meanwhile the scaling down of feature size has made modern
integrated circuits more susceptible to a number of factors,
such as a particles, cosmic radiation, crosstalk, and power
bounce. The reasons for this susceptibility are attributed to the
smaller gate oxide thickness, lower supply voltage, and lower
noise margin [4].

The APT group at the University of Manchester has
proposed an asynchronous network-on-chip mechanism -
CHAIN (CHip Area INterconnect) - as an on-chip interconnect
[5], which was first implemented in a smartcard chip.
Asynchronous arbiters, router control units and multiplexers

are incorporated so as to complete the routing of packets, and
pipeline latches are exploited along long wires to buffer the
signals to increase link throughput. CHAIN uses a 1-of-4 code
which is one-hot encoding, resulting in a simple
implementation of the completion signal for the asynchronous
handshake protocol. As described above, the possibility of the
vulnerability of CHAIN to all kinds of transient errors will
increase under the circumstance of very deep submicron
process.

In this paper, the results of transient errors occurring on
CHAIN are investigated, and corresponding error checking
and resetting mechanisms are proposed. In section 2, the
frameworks of two typical asynchronous communication
systems based on CHAIN are introduced in detail. In section 3,
we present the related error detection methods used for
asynchronous interconnect. Then in section 4 a resetting
approach to help the interconnect recover from erroneous
scenario is discussed. Finally we give our conclusions.

II. THE ASYNCHRONOUS COMMUNICATION SYSTEMS

A. On-chip Interconnect

The system framework we use in this work consists of one
hardware communication channel and an external test bench
which includes a transmitter (TX), a receiver (RX), an Error
injector, a result checker and a monitor as shown in Fig 1. For
simplicity, we only introduce one CHAIN channel into this
asynchronous communication system, which means only one
link within CHAIN interconnect is selected between TX/RX,
routers or arbiters. Each module in the test bench is briefly
explained as follows:

Communication Channel

—
—
—

Test Bench

IN FIFO

DEMUX
OUT FIFO

| Error Injector

T
Packet
Gen

Momtor

Fig 1 a simple asynchronous communication system based on CHAIN and its
simulation environment

Packet Gen generates random packet data, including the
address, 1D, payload and parity/CRC fields with ‘constraint
randomize’ provided by SystemVerilog. TX sends out each
packet in bytes to the interface of IN FIFO located in the

design part, and to pad EOP (End of Packet) at the end of each
packet. RX receives each byte data, re-forms the data into
packets, and feeds them back to a Checker within the
test-bench. The Checker module is able to compare the data
from RX and TX, and calculate the parity or CRC of received
packets. Monitor will collect the reports from the Checker and
RX modules and take different actions according to the types
of occurring errors. An error Injector module is used for
injecting random errors onto CHAIN, and the frequency and
duration for each spike can be randomized by applying
different constraints.

Additionally the MUX (serializer) module serially forwards
each of four 2-bit symbols from the parallel output of the FIFO
with using a 1-of-4 code to CHAIN. Four select signals issued
from 4 S-elements in order control the latch arrays, such that
each of the four parallel data from the FIFO will pass though
them as shown in Fig 2 and Fig 3. The final serial data is
formed by an OR operation of each bit for four groups of data
with the same bit position.

’7 : DOUT4:0]
DIN[19:0]

LATCH
ARRAY

P25_EN SEL_0)

LATCH
ARRAY ‘

‘ DEMUX of ACK

AcKl
‘ Lﬁ——) ACKLO 7

SEL_0

ACKLL
7— oo

Acki2
—) —(¢ SEL2

]

ACKI_3

— C SEL_3
Laten

[51}
Fig 2 an asynchronous MUX
PIpEEDEE

LATCH
ARRAY

DI4:0]

Fig 3 a latch array of C-elements

The DEMUX (deserializer) module buffers four symbols
from CHAIN and then forwards all of them in parallel to the
OUT FIFO on the link. In detail a control part is used to
generate four select signals, ‘sel_0’, ‘sel_1’, ‘sel_2’, ‘sel_3’,
which enable four paths of output data. The STG (Signal
Transition Graph) of this controller is shown in Fig 4. In this
graph, ‘di_cd’ denotes the completion signal for data input of
DEMUX; ‘do0_cd’, ‘dol_cd’, ‘do2_cd’, ‘do3_cd’
respectively denote the completion signals of four groups of
output data; ‘acki’ and ‘acko’ denote the acknowledge from a
receiver and to CHAIN. Therefore we incorporate this simple

controller synthesized by Petrify with C-elements to build a
DEMUX.

B. Inter-chip Interconnect

A NRZ 2-of-7 code is implemented on inter-chip links to
provide better performance with less wire cost and lower
power consumption as shown in Fig 5, and specific
transceivers need to be used for the conversion between 2-of-7
code and 1-of-4 code on CHAIN and the conversion between
RTZ and NRZ.

di_cd— sel_0+
do0_cd+

acko— / acki—
dol_cd+
acko+ sel_1— do0_cd- dol_cd- do2_cd- do3_cd-

Fig4 STG of the control part of DEMUX

Chip A Chip B

| ol
Transceiver

2-of—7 Data| CHAIN

Transceiver

Fig 5 Diagram of chip interconnect

In this work, we also design a communication system as
shown in Fig 5, consisting of an inter-chip link, CHAIN and
the verification environment which is almost the same as the
model used in the previous on-chip communication system.
This inter-chip interconnect using NRZ 2-of-7 code is our
target to inject spikes so as to simulate the error scenarios of a
whole integrated system based on a printed circuit board
suffering from some noise sources.

III. ERROR DETECTION ON ASYNCHRONOUS INTERCONNECT

A. Physical Layer Error Detection on CHAIN

During the idle state between two valid data symbols
propagated on CHAIN, if errors are induced, some unexpected
bits of data could be introduced into the data sequence
transferred on it. This insertion of extra data causes a sync
error, which can be detected by a physical unit on the receiver.
The receiver continually catches only three or fewer EOPs
rather than the normal four EOPs in each packet. What’s more,
all the data in the following packet are shifted by one or more
symbols. Consequently some EOP symbols appear on the
beginning of the next packet.

In order to make the communication recover from the above
errors, we can use two different methods. The straightforward
way is to report the sync error to a relevant monitor when the
receiver recognizes a sync error by detecting an unaligned
EOP. This monitor will take some measure, for example
resetting the link with the error occurrence to clear any
remaining data in different parts of the link. However, at least
two packets remaining on the link will be discarded in order
for the link to recover from errors. To reduce this kind of
packet loss, some other solutions may exist, since we don’t
need to drop packets apart from the current packet containing
the erroneous data. Therefore the current packet with the error
has to be discarded, while the receiver is able to continue to
receive the next packet from CHAIN by shifting it by some
bits. The second approach to shifting data could achieve better
performance in terms of packet loss and timing, admittedly at
the expense of circuit complexity compared with the first
method.

The next scenario we need to consider is that errors could
happen during the data transfer state of CHAIN. Soft errors

have no significant impact on any data wire with the value ‘1’
due to their duration of less than hundreds of picoseconds [6]
and the nature of the delay insensitive handshake protocol
forcing the pipeline latch to wait for the arrival of a valid bit.
But it is different for the rest of wires with ‘0’ values as more
ones will probably be captured by the receiver during a data
transfer on CHAIN if a positive glitch is coupled onto one of
these wires with low values. We define this type of error as a
protocol error. Because they do not cause sync problems or
extra data, we just need to drop this packet. However the
subsequent packets are not affected, so it is not necessary to
re-align the data sequence or to report it to some monitor unit
unlike the previous error scenarios.

B. Data Link Layer Error Detection on CHAIN

Error detection codes are used to provide data validation on
the data link layer of most communication systems, which is
based on the observation that not all the errors can be checked
on the physical layer. For multiple errors on CHAIN during
one packet transfer, 4 errors GO, G1, G2 and G3, as shown in
Fig 8, occurring on idle states of CHAIN, lead to 4 extra
symbols being inserted into a normal data sequence.
Consequently the receiver is unable to identify it as either a
sync error or a protocol error. In this case, the packet length
will be increased by one byte so that the receiver can identify
this error by checking the length field within the packet. We
could not exclude some extreme cases in which the packet data
are changed with the same packet length though the possibility
of the change is quite low. Therefore parity/CRC codes
applied on the data link layer can be employed with the
previous methods on the physical layer to check the validity of
a packet data.

\> random_erar/glitch_en 1] M
+p receiver/Dl 53 13 {17 ErEr 3 {7E [rr 157
< receiver/ACK2 1] T T
« comp_detection/COMP St LT || (|
w4 227 to_rtz_14/mb 53 13 7 W=7 [78 157
w4 nrz_27_to_riz_14/mb 7b 03 17 jicH] 176 157
g n_27_to_ttz_14/pipe_out | 28 10 14 00 {24 L] OO]]
+lp tz_14_to_rz_27/pipe_out_1| 28 1014 {00 120 f21 ({00 JE] A1 {00 120
Now |00ps | I2IusI I e I205lﬂnsI b I21DIDnsI o H |215I0n; e I I22DIDnsI I
Fig 6 A Deadlock on an inter-chip link
Q chain_tb/gen_ind 4 Z bic]
Q chain_thlink_rst 0 []
H+p chain_th/tb_dout 20824 | 05544 | J@04ZZ] 11042)) [joo0od jo O z0eza Tioesdz 1Y J09088
& chain_th/th_acki i 1 I I I T Il 1
H9 p2s/din 10302 | JADEDZ Y JzA0me Y \edZi0 Y i jooomg Y0081 {12074 [Josses | | (41024
=4 p2sidout 0o {00 COTnO0m0 OO0 Cnme 0O00000a o EERREER R E R RN R F R R R L
= in_fifaddin 20824 | Y0544 {Ya0422] ¥ 11042 ¥ Y [Y00000 Yo zng2s [oee4z Y ¥09088
H i fitadaut 10902 | A0SZ) Jz70e J Yedzi0 Y[ijouond J0a081 {1 147024 3§ Josszd | { (41074
=i ch_latchD/d_in noooo | o 000000, 0000, 0000 0000 JEERERS ORI TER SRR BRI BERE
#4p ch_lachS/d_out a0 | 0000 00000 T 000000 Yo0000 IRERERER BN RN E N R EE RN E D)
D ou_filoddin 00000 | G000 | 3]00000 | J{p0000) jo000a Yjoo000___jjoo0oo |3 jooood
H ou_fifo/dout 00000 | 30000000000 JJo0oo0 e jouaad T N (R 10
= s2p/din 08 ooy OO0 o n0n0 Yoot 0000 oo IRERERER RSN RN R ERERFE RS D)
= sZpidout 00000 | D000 | JJo0000 | {ypoood ¥ joo0og Y)00000 __)jo0000 | jJooood
:-\> chain_tb/th_din_latch 03042 | 10828 J0a042 141108 124204 102051 142024 102824
& chair_th/th_acka 1] N nl N I Il
= Naw i0ps | 7ot D Do Db e
F0ns Falns 70 ns 740 ns 750 nz 7B ns

Fig 7 A Reset operation to recover the link from a deadlock

One Packet {

dinf4) SS—\
din3] /ﬁ)
dinf2] /ﬁ\2 f§
dinff] ff
dinfo] /ﬂ ff

Fig 8 Four transient errors during idle states occurring in one packet

C. Inter-chip Link Error Detection

Random errors have a serious impact on the complex delay
insensitive circuit since randomness of errors is able to break
the basic handshake protocol. In fig 6, the glitch coupled with
a wire of the output of the sender module changes DI from ‘37’
to the other value, which causes the decoding circuit
nrz_27_to_rtz_14 to work in a wrong way. The output signal
pipe_out should be the delayed version of pipe_out_1, but the
value of pipe_out is 24’ rather than the correct value ‘20’ at
about 2030ns. Unfortunately the value 24’ is viewed as
correct data by the completion module within this decoder,
causing three early issues of the completion signal (COMP).
As a result, a deadlock on this inter-chip link arises from an
early acknowledge back to the sender module but no further
acknowledge is available to end the data propagating on the
inter-chip link. As for a deadlock occurring on the inter-chip
link, we can set a timer to monitor the status of this link. From
a sender’s point of view if this link has not received any
acknowledge for the transmitting data and has halted for a long
time beyond some reasonable threshold, a deadlock has
probably happened and therefore a reset signal should be
asserted to clear CHAINs on the two ends of the inter-chip link
and any other relevant units throughout this link.

IV. A RESET MECHANISM ON CHAIN

Although an error cannot cause an on-chip link to deadlock
even in the worst case, it will probably push the link into an
erroneous state and it cannot transfer data correctly until we
adopt some measures to restore it. As one simple option, we
can construct a dedicated local reset signal, which is driven by
the receiver and connected to any unit on the link including
CHAIN, the two FIFOs, both of the MUX and DEMUX, and
even the transceivers of a inter-chip link in order to clear all the
remaining data. A deadlock happening during inter-chip
communication or a sync error on CHAIN within a chip can be
eliminated by applying a resetting mechanism.

As shown in Fig 9, the reset signal is introduced into almost
all C-elements along the link as one input of the acknowledge
signal, and when valid it will force every C-element to able
only to receive new zero values. Therefore the receiver stops
sending back acknowledge signals to the previous unit on the
link and asserts the reset signal to the Link. Then when the
transmitter takes an acknowledge signal with a ‘1’ value, it
drives all wires to ‘0’ until the receiver finds the link idle for a
while. Finally the receiver ends the resetting procedure by
driving the reset signal low and prepares to sample the next

packet. Fig 7 shows a resetting operation on CHAIN, and the
reset signal is not cancelled until all data remaining on the link
is removed.

Admittedly, a reset mechanism means that all the data after
the corrupted data will be dropped. How much data are lost is
mostly determined by the depth of the FIFOs and pipelines in
CHAIN.

1[4]

DO[4]

]

Slelolole

DI[3]

DO[3]

DI[2]

DO[2]

DI[1]

DOI11]

DI[0]

DOJ0]

Blololo

ACKI

RESET

Fig 9 Reset Mechanism implemented on CHAIN

V. CONCLUSIONS

In this paper, we presented an environment to simulate the
behavior of CHAIN when suffering from transient errors and
analyzed all possible effects due to errors. Most of them are
erroneous data with uncertain length inserted into packets
according to the simulation result, and no deadlock arises.
However the effect of an error injection is different for an
inter-chip link using a 2-of-7 NRZ code and a random glitch
may cause deadlock in some case. Therefore we discuss
different detection methods for CHAIN and an inter-chip link
in detail. Meanwhile in order to restore on-chip or inter-chip
communication from an erroneous state, we propose a
resetting circuit mechanism for asynchronous interconnect
which can effectively clear all the data remaining on the links
and guarantee the correctness of subsequent data transfers
despite the fact that the loss of data is unavoidable.

REFERENCES

[1] Jan M. Rabaey et.al, “Digital Integrated Circuits a design perspective”,
second edition, Pearson Education Inc., 2003, Page: 549-550

[2] DM Chapiro. “Globally Asynchronous Locally Synchronous Systems”,
PhD thesis, Stanford University, 1984.

[3] William J. Dally, Brian Towles, “Route Packets, Not wires: On-Chip
Interconnection Networks”, DAC 2001, June 18-22, 2001, Las Vegas,
Nevada, USA.

[4] Allan Johnston, “Trends in radiation Susceptibility for Advanced
Semiconductor Devices”, 15 September, RD49 SEMINAR ON COTS,
http://rd49.web.cern.ch/RD49/RD49News/ Allan_johnston.pdf.

[S] John Bainbridge, Steve Furber, “Chain: A Delay-Insensitive Chip Area
Interconnect” IEEE Micro, vol. 22, no. 5, pp. 16-23, Sept/Oct, 2002

[6] Steven V. Walstra, Changhong Dai, “Circuit-level modeling of soft
errors in integrated circuits”, Volume 5, Issue 3, Sept. 2005 IEEE,
Page(s):358 — 364.

On-Chip Phase Regeneration Circuits

Crescenzo D’Alessandro, Alex Bystrov, Alex Yakovlev

Microelectronics System Design Group

School of Electrical, Electronics and Computer Engineering

University of Newcastle upon Tyne, UK

Abstract— Designs which require a phase relationship be-
tween two signals to be maintained along a link benefit from
the use of repeaters which actively regenerate this relation-
ship. This paper discusses some implementations of phase-
regeneration circuits and attempts to introduce the reader
to the issues encountered in the design of such circuitry.
Simulation results are provided with discussion on the rela-
tive performance.

I. INTRODUCTION

The design of reliable interconnects for on-hip block-to-
block communication is becoming a crucial point for the
development of new on-chip architectures, so much that
designers now talk about communication-centric design.

In some cases a given time relationship between two sig-
nals is available and needs to be maintained. One such
case is the phase encoding protocol initially proposed by
D’Alessandro et al. in [2]. In the work the authors propose
the use of two out-of-phase signals to carry informations;
the binary phase relationship (4/-) encodes the bit of in-
formation being sent across the communication link. The
work was then furthered in [3] for multiple-rail implementa-
tion, where the link is composed of several communication
lines and the symbols are encoded in the order of occur-
rence of transitions on the lines. It is shown that the phase
corruption introduced by the link, mainly through cross-
talk between the lines, is significant and can greatly affect
the correct recovery of symbols. The assumption that the
phase of the signals is kept along a path without addi-
tional circuitry still holds for short paths, as the cross-talk
induced by each line on the neighbouring one is limited,
thanks to the limited coupling between the wires.

Devices which are able to recover the initial timing re-
lationship between two incoming signals are therefore re-
quired. These will make sure that two edges travelling
along a path will maintain the given phase throughout the
path: given as input two identical signals delayed by a
variable amount outputs the same signals with time delay
always +0. In particular, in this work we focus on the type
of repeaters that will only perform the delay correction if
the input delay is less than the nominal delay 6.

Several possible implementations are possible for a re-
peater; some types of circuits can be distinguished:

« latch-based design, where the outputs are controlled by
latches which are on the “data path”

o ME-based design where the MEs are on the data path

o ME-based design where the MEs are not on the data
path

This work is supported by the EPSRC grant EP/C512812/1.

The designs can be implemented both at transistor-level
and at gate-level. Some examples for the design styles will
be analysed in the remainder of this section.

We introduce some measures to rank different designs:
the capture range x of the repeater is the set x =
[0min, Omaz] Of time separations at the input of the repeater
that the device will be able to stretch back to the nominal
value of §. The linearity of the circuit corresponds to the
linearity of the response of the design: given a range of
time differences between two inputs, the linearity refers to
the difference between the output delay between the sig-
nals and the input delay. The latency X of the device is,
intuitively, the time between the first input signal reaching
the device and the corresponding output leaving the device.
Finally, the response time (is the time between the first
input reaching the device and the time limit before which
the second event would not be delayed. For phase-locked
loops (PLLS) it is customary to provide the capture range
(or “lock-in” range) as the difference between the maximum
and the minimum frequency the PLL will lock onto, as the
set is centred around the natural frequency of the loop. Fol-
lowing the same custom, we similarly define kK = 0,00 — C
(as Omin = C)

Several implementations of the device are possible, each
with different issues to be addressed. In particular, we can
distinguish between “analogue” implementations of the re-
peater and “digital” implementations of the device; in par-
ticular, this distinction is based on the generation of the
pulse which stops the late arriving signal from propagating
to the output. The analogue implementations rely on ana-
logue differentiators to generate the pulse; these differentia-
tors are built using series capacitors. In the case of digital
implementations the differentiators are implemented using
gates. In this article we will focus in particular on some
digital implementations of the repeaters.

In the remainder of the section, all the simulation results
are normalised to FO4 delay. The experimental setup in-
cluded input and output inverter buffers; the latency shown
in the graphs includes these buffers. “Rise” and “fall” in the
results refer to the inputs shown in the figures, e.g. after
the input buffer, to simplify analysis.

II. LATCH-BASED DESIGN

A conceptual idea of the device is given in Figure 1 a).
The two input signals are fed into a pair of latches; the first
input to propagate through one of the latches will cause
a pulse at the “enable” input of the two latches, in turn
causing the other signals to be prevented from propagating

through the latch for a given time. As can be seen from
the simple example, two issues become of primary impor-
tance in the design of such devices: first, the latch of the
signal arriving “late” should not enter metastability; sec-
ond, which is correlated to the first, the time between an
event triggering the pulse and the pulse reaching the “en-
able” input of the latches should be minimised in order to
capture as many events as possible. In fact, if the latter
condition does not hold, the late arriving signal will propa-
gate through before the latch has been able to prevent this
from happening.

The following description of the system is based on Fig-
ure 1 a), but can be adapted to other designs. Define as
dsetup the setup delay of the latches and as d, the delay
d — q of the latch. From the figure, the letters a—d repre-
sent the path delays of the indicated paths; in particular,
d represents the delay between the latch enable being re-
leased and the output being generated. Assume that two
edges are travelling on the link and were generated with
delay 6 between each other and arrive at the input of the
circuit with delay d;, < 6.

The latency of the device is trivially A = dg. If

Sin <A+a+b (1)

the second edge will reach the output of the latch before
the pulse is generated and therefore the circuit will have
no effect. If

din €A+ a+b; A4+ a+b+ dsetup) (2)
the latch may enter metastability, as the second edge will
reach the latch during the time the pulse is being generated
and will not respect the restriction imposed by the setup
time of the latch. Finally, when

5in >A+a+b+ dsetup (3)

the latch will prevent the second edge to propagate until
the pulse is completed.
The response time ¢ will therefore be:

C=A+a+b+dsetup (4)

The nominal value of § at the output will be equal to

d=a+7+c+d (5)

The upper bound beyond which the device does not in-
fluence the path delays is going to be d;4; = 6 + A; in
fact if d;,, > d + X by the time the second event will occur
the latch has been released. Note that if the input time
separation is between ¢ and § + A, the output will still be
0. The capture range k will therefore be:

R = 5ma;ﬂ

—(=7+c+d—b—dsetup (6)

These equations can be used to determine the value of 7
given § and a set of requirements. This first analysis shows
that the value of § must be chosen in such a way that,
even when the phase is maximally corrupted, the condition

i1 1 ol
D
datalnl] dataOut1
G
DL L
En i2 b d o2 1 o
dataln0 | d/f—]\ | dataOut0 s
’ DL J - i2
Qen \a
U R0
’/\
@ === J

o
T
c

(a) Conceptual de-

. (c) Dual pulse im-
sign

(b) Single pulse im-

’ plementation
plementation
Fig. 1. Latch-based implementations
Response of latch—based design (1)
20 T T T T T T
Rise
Latency (1) -——-
atency (rise) — =~
= Latenc)§((fall} -
@ 15
=
2
g
o
g 10
8
@
£
= T T T T T D T T T T T T T T T
5 -
5 5[- 1
]
0 | | | | | | | |
0 2 4 6 8 10 12 14 16 18

Input time separation (FO4)

Fig. 2. Simulation results for the circuit in Figure 1 (b)

expressed in equation 3 is always respected. This can turn
out to be a significant limitation to the speed of the circuit.

Based on Figure 1 (a) two possible implementations are
obtainable, as in Figure 1 (b) and (c), according to the way
the pulses which control the latch clock are generated. Fig-
ures 2 and 3 show the results obtained with these designs.
The two designs have very similar responses; the expected
output § was around 12 FO4 delay, as this turned out to
be the minimum time separation obtainable using a gate-
level pulse generator and the available latches. The device
responds correctly: when the input time separation drops
below 12 FO4 the device pulls the edges apart so that the
output time separation is preserved at the output. The
design fails when the input time separation drops below
a minimum value (equation 1). The latency of the device
is around 6 FO4 delay for rising and falling edges. It is
interesting that the rising and falling edges have different
responses; this is due to the inimbalancebalance of the P-
and N-type transistor in the gates available in the technol-

Response of latch—based design (2)
20 T T T T T T
Rise

Fall = - -
Latency (rise) ——-
15 Latency (fall) ———-

10 -

Output time separation (FO4)

Input time separation (FO4)

Fig. 3. Simulation results for the circuit in Figure 1 (c)

Fig. 4. Automatic synthesis design

ogy employed to obtained the results.

For the purposes of “taxonomy” this type of design is
“early-propagating”, as an output is generated without
waiting for the second edge to arrive.

The main advantages of this type of design is the relative
simplicity of implementation. The gate count is relatively
small and allows the repeater to be easily tuned to the re-
quired specifications. Also it would be relatively easy to
scale up the design for multiple-rail implementations, sim-
ply by OR-ing all the XOR gates between pairs of wire and
controlling a single pulse for all the latches on all wires. The
latency of the design is also relatively low so that several
repeaters can be placed along a line. Finally both design
exhibit good linearity and the output curve are “flat” at
the expected range. However, the capture range of the de-
vice is limited: both implementations stop working around
6 FO4 delay; around that point the risk of metastability
in the latches increases until the devices fail. This type
of design is therefore appropriate if the nominal § of the
link is in the order of tens of FO4. A faster design relies
on transistor-level implementation; this will be described
in Section IV.

I1I. ME-BASED DESIGNS

ME-based designs can be in turn divided into several
types. An ME can be used to identify the first-occurring
event and then, as both events have arrived, the signal is
sent on with the correct time separation; otherwise the first
output can be generated immediately after the first event
arrives and the second after the second event, introducing
some time separation if necessary; finally, the output of the
ME can be fed to a wrapper logic to generate the outputs.
The ME systems can be either “early propagating” if the
first output is generated regardless of the second event at
the input or “merging” if the outputs are generated only
if both events have appeared at the input. In the first
case the latency of the device will be reduced, while in the
second case the latency of the device includes the input
time separation. Conversely, in the first case if the input
time separation is above the required 4, it is left untouched
at the output; in the second case, the response is flat.

An example of “early propagating” design is 4. In this
case two MEs are used for the rising (NAND) and falling
(NOR) input transitions. The outputs of the MEs are fed
to a control logic which takes care of the generation of
the output given the ME outputs and the input signals.

Response of PETRIFY—generated design
20 T T T T T T

T
Rise
L ate 17—
atency (rise) ——--
Latenc})//((fallg —

10 Bromeme e et etss et bttt thsittes .

Output time separation (FO4)

Input time separation (FO4)

Fig. 5. ME-based design results for design in Figure 4

This control logic takes care of resetting the MEs after the
output has been generated; therefore the next input must
be generated only after the previous output has been pro-
duced. This introduces a limit for the bandwidth. Figure
5 shows the output response of the circuit. The latency
of the design is of around 10 FO4, which increases slightly
when the input time difference becomes small; this is due
to the behaviour of the MEs (see Section ??). The output
0 was set to 6 FO4; the response is remarkably flat below
6 FO4. The design stops working below 0.04 FO4 when
the NOR-based ME is used (“fall” curve in the graph); it
works all the way down to 0.009 FO4 (simulation limit)
when the NAND-based ME is used. One interesting fea-
ture of this design is that if the input J is greater than the
nominal value, the output time separation is less than the
input. This is not always the case, as normally larger in-
put delays are ignored by the circuitry. For the NOR-based
ME branch this is particularly effective, as the response is
flat between 10 and 0.04 FO4; for the other branch the
limits are 8 and 0.009 FO4. Above the higher limit the de-
sign reduces the timing separation but not to the nominal
value. The reduction, however, could allow the next stage
to regenerate the nominal time separation.

An important point for this design is the fact that the
control logic which takes the outputs of the MEs and the
inputs and thus generates the outputs was obtained using
automatic synthesis. The initial specification was described
using an STG; this was then adjusted to take into account
timing assumptions. The design was finally synthesised
automatically using PETRIFY [1].

Finally, an example of “merging” design is shown in Fig-
ure 6. In this design two MEs are employed as in the
previous case, but the output is generated when both in-
puts have arrived. This allows the circuit to introduce the
expected delay regardless of the input time separation. Fig-
ure 7 shows the response of the device. It is remarkably
“flat”, in the sense that the time separation of the output
signals is independent of the time separation of the input
signals. Note that the capture range x is infinite, as the
upper bound ¢ is infinite; however the response of the de-
vice is obviously limited by the metastability effect of the
MEs. It can also be seen that the output time separation
can be made very small: in this case it was only around
4 FO4, although it could have been arbitrarily smaller or
larger. At very small delays (d;, < 0.02 FO4) the design

Fig. 6. ME-based implementation (merging)

Response of "merge" design

| | | | | e
) U -]
: T -
L“" 20 N .,.,_—,./ “/ |
& g e - i
o - o
B S B
B P 7
o
= 10} N
| ‘ Lat %asﬁ - —
‘ ency (rise) ————-
3 i La:encc{,((fa“g e
51 7
|
0 L 1 1 | ‘ ‘ | | |

Input time separation (FO4)

Fig. 7. ME-based design results for design in Figure 6

failed to regenerate the delay as the output value was dif-
ferent from the input. This is due to minute imbalances
in the load of the input signal and of the output of the
MEs, which lead to errors. This is the case only in the
NOR-based ME: the NAND-based ME continues working
throughout the required range, down to 0.009 FO4.

Another unwanted behaviour of this design is that the
latency of the device increases with the input time differ-
ence. This is due to the “merging” characteristics of this
design: as the production of the output is dependent on
the presence of both input transitions the latency is equal
to:

A =0in +do (7)

where dc is the propagation delay of the logic which
generates the “reference” signal. An important note though
refers to the change in behaviour of the latency for the
falling transitions which occur around 3.5 FO4 input time
separation. this is due to the slow response of the NOR-
based ME; below 3.5 FO4 the ME delay dominates, so that
the reduction in input delay is counteracted by an increase
in ME resolution time, which causes the output delay to
flatten out below this point.

IV. TRANSISTOR-LEVEL DESIGN

The latch-based design is improved if the response time
of the circuit is reduced. This can be achieved using
transistor-level implementations of the various parts of the
repeater. One such solution is shown in Figure 8. The

Response of transistor-based design (o keeper)

Output time separation (FO4)

Latency &rfsaelgl f—
’ p—

, Latency (fall

0 L L L L L L L L L
05 1 15 2 25 3 35 4 4.5

Input time separation (FO4)

Fig. 8. Transistor-level design and simulation results

circuit shows smaller response time than the designs previ-
ously analysed, and also a smaller number of gates, result-
ing in less area consumption.

The response of the design is strongly dependent on the
direction of the input transitions, due to the difference
in speed between the P- and N-type transistors. Taking
into account both transitions, the latency of the device is
around 1 FO4 if the input and output buffers (not shown)
are not taken into account; the response time (is also
around 1 FO4. Intuitively, when N-type transistors domi-
nate the response time is less than 0.5 FO4. The capture
range k is around 2.5 FO4; however 7 was chosen to be
only 2 FO4, but could have been a larger value, in turn
increasing the capture range.

Note that the latency of the device increase exponentially
when the input time separation drops, due to metastability
of the device. However, in that region the device is already
outputting a § which is less than the nominal value. In this
example, the operating area of the device would have been
down to 1 FOA4.

V. CONCLUSIONS

An introduction to the problem of designing phase-
alignment circuitry within the context of phase encoding
has been presented. Some designs and categories have been
described and simulation results presented. The availabil-
ity of different solutions with different dynamic behaviour
allow the designer to identify the best design style accord-
ing to the particular design requirements of the work at
hand. Silicon results, preceded by a more thorough analy-
sis of the layout information, are part of the future work,
together with a method to explore the design space in an
interactive manner.

REFERENCES

[1] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alexandre Yakovlev. Petrify: a tool for manipulat-
ing concurrent specifications and synthesis of asynchronous con-
trollers. In XTI Conference on Design of Integrated Circuits and
Systems, Barcelona, November 1996.

[2] C. D’Alessandro, D. Shang, A. Bystrov, and A. Yakovlev. PSK
Signalling on SoC Buses. In Integrated Circuit and System De-
sign. Power and Timing Modeling, Optimization and Simulation.
Proceedings of PATMOS 2005, volume 3728 of Lecture Notes in
Computer Science. Springer, 2005.

[3] Crescenzo D’Alessandro, Delong Shang, Alex Bystrov, Alex
Yakovlev, and Oleg Maevsky. Multiple-Rail Phase-Encoding for
NoC. In Asynchronous Circuits and Systems, 2006. 12th IEEE
International Symposium on.

Fault Tolerant Techniquesto Minimisethe Impact of Crosstalk on Phase Encoding Communication Channels
Basel Halak, Alex Yakovlev, University of Newcastle upon Tyne, UK

Abstract

A communication scheme in which symbols are encoded by
means of phase difference between transitions of signals on
parallel wires is considered. A significant decrease in the
reliability of such a channel is caused by capacitive crosstalk
between adjacent wires. A more robust high-speed phase
encoded channel can be designed by minimising its vulner ability
to crosstalk noise. This paper investigates the impact of
crosstalk on phase encoded transmission channels. A functional
fault model is presented to formulate the problem. Three fault
tolerant schemes are introduced which are based on information
redundancy techniques and the partial order coding concept.
These schemes are simulated with CADAECE using AMS
CMOS 0.35um process. Area over heads, performance and fault
tolerant capability of those methods are compared. It is shown
that a substantial improvement in the performance can be
obtained for four wire channels when using the fault tolerant
design approach, at the cost of 25% of information capacity per
symbol.

Introduction
On-chip global buses are increasing in length witheasing die
sizes, resulting in large propagation delays [3]}, The delays of
those buses have two impacts; namely:
e They limit the system performance in many high-spee
microprocessors [2], [3].
e They lead to an increase in the clock skew, whiehkes it
difficult to accurately distribute a single globalock
across the entire system [4].

This trend is anticipated to exacerbate in the reutdue to the
increasing gap between gate delays and intercomtaday brought
about by shrinking feature sizes [5]. Globally agyonous locally
synchronous (GALS) electronic system design is thauology that
addresses these problems. In GALS functional medare designed
using conventional design techniques. Each moduke

complemented by its own local clock generator anskeltimed

wrapper that enables the modules
asynchronous handshake protocols [7]. It is expettat 40% of
the electronic design in 2020 will be driven by tsimake clocking
[6]. Although the issue of self-timed communicatiprotocols has
been intensively investigated in terms of poweicafhcy, speed,
area overheads and reliability in many paperseffest of transient
errors on self-timed channel reliability was fiesddressed in [8].
Transient errors caused by cross-talk, cross-cogpliground
bounce or environment interference, become morenipent as
integration increases. Thus signal integrity is autisk [9]. This

motivates the fault tolerance approach to desiifulti-rail phase

encoding is a novel fault tolerant, self-timed siing protocol, it

was proposed in [8]. The data is sent using thes@halationship
between differentially delayed copies of a refeeesignal. Mutual
Exclusion elements [10] are employed as phase thesetor data
recovery. This technique outperforms many of thestmg self-

timed communication methods such as 1 of 4 RTZYRetb Zero).

It also exhibits high robustness against SinglerEWpsets (SEUSs),
hence it is more reliable.

However, capacitive crosstalk between adjacent swimmay

deteriorate their phases, which will strongly afftéee integrity of

the data being sent [8]. This problem can credietdeneck to the
system and may prevent the use of this techniqueenal data on
long wires and/or at high frequencies. Crosstalk loa defined as a
disturbance, caused by electromagnetic interferesoag a circuit

or a cable pair. A telecommunication signal dissuptsignal in an
adjacent circuit or wire and can cause the sigtalsbecome

confused and cross over each o

to communicateng usi

In the case of adjacent wires the crosstalk noféectecan be
explained as follows; when two wires are placedeltgether, the
current flowing down one (which we will call “aggor”) induces
a current in the other wire “victim”. The electriteld causes a
current in the victim that flows both ways, backdsand forwards.
For example if a single electron was at a poinb@lihe aggressor, it
will tend to repel electrons in the victim in botlirections away
from that point. This type of coupling is often ledl “capacitive”
coupling. The aggressor wire also generates a rtiadiedd, which
in turn generates a current in the reverse or baakwlirection in
the victim wire. This type of coupling is often leal “inductive”
coupling. So crosstalk is a direct result of thecebmagnetic field
radiated from the aggressor wire, therefore itspting effects
attenuate with distance. This means the crosstetkvden non-
neighbouring wires is less than that between ne&ighd This fact is
going to be exploited in the fault tolerant techugg introduced in
this article.

There are two types of Crosstalk noise: Functidd@te and Delay
Noise. A functional noise occurs when a transittona wire (A)
leads to a glitch on a neighbouring wire (B) asvaidn figure 1-a.
A delay noise occurs when two neighbouring wiresitcdw
simultaneously, which causes transition slowdowsp®edup in the
victim wire. This leads in both cases to a redurciio the original
time distance between the two transitions as caseba in figure 1-
b.

i a

(b)

Fig. 1. Crosstalk Noise Types

In the case of phase encoded channels all wirdstswlose in time
and in the same direction, they can be considelia$,ai.e. they
reinforce each other. This reinforcement is matéfgsis a reduction
in the original phase between transitions. Figureshdws the
transient response of the inputs (2-a) and theutsitf2-b) of a four
wire phase encoded channel whose length is 2mmoaAde clearly
seen the time distance 500ps between the first thadsecond
transition (inl1 & in2) was reduced at the outpuist{ & out2) to
230ps. This also applies for (in3 & in4). This phasrruption does
not generate errors as long as the mutex elemetits geceiver side
can decide which transition was the first one. Heeve our
simulations showed that the crosstalk noise casoime cases lead

to phase conversion i.e. the transitions are redeim an order
different to their original one. Errors can alseucif glitches (see
figure 1) are perceived as transitions by the meferments. These
errors are filtered out if they happen outside #vent window;

otherwise they cause faults [8]. This problem islféo the multi-

phase encoding technique.

The impact of crosstalk noise on communication oeénhas been
addressed in many papers. Researchers have propesedal

techniques aimed at reducing the crosstalk indudeldys. The

insertion of repeaters and shielding of bus wires #he most

e Type 1 is a result of the conversion of phase betwe
transitions on adjacent wires.

. Type 2 is a result of the phase conversion between

transitions on non-adjacent wires
e Type 3 which includes both type 1 and 2, i.e. & iesult
of the phase conversion between transitions owiedks.
Consider the case of a four wire phase encodednehafhe first
wire is denotedx. The second i, the third isc and the forth isl.
Each combination of transitions (information symbatill be
represented by those four letters whose order anbeicthe order of

common methods. The selection of a proper globate wisjgnal transitions in time. For exampdadc means the second wire

configuration has also been proved to significamtiynimise the
impact of crosstalk. Furthermore, research hasntlcehown that
fault tolerant techniques can be employed to ease
communication channels reliability in the preserafecrosstalk.
Other techniques rely on crosstalk avoidance codes

This article provides a comprehensive study on tise fault
tolerant techniques to minimise the effect of cra&snoise on
multi-phase transmission protocol.

For deep submicron circuits the capacitive couplisg more
prevalent, and the delay is dominated by the céga® and the
resistance [11]. Therefore our focus will be onty the impact of
capacitive crosstalk.

The organisation of the paper is as follows, Sec#antroduces a
functional fault model which formulates the impaaft crosstalk
noise on multi-phase transmission protocol. Thekgamnd theory,
implementation and simulation results of each tephn are
presented and analysed in section 3. Finally theclosions are
drawn in section.

Transient Response

-1 /in3 -
40 « v 4
30 t
—_ 2_[]5
< L
Lo
00 £
0.0 4.0n 8.0n 12n
time(s)
@
Transient Response
m: SOt -
4.0 4 - SOut3
30 s
:‘: 20
10
0.0
0.0 4.0n 8.0n 12n
tine(s }
(b)

Fig. 2. Crosstalk Effect on Four Wire Phase Encoded Channel

2. Transient Fault M odel

As explained previously the information is encodesda differential
phase between signal transitions on wires. Thestalblsnoise may
corrupt this phase leading to systems failure.rtfeoto tackle this
problem, a fault model based on a functional absta of the

crosstalk errors is introduced in this sectioncdnsists of three
types of faults, namely:

b transition first then the first wira follows, and then the fourth
wire d. Finally the last transition occurs on the thirdeac. This
notation will be used throughout the article.

Let us now assume that the combinatiaed was sent. When the
combinationbacd is received, i.e. the transition order was presgrv
no errors are said to have occurred. If the contisinaabed is
received, type 1 fault is said to have occurrea, a. conversion in
phase between transitions on two adjacent wiresb)a,lf the
combinationbcad is received, a type 2 fault is said to have oerr
i.e. a conversion in phase between transitionsnanrton-adjacent
wires (a, c). Finally, if the combinatiorbad is received, a type 3
fault is said to have occurred, i.e. a conversiorphase between
transitions on two adjacent wires (b, c) and on tvem-adjacent
wires (a, c).

3. Fault Tolerance Techniques

In this section three fault tolerance techniquaspisase encoding
transmission protocol are introduced. The first @based on the
traditional theory of concurrent error detectiord arrection [12].
The second one is based on the concept of partiet coding. The
essence of the third technique is to encode eatzhhinas phase
between signals on two particular non-adjacent swifihis allows
the detection or detection and correction of tyfaults.

3.1. Cluster-based Concurrent Detection and/or
Correction Techniques (CCED)

The essence of this method is to map the normalbwector space
of a system onto an extended code space suchrilya subset of
the code space represents valid information. Thappimg can be
obtained by adding extra bits, which are calledckhkits, to the
data word to form a codeword which has useful edetection or
detection and correction properties. Our simulatishowed that the
occurrence of type 1 faults is more frequent thege 2 and/or type
3 ones, therefore it was decided that the phasedencshould be
designed in such a way that phase conversion betaeg two
signals on adjacent wires should only cause oneeisdr. This
reduces the effect of the crosstalk noise on tha daegrity. For
example, let us study the case of a 4 wire phaseded channel.
Assume that the data word (0000) was phase enaxléabcd) and
during its transmission was altered to (abdc). Heeshave two
possibilities. The first one is when the hammingtalice between
the two original codes is equal to one, e.g. ¢bde of (abdc)
represents (0001), (0010), (0100) or (1000). Tiwrse possibility
is when the hamming distance between the two cizde®re than
one, e.g. (abdc) code is (0111). As can be cleaoliced type 1
faults causes one bit error in the first case arut3rror in the
second case. The detection or/and correction df suors requires
adding extra testing circuitry to the design. Weéhdesigned two
schemes. The first one has error detection praserrhe second
one has error correction properties. These cirouit®e simulated in
CADENCE and simulated using AMS CMOS OuB5 process. The
simulation showed that both schemes function ctyreéll type 1
fault has been detected and/or corrected.

Error

3.2 Cluster-based Partial Coding Technique(CPC)

Although CCED method improves the reliability oetishannel, it
has large area overheads. CPC is another appreaeil lon partial
order coding concept; it has the same fault tolezaability but
requires less area overheads. The idea of thisomiéthto encode
the data by means of phase difference betweenittanssof signals

on non-adjacent wires so that the phase betweervangignal on Data Wires
neighbouring wires does not carry any informatidme theory

behind this method is that the crosstalk betwegnais on non- 11 a&ec
adjacent wires is less than it is between signalsadiacent wires
because of the fact that capacitive coupling effedtenuate with 12 a&d
distance. This partial order coding masks typeult fand does not
require any additional hardware. However less nunabebits can 13 b&d

be sent as not all combinations can be used. Tieeitty of this
method has also been designed and simulated aneldocorrect.

))) Table 1: Direct Mapping for 4 wire phase Encoded Channel

3.3. Direct Mapping Technique (DM)

This method consists of encoding each data bithasedifference pjrect mapping masks all type 1 faults as phasevéen adjacent

between signals on two particular non-adjacent svae illustrated \jres does not carry any information. It also akothe detection

in table 1. and/or the correction of type 2 faults if extratit®s circuitry is
included in the design. This technique was impleetton a four
wire phase encoded channel in order to detectesitygle 2 error.
DM circuitry has been designed in CADENCE and sated using
AMS CMOS 0.3mm process. Its functionality has been verified by
applying all possible combinations on the encoded eeceiving
them correctly at the decoder.
Table 2 shows a comparison between the three nmextimethods
in terms of information capacity (column 3 and &jfra hardware
(column 5), fault tolerance capability (column &jd its effect on
performance (column 7) and on the design (columnT8g first
column represents the number of wires in the phaseoded
channel. The second column represents the methtalbftolerant

design.
Additional Fault
NO. of No of hardware Tolerance Effect Effect on
. Method Symbols - . L On The
Wires bits for Testing Capability .
L Performance Design
circuitry
CCED 24 4 ves | 1ypel None None
Detection
Three Times
4 CPC 8 3 No Type .1 Improvement is None
Masking .
possible
Type 1 . The
Masking Three Tlmes_ receiver
DM 8 3 Yes Improvement is :
Type 2 ossible requires
Detection P 90% less
CCED 120 6 Yes | el None None
Detection
5 cPC 42 5 No | 1ypel Improves None
Masking Performance
Type 1 The
Masking Improves receiver
DM 16 4 Yes Type 2 Performance | requires 97
Detection % less areq|
CCED 720 9 Yes Type 1 None None
Detection
6 cPC 258 8 No | lypel Improves None
Masking Performance
Type 1 The
Masking Improves receiver
DM 32 s ves Type 2 Performance requires
Detection 99% less

Table 2; The Characteristics of CCED, CPC and DM Techniques

Conclusions

The phase encoded data integrity is put at risk by
crosstalk-related delays. The phase between tiamsit
deteriorates in long parallel wires due to coupling
capacitance which depends on wire length and the
operating frequency. This deterioration may leaénwrs

i.e. phase conversion, hence to system failure. The
simulation showed that crosstalk related errorsotyec
prohibitively large for wire longer than 2 mm and a
frequencies higher than 0.6 GHz. Therefore faualksrant
techniques are a necessity in order to allow tleeafighis
communication protocol reliably. A fault model hiasen
introduced to formalise the crosstalk problem. E€hre

References

F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The

[1] challenge of signal integrity in deep-sub micromete
CMOS technology,Proc. |IEEE, vol. 89, pp. 490—
504, 2001.

[2] D. Sylvester and C. Hu, “Analytical modellinga
characterization of deep-sub micrometer
interconnect,’Proc. |EEE, vol. 89, pp. 634-664,

May. 2001.

[3] D. Pamunuwa, L.R. Zheng, and H. Tenhunen,
“Maximizing throughput over parallel wire structsre
in the deep sub micrometer regimeZEE Trans.

VLS Systens, vol. 11, pp. 224-243, Apr. 2003.

[4] N. A Kurd, " Multi-GHz Clocking Schemes for tal
Pentium 4 Microprocessors " Proc. ISSCC 2001 Feb
2001 pp 404-405.

[5] Semiconductor Industry Association, Internatibn
Technology Roadmap for Semiconductors (ITRS)
2003, http://public.itrs.net.

[6] Semiconductor Industry Association, Internatibn
Technology Roadmap for Semiconductors (ITRS)
2005, http://public.itrs.net.

[7] D. Chapiro, Globally-Asynchronous
Synchronous Systems, Ph.D. Thesis,
University, 1984.

Locally-
Stanford

methods have also been presented. All of them ased>
on the partial order coding concept. The CCED tapien
allows the detection of type 1 faults. The CPC mdth
masks type 1 faults. It also leads to a significant
improvement in the channel performance. This
compensates for the reduction in the number of s§snb
that can be sent. The DM technique allows the tieteof
type 2 faults. It also masks type 1 faults. Improeet in
channel speed is also possible. The DM method
significantly simplifies the design of the phasecatder
and reduces its area, which facilitates the implaaten

of phase encoded transmission protocol on a higher
number of wires.

[8] C. D’'Alessandro, D. Shang, A. Bystrov, A. Yakev
and Oleg Maevsky, "Multiple-Rail Phase-Encoding
for NoC”, In Proceedings.i? International
Symposium on Asynchronous Circuits and Systems,
IEEE, pages 107-116, March 2006.

[9] M. Nicolaidis Eric Dupont and Peter Rohr,”

Embedded robustness IPs”, In Proceedings of the

2002 Design, Automation and Test in Europe

Conference and Exhibition (DATE’02), 2002.

C. Molnar and I. Jones,” Simple circuits thadrk for

complicated reasons”, In Proceedings Sixth

International Symposium on Asynchronous Circuits

and Systems, volume 1, pages 138-149, |IEEE CS,

April 2000.

D. Pamunuwa, L.R. Zheng and H. Tenhunen, “

Maximising Troughput Over Parallel Wire structures

in Deep Submicron Regime”, IEEE Trans. VLSI

Systems, vol 11, no 2, Apr. 2003, pp. 224-243.

G. Russell and lan L. Sayers, Advanced Sinmat

and Test Methodologies for VLSI Design, London,

1989.

(10]

(11]

(12]

C-element Latch Scheme with Improved Fault
Tolerance

K. T. Gardiner and A. Yakovlev
University of Newcastle,UK
{k.t.gardiner,a.yakovlev} @ncl.ac.uk

Abstract— This paper considers the propagation of transient
faults in dual-rail combinational logic through C-element latches.
The paper considers which faults may propagate in a standard
latching structure. The method of duplication is described. A new
latching scheme is then introduced and compared with previous
schemes.

I. INTRODUCTION

Transient faults in electronic circuits were previously only
of concern in space and high altitude applications. As fab-
rication technology sizes have become smaller these faults
have become a concern in terrestrial level applications [2].
The International Technology Roadmap for Semiconductor
(ITRS) [1] also highlights transient faults as an increasing
problem. This has caused an increase in research in this area
in the last few years with work being carried out to analyse a
circuit’s susceptibility to a fault and to produce fault tolerance
techniques. Only a small fraction of this work has focused on
asynchronous circuits, such as: [3].

This paper addresses the issue of transient faults which
affect dual-rail combinational logic of an asynchronous circuit
and their propagation through a C-element latch. The scheme
introduced exploits the build-in redundancy of dual-rail cir-
cuits to detect faults and stop them from being present at the
output of the latches.

The rest of the paper is structured as follows: Section 2
introduces asynchronous circuits, the assumptions made in
this work and muller pipelines; in Section 3 the method of
duplication is described, Section 4 introduces the new latching
scheme, Section 5 shows the results of several benchmarks,
Section 6 concludes the paper and describes future directions
of work.

II. BACKGROUND

A. Asynchronous Circuits

Asynchronous circuits have no global clock to provide
synchronisation, instead methods such as matched delay and
completion detection can be used to mark the completion
of an operation. Data can be passed between modules by
means of handshaking. The ITRS [1] sees asynchronous circuit
techniques at global or local level as a possible solution
in future technologies for the problems of communication,
robustness and power consumption.

B. Dual-Rail

One way of representing data in asynchronous circuits is to
use dual-rail encoding. Here two lines are used to represent
each bit as shown Table I. Alternating spacer and code-word
states (logic 0 and logic 1) are passed through the circuit’s
logic. The current state is detected by completion detection.

dt df State

0 0 Spacer

0 1 code-word - Logic 0
1 0 | code-word - Logic 1
1 1 Not used

TABLE I: Dual-Rail encoding

C. C-Element

The C-Element shown in Figure 1 is a common component
in asynchronous circuits. A C-Element with inputs A and B
and output C has the following behaviour: C = AB + C(A+B).
Therefore the output changes only when the inputs are the
same state, at which point the output changes to that state.

A

s |C)—

Fig. 1: C-Element

D. Muller Pipelines

Muller Pipelines [4] form the basis of the control circuits
in many asynchronous circuits. Figure 2 shows a single stage
Dual-Rail Muller Pipeline. The pipeline works as follows, the
output (dto,dfo) holds a spacer causing acko to be logic 1. This
leads to the previous stage latching data and the next stage to
setting acki to logic 1. When a code-word appears at the input
(dti,dfi) it is latched. This causes acko to change to logic 0
leading to the previous stage latching spacer. The spacer is
presented to the input of the latch and is latched when acki
changes to logic 0. The spacer moves to the latches outputs
causing acko to change to logic 1.

acko

A

acki

Fig. 2: Dual-Rail Muller Pipeline Stage

E. Analysis of Faults Propagation

To asses how prone to transient fault propagation the latch is
each input combination must be considered to see if a fault will
propagate. Consider the single stage from Figure 2. If dti,dfi
are 1,0 and acki transitions to 1 the value 1,0 will appear at
the stage’s output. If before acki goes to 0 dfi goes to 1. The
output will change to 1,1. The erroneous 1 value will remain
till the following spacer state arrives at the latch due to the
function of the C-element.

F. Assumptions

The following assumptions are made with regard to this
work:

1) Transient faults are considered as a digital pulse

2) One fault occurs and the circuit returns to normal opera-
tion before the next fault occurs

3) A fault can not cause a change in value of a data state
ie. 01 to 10

4) When a dual-rail channel changes from spacer to data to
11 error. The data state is long enough to be recognised
and trigger latching.

III. DUPLICATION METHOD

The simplest method of hardening is the duplication of the
circuit. Here the combinational logic is duplicated and the C-
elements modified to have inputs from both the combinational
logic blocks. Figure 3 shows an architectural level diagram of
this scheme, Figure 4 shows the latches used in this scheme.
Only when both the data inputs match is a code-word / spacer
latched. This scheme has the advantage of simplicity with no
extra control logic needed. But has a significant overhead in
terms of area. Duplication is tolerant to single faults and has
only a small increase in latency caused by extra inputs to the

C-elements.
‘IN IN‘

Combinational

Combinational
Logic Logic

b

| Latches |

‘O ut

Fig. 3: Duplication Architecture

acko

acki
dtia L | dto
dtib C
dfia] dfo
dfib C
Fig. 4: Duplication Latch
State Signal
dti dfi enl dtl dfl en2 dto dfo done
1 0 0 1 0 0 0 0 0
2 1 0 1 1 0 0 0 0 1
3 1 0 0 1 0 0 0 0 1
4 1 0 0 1 0 1 1 0 0
5 0 0 0 0 0 1 1 0 0
6 0 0 0 0 0 0 0 0 1
7 0 0 1 0 0 0 0 0 1

TABLE II: Signal States

IV. DOUBLE LATCH SCHEME

From the transient fault analysis view point the Muller
Pipeline has two features which give poor fault tolerance.
Firstly, the behaviour of the C-element means that a transient
fault is latched any time the enable signal is in a state which
allows it. Secondly, any erroneous change in the output of the
latch is presented straight away to the follow stage. A solution
is to latch the data and then check it validity. A second latch
is needed to stop the data being presented to the next stage
until it is considered correct.

The proposed latch is shown in Figure 5 the Signal Transi-
tion Graph (STG) for the control circuit is shown in Figure 6.
The first latch, L1, is composed of two C-elements Lla and
L1b with a reset input that forces the output of the C-element
to logic 0. The second latch, L2, is made up of two standard
C-Elements L2a and L2b. Between the two latches are a NOR
gate to detect spacer and a XOR gate to detect data. The XOR
gate is used as the OR gate usually used to detect data in dual-
rail circuits will detect the 11-state as a valid code-word. After
the second latch is a NOR gate to produce a done signal which
also doubles up as the acko signal. Table II shows the state
of each signal for the cycle of latching data and spacer. The
table shows the inputs, outputs, internal data signals and done
signal. The data and spacer signals are not shown and can be
easily derived form the internal data signals. The table shows
the state of the latch as it operates in a fault free condition.
The enable signals must pass through these states to ensure a
fault does not propagate through the latching element.

A. Operation

In fault free conditions the latch operates as follows: Initially
the latch holds a spacer and EN1 is high ready to receive data.
When data is detected EN1 falls low before EN2 two goes high
to latch the data in the second latch, followed by done going
low. The change in done causes a spacer state to arrive at the
latches input which passes through the first latch. EN2 goes

/home/a4706838/

ACKo

ACKi ACKi
Done
EN1 Reset Spacer Data EN2
T atr| 1|C) dto
dti : i |
'L2a |
dft 1|C) dfo
dfi \ |
'L2b
L

Fig. 5: Double C-element latch
ENl++——————

Data+ Spacer-

EN1-
Data- EN2+
reset+ 4!)

SN N

reset- Data- Spacer+ acki- Data- Spacer+

AR

EN2-

\

acki+

E

™~

done+

Fig. 6: Double C-element latch control STG

low allows the spacer state to pass, causing done to go high.
This in turn causes EN1 to go high and for data to arrive at
the input from the previous stage.

Of course there is the possibility that the latching scheme
itself introduces more possibilities for a fault to propagate.
Indeed as the discussion below shows this does indeed happen
but does not cause a visible error. To consider the fault
tolerance of the scheme the effect of a fault in each case
shown in Table II must be examined. This table allows states
in which the latch may pass a fault to be identified. In state
2 the fault dti=1, dfi=1 can be passed to the internal state this
fault is referred to as F1 and is the same fault as passed by the
standard scheme. In states 3 and 4 a spacer state my be passed

to the output, named F2 and F3 respectively. In the case of F1
the latch L1 is reset and the data state is re-sampled till a valid
data state is latched. In the case of F2 and F3. The spacer fault
passes to the output of the latch but at this point the output
is in a spacer state so no change occurs. To remedy this EN2
goes low followed by the data state being re-sampled.

B. Timing Assumptions

This scheme has a number of timing assumptions which
must be observed. The time before the data of dti,dfi is
evaluated for a fault must be long enough for the outputs of
latch L1 to settle after latching. The time between EN1- and
EN2+ must be long enough to ensure EN1 is low before EN2
goes high. If both EN1 and EN2 are high at the same time a
11 fault may propagate through the latch into the next stage.
All these delay must of be set after layout so the path delays
can be taken into account and must include an allowance for
process variability effects.

V. COMPARISON

The three schemes above were compared in terms of over-
head when applied to a AES look-up S-Box and a Kasumi S9
S-Box. The results are shown in Table III.

Scheme Area
AES Overhead Kasumi Overhead
(um?) (%) (um?) (%)
Muller 119519 N/A 78114 N/A
Duplication 237929 99 155027 98.4
Double C-Element | 128692 7.67 88088 12.7

TABLE III: Area Comparsion

The overhead of duplication is high as expect. In both cases
the overhead is not 100% as the acki signal was not duplicated.
The overhead for the proposed method is low.

VI. CONCLUSION

A new scheme to stop the propagation of faults through C-
Element latches was presented and compared to the method
of duplication. The size of the overhead of the new method
was found to be small. It is planned to expand the benchmarks
to include a more S-Box designs and to compare the schemes
in terms of power and latency with and without the existence
of a fault. The new method will also be compared with that
proposed by Monnet et. al. in [3]. The latency metric is
particularly important in order to measure the effect of needing
to wait before assessing the validity of input that has been latch
into latch L1 and the extra time need to re-sample the inputs
when a fault occurs.

REFERENCES

[1] International technology roadmap on semicondutors. 2005.

[2] P. Hazucha and C. Svensson. Impact of CMOS technology scaling on
the atmospheric neutron soft error rate. IEEE Transactions on Nuclear
Science, 47(6):2586-2594, 2000.

[3] Y. Monnet, M. Renaudin, and R. Leveugle. Asynchronous circuits
transient faults sensitivity evaluation. In //th IEEE International On-
Line Testing Symposium, 2005.

[4] Jens Sparsg and Steve Furber, editors. Principles of Asynchronous Circuit
Design: A Systems Perspective. 2001.

An Information Redundant Asynchronous Concurrent Error Detecting ALU

M.J. Marshall, G. Russell
School of Electrical, Electronic & Computer Engineering
University of Newcastle upon Tyne, UK
m.j.marshall@ncl.ac.uk, g.russell@ncl.ac.uk

ABSTRACT

As a result of advances in technology and shrinking
device dimensions, the occurrence of transient errors is
increasing. This together with the concomitant
reduction in supply voltages has decreased noise
margins, causing system reliability to be reduced, all
this at a time when electronic systems are being used
increasingly in 'safety critical applications.

Previous work has demonstrated that an information
redundant Concurrent Error Detection (CED) scheme
using Dong's Code can be applied efficiently to an ALU
within an asynchronous design in which the area
overheads incurred were approximately 12% [1]. This
paper extends the work to the application of this
checking scheme to the integration of a multiplier
function into an ALU enabling the advantages of using
asynchronous design style, for example power
reduction, to be used in a wider arena of DSP
applications. The work outlined in this paper has
demonstrated that up to a 24% area saving can be made
in comparison with similar CED scheme on the
multiplier function, and with many parts of the circuit
used within other processor functions, large savings are
found on the ALU as a whole. This has shown that
despite the complexity of multiplier structures, an
overhead of 13% may be obtained when implementing
an asynchronous self checking ALU with multiplier
functionality as opposed to a system without any CED.

1. Introduction

With the ever increasing need for lower power, faster,
more efficient designs there is much attention focused
on the potential of asynchronous design. However, these
do exhibit the unfortunate characteristic of higher error
probabilities due to the lack of a global timing clock
which leads to incorrect state transitions within both
fully and locally asynchronous applications. The nature
of transient faults (short duration and random
occurrence), render them undetectable by standard test
strategies using BIST or scanpath which are only
applied periodically. In order to detect transient or
intermittent faults, which can manifest themselves as
'soft errors' and 'silent' data corruption, it is necessary to
implement some form of Concurrent Error Detection.
This allows functional blocks to be tested concurrently
within their normal operation, creating a fault tolerant
system. With long pipelined functions such as those
within DSP structures, the opportunity for data
corruption increases as the number of functions
increases. Without error checking within the pipeline,

silent data corruption may occur, leading to incorrect
results.

Many different methods for test and detection of faults
within systems have been implemented, ranging in their
complexity, cost of manufacture and fault and error
coverage. Hardware, time or information redundancy
methods may be used, each with its own advantages and
disadvantages. Implementation of time redundancy
leads to time penalties as operations will take much
longer, due to re-computation of results. The cost for a
hardware redundant system often outweighs that of the
information or time redundant systems making
hardware redundancy less popular with chip producers
unless extremely high error checking and/or reliability
is required. Information redundancy is more often
chosen over time redundancy due to the higher speed of
operation obtainable.

Unfortunately there is no one way of providing the
information redundancy and many chip makers
implement their own proprietary designs or use existing
Intellectual Property (IP) designs which often lead to
poor error coverage and the use of multiple codes within
a single chip, leading to inefficiencies, for example in
increased area overheads due to the need for code
conversions and thus an increased probability of failure
due to the larger area.

There are several types of information redundancy
codes which are commonly used, namely Berger,
Residue, Parity and Dong’s Code, all providing error
coverage suitable for certain implementations. With the
exception of Dong’s Code all of the codes mentioned
above have a set of arithmetic and logical prediction
equations including the functionality of a multiplier.
Dong’s Code has predictive equations for several ALU
functions such as add/subtract and the logical functions
rotate/shift [2] but lacks multiplication protection.

This paper studies the implementation of a predictive
scheme to allow detection of errors during an
asynchronous multiplicative operation on a set of binary
numbers using the information redundant code, known
as Dong’s Code.

2. Berger and Dong’s Code

Dong’s Code is a modified Berger Code, as such it
exhibits some similar characteristics, for example, both
are separable codes [3]. This allows the data bits and
check bits to be clearly identified and removed if
necessary without decryption. Although separable codes
do increase the number of bits required to represent an
output and thus more storage space to represent the

output value; it has the advantage that some area
overheads may be reduced as no encoding and decoding
circuit is required. In using Dong’s Code a much greater
control over the level of error and fault coverage can be
obtained, permitting it to be tailored to a given
application. Berger Codes, by definition, require

n= |_|ng(”1 +1)-| bits for the code, i.e. fora M =16 pit
informational word, 5 bits are required. Dong’s code is
in fact made up of 2 codes, C1 and C2, C1 being the
count of the number of zeroes mod (2¥) and C2 being
the number of zeroes in C1 mod(2¥). This provides a
check on the check bits themselves. The completed
Check Symbol Sc, is thus C1+C2 and requires

n=k+ |_|092 k-‘ bits, where k is a positive integer
value. i.e. for a 3 bit code, 5 bits are required in total. By
increasing the value of ‘k’, the error coverage may be
increased, this also increases the area overhead by doing
so.

In this paper for the 8 bit implementation of a 2 operand

multiplier with 16 bit output and length (k = 3) in the
first part of the code (C1), and thus 2 bits for the second
part (C2) to represent the number of zeroes within C1.
This will provide 99.04% error coverage [4], hence will
be suitable for many medium error tolerant systems
such as a data logging DSP processor.

Initially it may be considered that Dong’s Code seems
to have no advantages, it would require 3 bits to
represent the information data (C1) and then a further 2
bits for the second part of the code (C2). Berger’s Code
would require 5 bits in total to represent the maximum
of 16 zeroes. However, the system savings are later
realised through minimisation of the prediction scheme.

Example: X=1100110011111111

Berger Code: Xc(number of zeroes) = 4, so Sc= b00100
Dong’s Code: Xc=4, so C1=4Mod(8)= b100,

C2=b10, Sc=C1+C2=h10010

4. Dong’s Code Check Symbol Prediction

In order to implement a CED scheme it is necessary to
compare the calculated code with some predicted value
so that errors may be detected, this is done through a
small degree of parallelism. During the calculation of
the product a Check Symbol Prediction (CSP)
calculation is used to determine the output of the Check
Symbol Generation (CSG).

It has been shown [4] that the check bit prediction of
Berger Code for the multiplication of two binary
numbers using array multipliers is possible, as such a
Dong’s Code prediction scheme is obtainable.

For the multiplication of 2 binary values X and Y,

Sc=nXc+nYc—XcYc-Cc+n (1)

Sc: Berger check-bit code

Xc: Number of zeroes in term X

Yc: Number of zeroes in term Y

Cc: Number of zeroes within the carries register
n: Highest number of bits in Xc or Yc

Equation (1) may be modified to provide the Dong’s
Code equivalent C1 value,

Cl=((XcYc+Cc)Mod2*) +1 (2)

This equation may then be implemented into the CSP

block within the ALU as shown in Figure 1.
X Y CspP

[*———=| 0's counter Xc
0's counter *Ycl

Braun'’s Array Carries

Multiplier XcxYe
0's counter
y \—# #—‘
CcsG Adder Modn)
2 s Complement

e —

Compare

Result Fault/No Fault

Figure 1: Multiplier error detection operation

The application of this form of error detection on an
asynchronous ALU will also provide a faster method for
soft error recovery. As transient faults occur the system
outputs the fault signal, this error may then be
interpreted by the environment in different ways;
e Transient error, attempt recovery
This method allows the environment outside the
ALU to sit and wait for the transient error to pass.
Without the concurrent operation of the testing
system this transient error would propagate leading
to data corruption. With a fully synchronous system
the sit and wait method would require full clock
cycles to pass before allowing the system to
continue, leading to larger delays.
e Extreme transient/permanent fault
By assuming the system is affected only by
transient errors which affect for a short period the
system will be prone to lock-up in the case of
permanent faults. These may then place the system
in a permanent faulted state if using the transient
error recovery method at all times. To avoid this,
the application of a maximum length recovery time
could be implemented to then force a reset
(watchdog timer).

5. Results

Previous papers [5] have shown the multiplier function
alone may be implemented with a 24% reduction in area
by using Dong’s Code rather than Berger on simple 8x8
multipliers, and 10% on 16x16bit. The following
implementations show different pipelines with different
features, using the same technology. The area
comparisons are based on Ambit area reports from the
Cadence Design Suite on a 0.35u process.

Presented in this paper is the application of Dong’s
Code Check Symbol Prediction for array multipliers

into an existing CED 32bit RISC ALU. With the added
benefit of a multiplier, an area overhead of 13% has
been realised for the implementation of CED to all ALU
operations and all ALU register files.

Pipe Size ()

Synchronous 1525x10°
Synchronous CED 1733 x10°
Synchronous Multiplier 1846 x10°
Synchronous CED Multiplier 2100 x10°
Asynchronous 1458 x10°
Asynchronous CED 1693 x10°
Asynchronous Multiplier 1774 x10°
Asynchronous CED Multiplier 2010 x10°

Size (Microns Squared)

Table 1: Asynchronous vs. Synchronous areas

Asynchronous Vs Synchronous ALU Areas

2500000
2000000 -
1500000 —
1000000 -
500000 -
0
g £ K . & &
R & S & &
& & R ¥ X O @o
& & & NS
) 53 © © 2%
¥ 9 & &S
N & Q o Q)
‘??ﬁ @4, R C‘)(\\ o(\o\) o(\o\)
3 $
? & &
s

Figure 2: Pipeline comparisons

6. DISCUSSION

This study has focused on a single information
redundant code being incorporated into the ALU. By
maintaining single codes throughout a system in order
to protect register files, and operations, there is the
potential for area savings to be made due to the reuse of
large sections such as those within the CSP and CSG
circuits. All Dong’s Code CSP circuits utilise a number
of large “zeros counters” and many make use of the
“mod n” adders. There is also reuse of the CSG and
comparison circuit within every process as shown in the
generalised block diagram of the ALU in

-+

Figure 3.
Register file |«
Generate
| ‘ ‘ Check CheckSymbol
Registers, oo Check Symbol
Required symbols
‘ Write to cache and
Fetch Instruction —»| Decode Values Execute in ALU Check (—»| writeback to
‘ register
CheckSymbol
Predict Check Error No error
Symbol

Figure 3: Pipelined process

7. Conclusions

Synchronous system design has become more
problematic with issues of clock skew growing.
Asynchronous systems require no clock, and no
unnecessary power is wasted in generating it, nor
distributing it, and by using CED, systems may detect
errors as they occur at the cost of area overhead (13%).

Dong’s Code and Berger Code are able to detect all
single and unidirectional errors, with Dong’s Code
providing error checking on the check bits themselves to
determine errors within transmission or check Dbit
generation. This increased awareness leads to far greater
error coverage than that provided by many other codes.
The area overhead savings have been found to be 13%
for the Dong’s Code asynchronous ALU with multiplier
functionality, compared to the equivalent synchronous
implementation.

The use of Dong’s Code has thus been expanded with
this implementation of a multiplication Check Symbol
Prediction circuit. Thus, Dong’s code may now be
utilised in a wider variety of implementations, for
example an ALU used for DSP applications where
multiplication may used extensively. The continuing
work of this project involves the study of logarithmic
processors and the potential implementation of
information redundancy to protect their operation.

Previous work has demonstrated that an information
redundant Concurrent Error Detection scheme using
Dong's Code can be applied efficiently to an ALU
within an asynchronous processor in which the area
overheads incurred were approximately 12%. This
paper extends the work to the application of this
checking scheme to the integration of a multiplier
function into an ALU enabling the advantages of using
asynchronous design style, to be used in a wider arena
of DSP applications. The work outlined in this paper has
demonstrated that despite the large structure of an array
multiplier and the complexity of check symbol
predictions, these savings can be maintained.

REFERENCES

[1] P.D. Hyde, “A Pipelined Asynchronous Self-Checking RISC
based Processor”, Thesis (PhD), University of Newcastle-upon-Tyne,
2004.

[2] A. Maamar, G. Russell, “Checkbit Prediction Using Dong’s code
for Arithmetic Functions”, Proceedings 3 IEEE On-Line Testing
Workshop, Crete, July 1997, pp 254 — 258.

[3] H. Dong, “Modified Berger Codes for the Detection of
Unidirectional Errors”, IEEE Transactions on Computers, Volume C-
33, Number 6, June 1984, pp 575 — 575.

[4]1J. C. Lo, S. Thanawastien, T. R. N. Rao, “Berger Check Prediction
for Array Multipliers and Array Dividers”, IEEE Transactions on
Computers, Volume 42, Number 7, July 1993, pp 892 — 896.

[5] M. Marshall, G. Russell, “An information redundant scheme for
online testing of an Asynchronous ALU operation”, Informal
proceedings 11™ IEEE European Test Symposium (ETS), May 2006.

#5= Newcastle
University

The Royal Academy
of Engineering

Unfolding Models of
Asynchronous Systems:
Applications to Analysis

and Synthesis

Victor Khomenko
University of Newcastle upon Tyne

Talk outline

* Petri net unfoldings
 Model checking based on unfolding prefixes
» deadlock checking
= encoding conflicts
« Beyond model checking
= resolution of encoding conflicts
» |ogic synthesis
* Further developments
» unfoldings of high-level nets
* merged processes

State space explosion problem

* For efficient synthesis the state space of the
system must be explored.

« However, the number of reachable states is
often exponential in the size of the spec,
particularly when the degree of concurrency
Is high.

3

Petri net unfoldings

* Represent system =
states implicitly,
using an acyclic net

* Rely on the partial-
order view of
concurrent
computation

* Alleviate the state
space explosion
problem

Example: Dining Philosophers

Example: Dining Philosophers

Configurations

« A partial-order analog of traces

» The order of execution of concurrent events
does not matter and should not be enforced

» hence have to explore fewer runs
compared to the interleaving semantics

.. =) k! traces reaching a deadlock
only one configuration

\ /
\
y
A
/ \
’ \
Causality must No choices
be obeyed allowed

Example: Dining Philosophers

Local configuration

 The local configuration [e] of e is the smallest
configuration containing e

= comprised of e and its causal predecessors

P, T Py

Pl T3 P5

e

10

11

Cut-off criterion

* An event e is cut-off iff there is a [local]
configuration C with the same final marking
such that C<[e] (<is a certain order partial order
on configurations)

12

The ERV unfolding algorithm

Unf < places from M,
pe « transitions enabled by M,
cut-off « I
while pe # &
extract e € min_ pe
If e is a cut-off event then cut-off «— cut-off U {e}
else
add e and its postset into Unf
UpdatePotExt(pe, Unf, e)
end while

add cut-off events and their postsets to Unf

13

State Graphs vs. Unfoldings

State Graphs:

© Relatively easy theory

© Many efficient algorithms g\\&"}

@® Not visual
@® State space explosion problem

14

State Graphs vs. Unfoldings
Unfoldings:

© Alleviate the state space explosion problem
© More visual than state graphs
© Proven efficient for model checking

® Quite complicated theory
® Not sufficiently investigated
® Relatively few algorithms

«

15

Talk outline

Petri net unfoldings
Model checking based on unfolding prefixes
» deadlock checking
» encoding conflicts
Beyond model checking
= resolution of encoding conflicts
= |ogic synthesis
Further developments
= unfoldings of high-level nets
= merged processes

16

Model checking on PN unfoldings
A Boolean expression ¢ is built using
the prefix, such that:
» ¢ Is unsatisfiable iff the property holds

= every satisfiable assignment of ¢
gives a violation trace

¢ has the form CONFAVIOL

 Some of the variables of ¢ are
associated with the events of the
prefix

17

The CONF constraint

\ /
\
y
I\ €

/ \

’ AN
If an e is executed
than all its [direct]

If an e is executed than
no events in [direct]
causal predecessors choice relationship with
are also executed e can be executed

e fe*'e e fe(®e)'\{e}

The satisfying assignments of CONF
correspond to the configurations of the prefix

18

VIOL: Deadlock

No event is enabled to fire, i.e.
for every e:

 some [direct] predecessor
of e has not fired, or

e an event in [direct] conflict
with e or e itself has fired

€ fee fe(’e)®

The method works for other
reachability-like properties as well!

19

Asynchronous circuits

Asynchronous circuits are circuits without clocks

© Low power consumption

© Tolerant to process, voltage and temperature
variations -

© Low electro-magnetic emission
© No problems with the clock skew

® Hard to synthesize
® The theory is not sufficiently developed
@ Limited tool support

20

Example: VME Bus Controller

Data Transceiver

Bus |_I |
| d
Ids =
dsr —| VME Bus T 3
dtack < controller ac

/Idtack- -@—| dsr+ lds+ \

d- Ids- |dtack- |dtack+

\ dsr- dtack+ d+ r/

21

Example: Encoding Conflict

dtack- ° dsr+ 10000

o

00100 00000

|dtack- Idtack- |dtack-

01100 dlacke, § dore, ¢ 10010
01000 11000

Ids- lds- lds- |dtack+
dtack- dsr+

o @) (o) 0

01110 01010 M M

d+
dsr- ,. dtack+’

O O
01111 11111 11011

22

Example: Encoding Conflict

o
0
=
+
'
o
(9]
+
!
o
—
job)
(@)
>
+
————-‘——
o
+
]
Q.
—
fab)
(@]
=
+
!
o
(2}
=
!
[@F

23

Detection of encoding conflicts

« A special case of model checking!
* @ has the form CONF,ACONF,AVIOL

 VIOL is a constraint stating that the
two configurations have the same final
encodings and enable different sets of
output signals

24

Talk outline

Petri net unfoldings

= deadlock checking
= encoding conflicts
Beyond model checking

Model checking based on unfolding prefixes

= resolution of encoding conflicts

» |ogic synthesis
Further developments

» unfoldings of high-level nets

» merged processes

25

Beyond model checking

Problem: model checking just tells you
whether some property holds, but it’s not
enough for resolution of encoding
conflicts and for deriving equations!

26

Example: Resolving the conflict

dtack- ° dsr+ _ csc+

Example: Encoding Conflict

001000 9

O o)
100000 |

1 %

o
n
=
+
)
o
(7]
+
)
o
—
QD
O
>
+

%/

1
Code(conf)=10110 1Code(conf’)=10110
1

—— o - =

12 T B

e

000000 100001
|dtack- |dtack- |dtack- lds+
S dtack- S dsr+ 3 g
011000 ¥ 5100001 110000 100101
Ids- lds- lds- ldtack+
dtack- dsr+
o C
011100 010100 M,, w 11101
d- d+
(L csc- dsr- dtack+ 4
011110 011111 111111 110111

27

28

Example: Resolving the conflict

dtack- H@=| dsr+ csc+ lds+
d- Ids- |dtack- |[dtack+
cSc- dsr- dtack+ d+

29

Visualising conflicts: Height map

» Cores often overlap

 Highest ‘peaks’ are good candidates for
signal insertion

 Analogy with topographic maps

caore,
ore,

mAl
mA3

Core,

30

Height map: an example

Core map

Height map

31

Logic synthesis: Next-state function

 The next-state function of each output or
internal signal will be implemented as a
logic gate in the circuit

» Defined for each such signal z at each
reachable state M as

Nxt,(M) = Code, (M) & Enabled,(M)

« Thevalueis undefined (‘don’t care’) for
unreachable states

32

Example: Deriving equations

o dtack- ° dsr+ _ csc+ o
001000 000000 4100000 | 100001
|dtack- Idtack- |dtack- lds+

o dtack- | dsr+ L b4
011000 ¥ 100001 110000 100101

Ids- lds- lds- |dtack+
3 dtack- 1 dsr+ 3 b
011100 010100 110100 110101
d- d+
)\ csc- dsr- n dtack+ S
011110 011111 111111 110111

33

Example: Deriving Equations

Code [NXC,iack] NXT, 4 NXt,

NXT ...

001000
000000
100000
100001
011000
010000
110000
100101
011100
010100
110100
110101
011110
011111
111111
110111

PRPRPRPPRPOOORFROOOROOO
PRPPRPOPFRPOOOOOO0OOOO0OO0OO0O
PRPOOFRPOOORrROOORrFrOO

dsra

O ([PRPPPRPOOOOOOOOOOOO

Egn d v csc|csc A ldtack

(~ldtackvcsc)

34

Example: Resulting Circuit

I Data Transceiver
Bus]
| r
<} lds

dtack (W

dsr ,—\CSC

301N

|dtack

35

Logic synthesis on unfoldings

Challenge: how to do this without
building the state graph, and using only
the unfolding prefix?

36

Logic synthesis on unfoldings

* Problem: given a prefix and a set X of

Example: computing projections

signals which are known to be a 8 g ad®b
support of the given output or 10 p=(avb)(—av-b)cvdve)
internal signal z, compute the truth % %
table of Nxt, 2 %
 Let ¢ = CONF A CODE, where CODE, 11 Proi
relates the values of all signals in X 02 Olap.cy @
with the configuration (1) % 8 I&J 8
« Compute the projection of ¢ onto X 01 011
g 13§
Need to know how to compute projections! 1
Computing projections Talk outline

a®b
¢=(avb)(avb)(cvdve)(avbvc)(avbvT)(avbvc)(avbvc)

I:)roj{a,b,c} ¢
ab c e

UNSA Incremental SAT

39

Petri net unfoldings
Model checking based on unfolding prefixes
» deadlock checking
= encoding conflicts
Beyond model checking
= resolution of encoding conflicts
» |ogic synthesis
Further developments
» unfoldings of high-level nets
* merged processes

40

Further developments

Roadmap:

* Unfoldings of more complicated then
low-level Petri nets models

 More concise then unfoldings
representations of state spaces

Coloured (high-level) PNs

{1,2} {1,2}

w<u+v

{1..4)

Expansion

{1,2} {1,2}
o\
W<u+v |:>
W
{1..4)

© The expansion faithfully models the
original net

® Exponential blow up in size

Unfolding

=s<c
inn
NNH

Example: computing GCD

m n
u \/
u 0
u
{0..100}

Relationship diagram

expansion
Coloured PNs |:> Low-level PNs

ﬂunfolding ﬂunfolding

Coloured prefix 9— Low-level prefix

Relationship diagram

Relationship diagram

expansion
Coloured PNs I:> Low-level PNs

unfolding& %nfolding

Prefix

Benefits

© Avoiding an exponential blow up when
building the expansion

© Definitions are similar to those for LL
unfoldings, no new proofs

© All results and verification techniques for
LL unfoldings are still applicable

© Existing unfolding algorithms for LL PNs
can easily be adapted

49

Experimental results

© Tremendous improvements for colour-
intensive PNs (e.g. GCD)

© Negligible slow-down (<0.5%) for control-
intensive PNs (e.g. Lamport’s mutual
exclusion algorithm)

50

Merged processes

Problem: Unfoldings do not cope well
with other than concurrency sources of
state space explosion, e.g. with
sequence of choices and non-safe PNs

51

Example: sequence of choices

No event is cut-off, the prefix is exponential

52

Example: non-safe PN

Tokens in the same place are distinguished
in the unfolding, the prefix is exponential

& 5

Example: non-safe PN

@

Wanted

A data structure coping not
only with concurrency but
also with other sources of

state space explosion

Occurrence-depth

Merged Process:

© Fuse conditions with the same label and
occurrence-depth

© Delete duplicate events

Examples

Merged processes of
these nets coincide
with the original nets,
even though unfoldings
are exponential!

Advantages

Merged processes can be used for model
checking

In practice, they are often by orders of
magnitude smaller than unfolding prefixes

In many cases they are just slightly larger
than the original PNs

In some cases they are smaller than the
original PNs due to removal of dead
places

Thank youl!
Any questions?

CSC-Aware STG-Decomposition

Mark Schaefer
Institute of Computer Science, University of Augsburg, Germany
mark.schaefer@informatik.uni-augsburg.de

1 Introduction

Previous attempts to decompose STGs (and to synthe-
sise the resulting components, instead of synthesising
the original STG directly) turned out to be quite suc-
cessful regarding the runtime [VWO02, VKO05]. While
this was even the case for a first naive implementa-
tion, recent improvements of our decomposition algo-
rithm [SVWKO6] improved the runtime even more.
Unfortunately, decomposition also reduces the solu-
tion space for synthesis, sometimes in a way that the
resulting components could not be synthesised due to
irreducible CSC conflicts. But even when the compo-
nents are synthesisable it is often needed to solve CSC
with additional signals, though increasing area; this
can also happen if the original STG has CSC initially.

In this paper, our latest decomposition algorithm is
described, which tackles this problem by reducing the
components only to the point where CSC is satisfied
by signals already belonging to the circuit instead of
solving CSC with new signals. This is an advantage
for STGs which satisfy CSC initially; if this is not the
case, CSC has to be solved for the STG as well as for
the final components.

For the time being, the new decomposition algorithm
is merely a proof of concept and in the last section,
some possible optimisations are discussed.

The paper is organised as follows: in the next section
a brief introduction to our decomposition approach is
given. In Section 3 the new algorithm is described and
some experimental results are given. Finally, there is a
conclusion and an outlook to future work.

Due to lack of space, STGs (and CSC in particular)
are not explained; a detailed introduction can be found
e.g. in [CKK102].

2 STG Decomposition

A detailed introduction to our decomposition ap-
proach can be found in [VWO02, VK05, SVO05,
SVWKO06]; our decomposition tool DESIJ can be
found at www.informatik.uni-augsburg.de/en/chairs/-
swt/ti/research/tools/desij.

Synthesis with STG decomposition works roughly as
follows: a partition of the output signals of the given
specification STG N is chosen, and the decomposition
algorithm decomposes N into component STGs, one

for each set in this partition. Then, a circuit is synthe-
sised from each component, and the interconnection
of these circuits has a behaviour that conforms to the
specification.

This correctness is formally proven in [VW02, VKO05]
on the level of STGs. Interconnection on the physical
level simply means to connect the circuits with a wire
for each common signal, i.e. if an output = of a com-
ponent C is also an input of a component C5. On the
STG level, interconnection corresponds to the ordinary
parallel composition for Petri nets.

To describe the decomposition algorithm in more
detail, we discuss below the notion of auto-conflicts,
which plays an important part during decomposition.
The second subsection deals with the decomposition
algorithm itself.

STGs can model more behaviour than a real-life cir-
cuit can show. For example, inconsistent STGs cannot
be implemented although they are allowed in princi-
ple. Another problematic case are dynamic conflicts,
i.e. two transitions of an STG enabled under some
reachable marking, where firing one would disable the
other.

If the conflicting transitions correspond to different
input signals then they model a choice made by the
environment, and this is not a problem. However, if
at least one of the signals is an output, then the spec-
ification cannot be implemented as an asynchronous
circuit. There are three problematic cases:

1. One transition is labelled with an input edge, the
other with an output edge. This conflict is very
hard to implement, since both signal edges are in-
dependently generated and may occur at the same
time. Nevertheless, our decomposition method
and our tool DESIJ cover such conflicts, but we
will not discuss them here any further.

2. Both transitions are labelled with different output
edges. A circuit which can handle such conflicts
is called an arbiter and cannot be implemented as
a purely digital circuit. STGs with such conflicts
can also be handled by our decomposition method,
which does not introduce new conflicts of this kind.
For a detailed discussion see [VW02, VKO05].

3. Both transitions are labelled with the same sig-
nal edge, a so-called auto-conflict. Such a non-
deterministic choice can hardly be handled by cir-
cuits, and we assume that decomposition is only
applied to STGs without auto-conflicts. During

our decomposition algorithm, auto-conflicts could
be generated; this is considered as an indication
that too many signals were lambdarised in an
STG. In this case backtracking is performed and
a signal is delambdarised, see below for more de-
tails.

Observe that conflicts between A-labelled transi-
tions are ignored.

Auto-conflicts are dynamic in nature, i.e., to detect
them one has to generate the reachability graph, which
we want to avoid because of their potential exponential
size. A much simpler notion is that of a structural auto-
conflict, where two equally labelled transitions have a
common place in their presets. This is a necessary pre-
condition for auto-conflicts and can be checked struc-
turally. Consequently, the decomposition algorithm of
[VWO02] checks only for structural conflicts, conserva-
tively treating them as dynamic ones.

In the following, we assume that we are given a deter-
ministic, consistent specification N without structural
auto-conflicts; first, one chooses a feasible partition, i.e.
a family (In;, Out;);cs for some set I such that the sets
Out; are a partition of Out, In; C Sig \ Out; for each
7 and furthermore:

e If two output signals x1, x5 are in structural con-
flict in N, then they have to be in the same Out;.

o If there are ¢,/ € T with ¢’ € (¢*)® (¢ is called
syntactical trigger of t'), then I(t') € Out; implies
l(t) € In; U Out;.

Clearly, for each STG N there is a minimal feasible
partition Y such that the Out; are minimal and only
necessary inputs are included in In,.

If we have a feasible partition, we can build another
feasible one by adding additional input signals to one of
the members or by merging two members (Iny, Outy)
and (Ing, Outz) to a new one ((Iny U Ing) \ Outy U
OUtQ, Out1 U Outg)

All possible partitions can be generated by applying
these operations repeatedly to Y n.

For each member (In;, Out;) of a partition an ini-
tial component is generated from N: in a copy of the
original STG N, every signal not in In; UQOut; is lamb-
darised, i.e. labelled with A, and the signals in In; are
considered as inputs of this component — even if they
are outputs of V.

The following operations are applied to each of these
components; this process is called reduction:

e secure contraction of A-transitions
e deletion of redundant places

e deletion of redundant transitions
e backtracking

We call the first three of these operations reduc-
tion operations. The reduction of an initial component
leads to a component-STG without A-transitions. Each

component-STG is then synthesised, usually by con-
structing its reachability graph. Very often, adding up
the sizes of these graphs gives a number much smaller
than the size of the reachability graph of N, in which
case the decomposition can be seen as successful. Actu-
ally, it might already be beneficial if each reachability
graph is smaller than the one of N, in particular for
reducing the peak memory usage.

We will now describe the above operations in more
detail. The contraction of a transition t generates a set
of new places {(p,q)|p € °t,q € t*} (each one of them
inherits the tokens and arcs of its ‘inner’ places) and
removes t, °t and t® from the net; cf. Figure 1.

by

(a) (b)

Figure 1: Transition contraction with generation of
structural auto-conflict. (a) Initial net. (b) After con-
traction of the A-labelled transition.

Contractions are only performed if they are ‘secure’
(implying language preservation) and no new structural
auto-conflict is generated. It is easy to see that the
contraction of a transition ¢ increases the number of
places by [*¢] - [t*] - (°t] + [¢°]).

Redundant places are a subclass of implicit places
which can be deleted without changing the firing se-
quences of the STG. The difference is that looking for
implicit places requires the reachability graph while re-
dundant places can be detected structurally; hence, we
only look for the latter ones during decomposition.

There are two kinds of redundant transitions. First,
if there are two A-labelled transitions which are con-
nected to every place in the same way, one of them can
be deleted without changing the traces of the STG. Sec-
ond, a M-labelled transition t with W (¢, p) = W (p, t) for
every place p can also be deleted, since its firing does
not change the marking and is not visible on the level
of traces.

These two operations may seem trivial, but espe-
cially the deletion of redundant places is essential for
getting small components, since very often the exis-
tence of such places prevents further transition con-
tractions. The same is also true to some extent for
redundant transitions.

Backtracking means to delambdarise a signal of the
initial component, to consider it as an additional in-
put signal and to start reduction anew. This is applied
if there are still A-transitions left but none of the re-
duction operations can be performed. In particular,

if the contraction of a A-transition ¢ would generate
a new structural auto-conflict, this is considered as
an indication that too many signals of a component
were lambdarised to produce its output signals appro-
priately; this can be changed by delambdarising ¢, i.e.
restoring the initial label, and — informally speaking —
providing more information to the circuit.

After the last backtracking, when enough signals are
added to the initial component, only the reduction op-
erations have to be applied to get the final compo-
nent. This means that backtracking is only needed
to detect these additional signals; if they are known
in advance, one can perform decomposition completely
without backtracking.

3 The New Algorithm

A decomposition tree is a tree with sets of signals at-
tached to the nodes; the tree is traversed starting at
the root and the initial STG, in every node the cor-
responding signals are contracted such that every leaf
corresponds to a desired final component; for more de-
tails of tree decomposition, see [SVWKO06].

The main idea of CSC-aware decomposition is as fol-
lows (cf. Figure 2):

1. A decomposition tree as described above is gen-
erated and completely traversed in a depth-first-
search manner, starting from the root.

2. Every time a node k is entered for the first time,
i.e. coming from parent(k), the respective signals
sig(k) are contracted.

3. When a leaf | was finished, CSC is checked for
the resulting component Cj. If it is satisfied,
is saved as final result. Otherwise, the CSC viola-
tion traces of C; are determined and a solve-task is
generated out of them and associated to parent(l).

4. Every time a node k is entered coming from
children(k), every solve-task associated to k is
considered separately: the contained violation
traces are inversely projected to the component
C. Depending on the result CSC is solved and
the corresponding component is generated, or the
solve-task is updated and associated to parent (k).

The single steps are now considered in more detail.

The generation of the decomposition tree uses the
same algorithm as for tree decomposition, only addi-
tional parent pointers are saved for each node (except
the root). The traversal of the tree was changed from
a recursive pre-order algorithm to the described depth-
first traversal.

To perform CSC-aware decomposition more effi-
ciently, the implementation of the STG class in our tool
was enhanced with an undo support; instead of saving
an intermediate result for each node explicitly, there
is only one STG—initially the specification—which is

parent(k)

-~ o ias
‘ (4)
|- [sovetasd

other
children

CsC?

Figure 2: Depth-first-search traversal (dashed line) of
a decomposition tree with the new algorithm.

modified when going down in the tree and restored
when going up.

CSC is checked externally with the tools PUNF and
MpsaT [Kho02, KKY04a, KKY04b], which can return
all CSC violation traces for a given STG.

If there are actually CSC conflicts in Cf, the corre-
sponding trace pairs are stored in a solve-task. This
data structure contains additionally the outputs of Cf,
thus always a proper component can be generated.

Furthermore, there is a counter for the number of
updates of a task; if this counter exceeds a given value
it is no longer tried to solve CSC internally, but by
adding new signals. This prevents a certain task from
being moved up to high (producing large components)
if the corresponding CSC conflict is there initially.

The solve-task is associated to parent(k) and han-
dled there when the depth-first-search is going up and
the modifications in C were undone, thus allowing the
inverse projection of the violation traces.

Let v; and vy be traces of Cj, C respectively. Trace
v is an inverse projection of v; if v; = vg|gig,. Of
course, there are many different inverse projections of
vy; our algorithm looks for the shortest one, which can
be proved to be unique.

Given the trace pair (v}, v?) which leads to a CSC vi-
olation, the shortest inverse projections of both traces
(vi,vi) are calculated. If now codeChange(v}i) #
codeChange(v?), the corresponding CSC conflict was
possibly destroyed. Additionally, it might be possible
that the additional signals caused new CSC conflicts,
and therefore it is checked for CSC externally again.

If there are actually new conflicts, a new solve-task
is generated and associated to the respective parent
If, on the other hand, CSC was solved the respective
component is saved as final result.

The new algorithm was applied to some benchmark
examples, the results can be found in Table 1. The
value in the Petrify column denotes the time (in sec-
onds) used by the tool PETRIFY (by J. Cortadella) for

STG || Petrify | DesiJ

2pp.arb.nch.03.csc.g 1 1
2pp.arb.nch.06.csc.g 14 2
2pp.arb.nch.09.csc.g 116 4
2pp.arb.nch.12.csc.g || > 300 10
2pp-wk.03.csc.g 1 1
2pp-wk.06.csc.g 9 2
2pp-wk.09.csc.g 31 3
2pp-wk.12.csc.g > 300 18
3pp.arb.nch.03.csc.g 4 1
3pp.arb.nch.06.csc.g 134 3
3pp.arb.nch.09.csc.g || > 300 7
3pp.arb.nch.12.csc.g || > 300 22
3pp-wk.03.csc.g 1 1
3pp-wk.03.csc.g 31 3
3pp-wk.03.csc.g > 300 7
3pp-wk.03.csc.g > 300 22

Table 1: Results of the benchmark examples. Time

values are given in seconds.

synthesis, the value in the DesiJ column denotes the
time used by DEs1J for decomposing the STG plus
the time used by PETRIFY for synthesising the com-
ponents. In every case a complex-gate implementation
was derived. If PETRIFY was not able to derive equa-
tions within 5 minutes, synthesis was aborted, denoted
by > 300 entries.

One can see that DESIJ leads in every case to a much
faster synthesis; most of the time was used for decom-
position; synthesising all components usually took less
than 1 second. Compared to tree decomposition, the
runtime was increased by about 10%.

4 Conclusion

We introduced a new algorithm for STG decomposition
which tackles one of the most important problems of
our decomposition approach: deriving implementable
components more often. Although in most cases only
a small part of the components was not implementable,
this was enough to prevent the synthesis of the original
specification in some cases. Furthermore, when pos-
sible the CSC conflicts of the derived components are
now ‘solved’with signals already belonging to the STG
instead of using additional signals.

Still, there are possibilities for optimisation. At the
moment, if a CSC conflict was resolved, the final com-
ponent will contain all signals whose contractions were
undone. Since more additional signals might lead to
more new CSC conflicts, a future implementation will
only keep the needed signals, i.e. the ones which actu-
ally resolve the conflict. For this, it will be needed to
redo some decomposition steps.

If this is not desired, it is possible to produce a com-
ponent representing all descendent components of a
node, i.e. all outputs assigned to the leafs below the cur-

rent node are merged to one output set and produced
by the STG assigned to the current node. This is very
similar to tree aggregation, described in [SVWKO6], ex-
cept that the reasons for this procedure are different.
A disadvantage of this method might be, that adding
outputs to a component can easily increase the number
of CSC conflicts.

It could also happen, that more than one solve-task
is associated to a node during the depth-first search and
it might be an advantage to combine these tasks, esp.
in combination with the first optimisation proposal.

Acknowledgements: I would like to thank Victor
Khomenko for providing me his tools PUNF and MPSAT
and for pointing me to the concept of undoing STG
modifications.

References

[CKK'02] J. Cortadella, M. Kishinevsky, A. Kon-
dratyev, L. Lavagno, and A. Yakovlev.
Logic Synthesis of Asynchronous Con-
trollers and Interfaces. Springer, 2002.

[KhoO2] V. Khomenko. PUNF Documentation and

User Guide. Version 6.01. Manual, 2002.

[KKY04a] V. Khomenko, M. Koutny, and
A. Yakovlev. Detecting state coding
conflicts in stg unfoldings using sat.
Fundamenta Informaticae, 62(2):1-21,

2004.

[KKY04b] V. Khomenko, M. Koutny, and
A. Yakovlev. Logic synthesis for asyn-
chronous circuits based on Petri net
unfoldings and incremental sat. In
Canada Kishinevsky M. and Ph. Daron-
deau, editors, ACSD 2004, pages 16-25,

2004.

[SV05] M. Schaefer and W. Vogler. Component
refinement and CSC solving for STG de-
composition. In Vladimiro Sassone, edi-
tor, FOSSACS 05, Lect. Notes Comp. Sci.

3441, pp. 348-363. Springer, 2005.

[SVWEKO06] M. Schaefer, W. Vogler, R. Wollowski, and
V. Khomenko. Strategies for optimised
STG decomposition. In ACSD 06, 2006.

[VKO05] W. Vogler and B. Kangsah. Improved de-
composition of signal transition graphs. In
ACSD 2005, 2005.

[VW02] W. Vogler and R. Wollowski. Decompo-

sition in asynchronous circuit design. In
J. Cortadella et al., editors, Concurrency
and Hardware Design, Lect. Notes Comp.
Sci. 2549, 152 — 190. Springer, 2002.

Validation of an Asynchronous Synthesis Back-End

Nitin Gupta, Doug Edwards
School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

{nitin.gupta,doug.edwards}@cs.man.ac.uk

Abstract of confidence of asynchronous synthesis flows.
The method presented here focuses on performing vali-

When synthesising a design, validation must be per- dation of asynchronous circuits in a modular way that
formed on the synthesisable modules to ensure the gate-allows back-end designers of the synthesis flow to validate
level modules behave as expected. Existing synchronousndividual handshake component designs and easily inte-
design flows are mature and ensure the gate-level netlist grate them into the synthesis flow. The method relies on the
matches the register-transfer-level (RTL) specification. model of handshake circuits to simplify the validation proc-
Asynchronous synthesis flows do not have this level of con-ess by abstracting away the specification of communication
fidence and require alternative validation methods to protocols for each channel. Although this method is
ensure correctness of the synthesisable modules. Thesitended for back-end designers, the method can be used by
methods improve the quality of asynchronous design flowscircuit designers to perform timing validation of entire
and elevate the confidence in synthesised designs. Thalesigns.
work here presents a simulation-based method to validate
synthesisable asynchronous handshake circuits. The2. Handshake Circuits
method uses a behavioural simulation model to identify
validation errors in handshake component designs. Tools Handshake circuits can be specified using a language
have been integrated with the Balsa design flow to demon-that easily describes the functionality of the circuit
strate the effectiveness of this method in identifying valida- [11[3][4]. These circuits can be compiled into a behavioural

tion errors in handshake component designs. handshaking model and synthesised into a gate-level netlist
without requiring the designer to specify the communica-
1. Introduction tion protocol for each element. Handshake circuits can be

constructed independent of the implementation style (i.e.

Validation is the process of ensuring a design behaves asthe handshake protocol and data encoding). Detailed expla-
expected. For synthesis design flows, this process usuallynations of the various asynchronous handshake protocols
involves ensuring the gate-level design matches a behav-and data encodings can be found in [11][13]. This work
ioural-level specification. Validation of synchronous focuses on using single-rail handshake circuits [11] that
designs consists of performing functional and timing vali- implement four-phase handshaking protocols, but applies
dation. Functional validation is performed pre-synthesis at to other implementation styles.
the register-transfer-level (RTL) to ensure the logic of the
behavioural model matches the initial specification. Timing 3. Validation of Handshake Components
validation is performed post-synthesis at the gate-level to
ensure timing constraints are met between registers or Validation ensures the implemented circuit is behaving
latches. Synchronous design flows have a level of confi- correctly as expected, ensures design requirements are
dence in the synthesis process and ensure the synthesise@eing met, and also helps to debug design errors. In order
gate-level netlist matches the behavioural specification. to validate a handshake component, a number of checks
Thus functional validation of the gate-level netlist is not Must be made to ensure correctness [2]. These checks are
performed. Asynchronous design flows are still maturing based on analyzing the behaviour of each communication
and do not follow synchronous design flows. Correctness of channel of the implemented handshake component to
the behavioural model does not ensure correctness of theensure no unexpected transitions occur. Because handshake
gate-|eve| model. Functional and timing validation must be circuits follow specific protocols, the behaviour is fixed for
performed on the gate-level design to ensure correctness ofach channel and can easily be validated. Below is an expla-
the synthesisable gate-level modules and increase the levehation of the various critical errors that must be validated.

3.1. Handshake Protocol Violation

. . " 1
A handshake protocol violation occurs when transitions request
on the request and acknowledge signals of a channel are not

. . R acknowledge
sequenced correctly. This type of error is considered a func-

tional validation error. Correct sequencing of control sig- Bron d”;;':ac\';;';d”ify' XX 'Valid Data ! XXX
nals ensures data operations are sequenced in the correct 1 L 1 1
) A) Pull Channel ><E>< ><E Valid Data E><><><
order. Figure lillustrates the correct and incorrect sequenc- Broad Data Validity : — ; ,
ing of four-phase handshake protocols. Push Channel Vaiid Data SIS
g p p Early Data Validity Z><;Va|ld Da:ta ;><>< . >< : ><><
Correct Four-Phase Protocol Early E;'t'ac\',f,?d”i;' ><§>< ><§ V%‘“d Data §><><><§><><><

Ny
>

| Times
Figure 2: Common data validity protocols for
four-phase single-rail handshake circuits

[
request
0 request

acknowledge 0 acknowledge

y
>

' '
. Broad Push Channel
Time No Validation Errors X>< Expected Data :><><><><

Figure 1: lllustration of ha_ndshake protocol viola- Broad Push Channel - ST Expected Data XXX
tion “error .error.
Broad Push Channel X><: E ted Dat :><><><><><><
32 Bad Data Data Validity Violation L Xpecte ata ; 0
Time ”

A bad data error occurs when data is undefined or incor-
rect at start of the data validity period. The data validity Figure 3: lllustration of bad data errors and data
period is the time required for data to remain stable, and is validity violations
signalled by transitions on the request and acknowledge . . L
signals. During this period, the handshake component4- Simulation-Based Validation
assumes the data is stable and correct, and thus operates on

the data. Figure 2 illustrates the minimum validity period =~] "
needed for common data validity protocols of four-phase circuits behave as expected, simulation-based methods are

single-rail handshake circuits [11], based on whether the €OMmon. They usually involve validating the implemented
sender of data actively starts the communication (push 9€Sign against a behavioural model. The method here uses
channel) or passively waits for the communication (pull & Similar approach, but relies on the properties of synthe-
channel). Figure 3 illustrates when a bad data error would SiS€d handshake circuits to simplify the approach.

be flagged if data is still changing at the start of the validity _ Prévious methods of asynchronous validation rely heav-
period, but this error should also be flagged if stable but 'Y ©n specifying communication models and signal transi-
unexpected data is detected at this point. tion graphs, rather than taking advantage of the abstraction

provided by handshake circuits. Karlsen [8] and Vanbek-

3.3. Data Validity Violation bergen [12] present methods that require the designer to
specify state graphs for each communicating element,

A data validity violation occurs when data is stable and which can be a time consuming process as designs become
correct at the start of the validity period, but changes before larger. Abstracting away the communication protocols is
the end of the validity period. Figure 3 illustrates this vio- desired to allow the designer to focus more on the function-
lation for the broad protocol. As explained above, if data ality of the design. The methods presented by Davies [2]
changes during the validity period, the handshake compo-and Furber [5] are similar to the method presented here and
nent may operate on incorrect data. Data validity violations can be applied to handshake circuits, but do not actually
typically appear as timing errors when delays are incor- perform behavioural validation. The methods rely on a
rectly matched, but actually are functional errors in the brute-force approach that simply checks bundling con-
design or composition of handshake components. straints on the simulated design, rather than validating

against a behavioural model to ensure correctness of the

Because validation requires checking that implemented

design. The process of validation should be automated for validation tools were integrated into the Balsa design flow.
synthesised handshake circuits since these circuits are veryThey were used to identify functional validation errors in
deterministic and follow specific protocols. Balsa handshake component designs. Two synthesis back-
The method here relies on validating handshake circuits ends were chosen for the tests, the broad and early imple-
generated by Balsa [1][3], an asynchronous handshake cir-mentations. The broad back-end implements a single-rail
cuit synthesis tool, but can be adopted for other design broad data validity protocol while the early back-end [6]
flows. Balsa takes a circuit description and automatically implements a single-rail early data validity protocol. A sim-
compiles it into a set of interconnected handshake compo-plified version of a synthesised ARMv5-compatible SPA
nents. These handshake components are completely detercore [10] was used as the test subject (called the nanoSpa).
ministic, with the exception of the Arbiter handshake The Hello World program was chosen for the simulations
component (see Section 4.1). This results in each channelbecause it activates a large number of channels and exe-
following an exact behaviour given a specific test pattern. cutes in a reasonable time. The program performs at least
The Balsa design flow incorporates a behavioural simulator one handshake on a majority of the channels (as measured
that simulates the compiled handshake circuit design. Theby the validation tools). Because the validation method
resulting behavioural simulation gives the exact sequenceabove validates the functionality of handshake components,
of events on each channel that should occur for the synthe-tests that explore a large state space are needed.
sised circuit, essentially yielding behavioural model that Upon running the program on the nanoSpa, validation
can be used during validation. If each channel in the syn- errors were detected in a number of places. A major func-
thesised design is monitored independently, then the entiretional validation error in the composition of Balsa hand-
circuit can be validated by performing an equivalence shake components was identified upon running the
check on each channel between the synthesised netlist simvalidation tools on a nanoSpa implementation that used the
ulation and the behavioural simulation to ensure that each conventional style option for a PassivatorPush handshake
channel is correctly sequencing transitions on the hand-component. The PassivatorPush component is responsible
shake signals and the data. for transferring data between two independent blocks in the
The above validation method relies on sufficient cover- design. The problem occurs when the output of a Passiva-
age of the test patterns provided to the simulators to exer-torPush component is connected to a Fetch component as
cise the various states of the design. The design mayillustrated in Figure 4. The single-rail broad implementa-
validate for the given test patterns, but if the test coverage tion of these components allowed the data validity protocol
is limited, the circuit may still fail. As with all simulation- to be violated due to a mismatch of delays within the Fetch
based methods, this method relies on good test coverage teomponent. The gate-level implementation allowed

be effective in validating whether a design works. changes on incoming data to propagate to the output chan-
o nel of the PassivatorPush before the Fetch component fin-
4.1. Arbitration ished the handshake on its output channel. Because the

Fetch component was implemented only using wires, the
Ifa circuitrequires an arbitrated choice, Balsa allows the composition of the PassivatorPush and the Fetch caused a

designer to place an Arbiter handshake component to arbi-gata validity violation on the Fetch component's output
trate the choice. This componentis the only component that channel, causing incorrect data to be processed. The error
introduces non-determinism in a Balsa handshake circuit\yas subsequently fixed by placing data storage within the
design. In order to deal with this problem, the non-deter- passjvatorPush component to maintain the data validity
minism must be removed from the simulation. The proposal protocol and recognising this composition in the Balsa
is to force the simulations to follow each other in order to compiler. Another solution to this error was to allow the
determine whether the behavioural model and netlist designoytput of the Fetch to complete a full four-phase handshake
behave the same. The netlist simulation is forced to make pefore acknowledging the activation channel by using an S-
the same arbitrated choices as the behavioural model whileglement [11].
stalling the other choice if that input request arrives first. another major error was detected in the composition of
This will result in the netlist simulation making the same caseFetch and Fetch components (see Figure 4). The
choice as the behavioural model, but only for the purpose caseFetch component is responsible for transferring input
of validating the behaviour. Once the design has been vali- 4ata from a particular channel based on an index. The com-
dated, the arbiters can assume their original behaviour. position of these two components caused the same data

validity violation as above, but unlike the error above, this
5. Results error was implementation specific. The error only occurred
when the design was synthesised using the Xilinx back-

To demonstrate the effectiveness of the method above,ey The xilinx implementation requires a different gate-

level implementation of the CaseFetch component due to validate designs of handshake components as well as vali-
the lack of keeper inverters (a state-holding element used indate choices made by the compiler. Specific compositions
asynchronous designs). The CaseFetch implementationof handshake components may cause validation errors, sug-
removed data from outgoing channels as soon as the outgogesting an error with the compiler. Thus the presented
ing acknowledge reset. This caused a data validity violation method can be used to test the compiler and increase confi-
along the output channel of the Fetch component becausedence in the way it composes handshake circuits.

of the wire-only implementation of this component. Data Although the tools integrate with the Balsa design flow,
storage can be placed in the CaseFetch component tahe methods above can be generally applied to other design
resolve the issue, or an S-element placed in the Fetch com{lows that implement handshake circuits, such as the Time-
ponent, similar to the solution above. less Design Environment flow provided by Handshake
Solutions [7]. The method above relies on the abstraction
and determinism of handshake circuits, allowing the
method to be adapted to various design flows. As long as a
behavioural simulation of the channel communication can
be acquired and the channel activity extracted from the
gate-level netlist simulation, the method above can be gen-
erally applied to other synthesis flows.

Activation

7. References

Input3

[1] A. Bardsley. Implementing Balsa Handshake Circuits. Ph.D.
Thesis, Department of Computer Science, The University of

index Manchester, 2000.
Figure 4: Hazardous handshake circuit composi- [2] R. M. Davies, J. V. Woods. Timing Verification for Asyn-
tions chronous Design. In Proceedings of EURO-DAC 96’, pp.
A data validity violation was detected in the early imple- 78-83, September 1996.

mentation of the Variable component. The Variable compo- [3] D- A- Edwards, A. Bardsley. Balsa: An Asynchronous Hard-
nent assumes exclusive writes and reads, but due to the Wa'€ Synthesis Language. In The Computer Journal, Vol
early protocol, a write-after-read hazard may occur. When 45, No. 1: pp. 12-18, British Computer Society, 2002.

T ’ ;4] C. Farnsworth, D. A. Edwards, J. Liu, S. S. Sikand. A
these two operations are seque_n_ced, the return-to-zerp 0 Hybrid Asynchronous System Design Environment. In 2nd
the read may overlap with the writing to the Variable. This Working Conference Asynchronous Design Methodologies,
may cause a race to occur, causing the output of the Varia- Mmay 1995.

ble to prematurely change. The error is fixed by recognizing [5] S. Furber. Validating the AMULET Microprocessors. In The

this behaviour in the compiler and ensuring exclusivity, or Computer Journal, Vol. 45, No. 1, British Computer Society,
adding an exclusive element in the Variable component. 2002.

[6] N. Gupta. Synthesis of Asynchronous Circuits Using Early
6. Conclusions Data Validity. In Proceedings of VLSI Design 2005, pp.

799-803, January 2005.
handshake circuits has been presented. The method takes8 | g‘intku'f'-: htg’#""F‘;"Whaldiha_kesglm_:?”s'c‘é”; dlor £
. . . : . A. Karisen, P. [. Roine. Iming veriter an rotiler Tor
advantage of the abstrgctlon proylded by handshake circuits Asynchronous Circuits. In Proceedings of ASYNC 99', pp.
and suggests performing validation at the channel level. A 13-23, April 1999
synthesised AR,M core was gsed asat'es't SUb_]ecft to dgmon 9] A. M. G. Peeters. Single-Rail Handshake Circuits. Ph.D.
strate the effectiveness of this method in identifying valida- Thesis, Technische Universiteit Eindhoven, Eindhoven, The
tion errors. Once these errors were identified, these parts Netherlands, 1996.
were fixed and validated independently, then integrated [10]L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley,
back into the synthesis flow. Future work will involve run- S. Temple, J. D. Garside, Z .C. Yu. SP A Secure Amulet
ning the validation suite on other designs to find and debug Core for Smartcard Applications. In Microprocessors and
design errors in Balsa handshake components and improve ~ Microsystems, 27(9): pp. 431-446, October 2003.
the quality of the Balsa back-ends. [11]J. Sparso, S. Furber. Principles of Asynchronous Circuit
The method presented here adds value and increases12 Ee\i'g% 'E'l;“"’er AC:d\fvm'CS Euﬁhshers,i%m._ 4 valid
confidence in the Balsa design flow. The tools mentioned[1P. Vanbekbergen, A. Wang, K. Keutzer. A design and valida-

. . - - tion system for asynchronous circuits. In Proceedings of
above integrate with this flow, allowing back-end users to DAC 95', pp. 725 - 730, June 1995,

Blame Passing for Analysis and Optimisation

Charlie Brej

Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

cbrej@cs.man.ac.uk

Abstract simulation and dynamic analysis to exploit the potential for
average case performance[3] in asynchronous circuits, where
Potentially, asynchronous circuits can execute faster than data-dependent timing exists.
their synchronous counterpart because of their average-case, ©One ofthe design methodologies which tries to exploit average
rather than worst-case, performance. In practice, such ancase performance isarly outputlogic[5]. In this paper early
advantage is difficult to achieve. A major reason is the difficulty Output circuits will be used to demonstrate the dynamic timing
in identifying timing-critical regions of the circuit and analysing analysis method and the optimisation system.
the results of changes to the system. The problem arises becaus«i_l_ Early Output Logic

static critical path extraction tools used by synchronous : .
Early output logic attempts to increase performance of a

designers do not work with asynchronous circuits. ' °
This paper introduces a novel, pragmatic dynamic timing system by first decreasing the latency of each stage: Through the
use of l1-of-n delay insensitive codes, the completion of

analysis approach to determine bottlenecks in asynchronous X ; -
circuits. This approach evaluates the behaviour of a circuit within COmputations can be determined through the use of completion
detection logic on the data outputs of a stage rather than an

a specific test-bench designed to exercise the circuit in a manner—- "~~~ e))

typical of its final application. estimation of stage timing using a worst case delay model. Bit-
Extracted information can then be used to determine which '€V€! Pipelining allows the generatl_on of partial re_sults which can

optimisations should be applied, and where those optimisations be forwarded to the next computational stage while the remainder

should be applied. Circuit behaviour information can also be fed ©f thé outputs are still being processed. In cases where the inputs

back to the designer to allow circuit bottlenecks to be visualised. Which have arrived to a function are sufficient to generate an
output, the output generation is not synchronised with the arrival

1. Introduction of the remaining inputs. The output is generated in parallel with

There are many circuit design methodologies which do not use the gathering of the inputs to the stage. This all@asy output
a global clock as a timing reference to mark the completion of [5] generation, yet correctly acknowledges all inputs to the stage
operations[1]. Of these, the most relevant in this paper are circuits €ven if they were late (and so unnecessary for generating the
where the timing of each operation is not bounded but rather is output).
implicit in the data encoding, and in particular circuits with Delay Figure 1 shows a segment of an early output circuit. The
Insensitive (DI)[1] data encodings. Circuits with data dependant communication is done across 4 wires: request zero (R0) and one
timing (e.g. operand dependant matched delays) or data (R1), validity (V) and acknowledge (A). The early output OR gate
dependant control sequences (in systems made with languageds constructed from an AND/OR pair which generate the two data
such as Balsa[2]) are also amenable to the approach described irPutput signals. The validity output from the gate is formed by
this work, but will not be considered in depth. gathering all validity inputs. The latch cannot acknowledge until

Circuits with DI data encodings can have non-uniform t|m|ng the Valldlty becomes hlgh It asserts its Valldlty OUtpUt once it is
which is dependant on the operation executed. This is different outputting data becomes valid. This style of early output circuit
from synchronous circuits where every operation’s execution time construction is described in more detail elsewhere[5].
is bounded by the predictable clock period. This bounding leads Half Latch
to predictable timing which allow circuit analysis to take place in
a static manner. In synchronous systems this takes the form of
critical path extraction[4]. The predictability of synchronous
systems, and the bounding which the clock provides, naturally
leads to systems with worst case performance, irrespective of the
pattern of data processed.

Static timing analysis has become the method of choice for
synchronous circuit analysis as it has the advantage of high speed
of analysis and complete coverage of all significant paths. The OR Gate
lack of simple timing references across an asynchronous circuit
can make static analysis difficult. This paper attempts to use

Figure 1: Example early output circuit segment

1.2. Asynchronous Circuit Construction uses an algorithm which finds the route and the length of the critical
Most asynchronous circuits are constructed in a manner very Path [4]. This process is made simpler because of the assumption
similar to that of synchronous circuits. The circuit is composed of IMPplicit in the use of clocked latches that all inputs are applied at
computational logic which takes inputs and generates outputs basedh® same time. _ . o
on those inputs. Latches are used to store data and keep it stable The algorithm marks the time of arrival of data at each point in
while it is being processed by the combinatorial logic. The main the circuit. This is dgne by determl_nlng the Iate_st arriving input to
differences in the numerous asynchronous design methodologiest@ch gate and marking the output time as that time plus the delay of
come from the use of differing handshaking protocols and data the gate. The outputs of the latches after the active clock edge are
encodings used to co-ordinate transfer of data between latches Marked as occurring at time zero. Once this has been performed on
Each approach has its advantages and disadvantages. In particulaﬂ” signals m the circuit, the signal with the latest arrl\(al time can be
itis advantageous to ensure that control signalling happens with thefound and its route between latches can be determined.
same set of signal transitions for each transfer. The power and speed 1his method has several limitations: combinatorial logic loops
attractive two-phase protocols[6] make this difficult. The use of a are not permitted due to the cyclic dependencies produced, and the
‘reset’ phase with four-phase protocols[8] leads to simpler circuits, cfitical path can include more than one mutually exclusive path
but considerable effort is requires to hide the latency of the reset Which gives a critical path which cannot occur. o
phase by overlapping it with other circuit activity. Encodings such This method is sufficient for simple synchronous circuits.
as four-phase 1-of-4 encoding are popular as the circuits producedJUnfortunately most asynchronous circuits do not have predictable
are simple and the energy efficiency of the code is good[7]. and cyclic timing and the static timing approach is not applicable.

1.3. Asynchronous Circuit Properties 3. Blame Passing

Early output logic tries to tackle the overheads of the four-phase A mMethod to analyse asynchronous circuits is crucial to allow the
1-of-n codes when used in combinatorial logic. Unfortunately, due @Synchronous engineer to tackle system bottlenecks. As this cannot
to the use of the four-phase protocol there remains the reset period®@sily be done statically, it must be performed dynamically.
problem. A generally accepted method of reducing the effect of the 3.1. Simulation
reset period is to doubling the pipelining in the system while The basis of the d ic timi vsi his the abilit
keeping the number of tokens the same. This allows half of the logic heDbasis ot e dynamic iming analysis approach Is the abiiity
stages to compute while the other half resets, ready to accept newIO S|m_ulate the exgmlned_cwc_wts. In order to pbserve realistic
values. operatl_on of the un_lt, the C|rc_U|t mu_st be placgd into a test-bench

Fine grain pipelining is not always benefial. It can lead to an emulating the environment in Wh'.Ch the unit WOUk.j be used.
increase in the latency of data flowing through the pipeline. Other Because the delays and sequencing of the operatlons.are data
optimisations such as C-element tree balancing improve responsedepenqam' the tgst_—bench must_ accu_rately re_fle_q the env_wonment,
time for each input equally. This often does not take into account the otherwise the qptlmlsatlons applle_d will be op_tlmls_,lng the circuit tc.)
case where inputs arrive in sequence and so balancing the tree cafXecute operations or react to environment stimuli sequences which

; . . " . may never occur.
shift the last input to arrive from a position where it was close to the The absolute accuracy of the simulator used is not important (as
output to a position further from the output. y P (

In order to ceternine whee these opimisaons should be 7932 SR Seleys re easonany conssenly eprserted
applied, the circuit's performance must be analysed when yie . : P Y
PR . transistor-level analogue simulations could be used. In this paper, an
performing ‘typical’ operations. . .
example fixed delay gate level simulator has been used to

2. Static Timing Ana|ysis demonstrate the methodology. A custom gate level simulator was

There are some static methods which can be adapted toiMmPlemented asitis fast and it does not rely on external tool suites
asynchronous circuits. to generate satisfactory results for all components.

Once the circuit and the test bench have been loaded into the

2.1. Slack matching simulator, the simulation begins with the release of the reset signal.

Slack matching [9] allows a crude balancing of the level The simulation then continues until the benchmark has been
pipelining between two paths with the same start and end points. completed. The completion of the benchmark can be signalled by
This method adds additional pipelining latches into the path with raising a specific signal or it can be time bound and instead of
the lower pipelining. This ensures that at the start of the fork the two recording the time taken to perform a set number of operations, the
paths are capable of accepting an equal number of data tokens andiumber of operations executed in the setamount of time is recorded.
a stall due to one pipeline being full becomes less likely. This ~ The simulation performs two tasks: 1) measuring the
system makes many assumptions such as a equal execution time operformance of a proposed circuit and 2) extracting information
each stage, a bundled data system (no bit level pipelining) and noabout its behaviour in order to improve the performance further.
data dependant delays. Another limiting factor is only optimisation Even inaccurate simulators, where the exact delay of each
which can be applied using this method is pipelining latch insertion. component is not known, can be used to extract reasonable

.. . comparative performance results, giving a good idea if an
2.2. Critical path extraction optimisation would have a positive or a negative effect.

Synchronous circuits use static timing analysis to extract the)
critical path and the optimisations rely on making this shorter. 3.2. Slowest Path Extraction

The extraction of the critical path from synchronous designs This paper introduces the concept alawest pathThe slowest

path follows the actual sequence of transitions which accumulated path, to become slower and become a part of the path, causing the
into the delay of the system during the full benchmark. This is whole system to operate slower. The other exception is in gates
different approach from determining the critical path in a where a number of inputs which transition can cause the output to
synchronous system because the analysis required to find thetransition. Here the easiest target to focus on is to optimise the
slowest path need not be exhaustive. Such a restricted analysissequence of events which led to the transitioning of the first input
allows it to rapidly observe average case performance (rather thanwhich triggered the gate. It is possible to also shorten the slowest
worst case). A slowest path is allowed to pass through any unit aspath by generating a new path through an optimised unit which
many times as is required. This enables the approach to extract thefeeds one of the other inputs which could trigger the transition of
path from long multi-cycle operations and thus also observe the the gate before the original first input reaches it.

signal interactions in latches as well as logic. The method of = The optimisation to be applied to the units passed though by the
extracting the slowest path is loosely based on static timing slowest path can be determined by observing the route of the path
analysis. through known constructions.

In static timing analysis each wire in the system is marked with .. .
the arrival time of the data in a worst case scenario. Once the wire4- Optlmlsatlons
with the latest arriving time has been found the critical path can be ~ To demonstrate a number of optimisations, a simple example
extracted. This can be donein asing|e pass over the circuit (marking circuit was designed. The circuit takes a number from an internal
signal times can be done at the same time as identifying the constant source and decrements it (storing the result in a register)
currently most critical path). For the sake of simplicity, in the until it reaches zero, at which point it reads a new number from the
following example we will presume this is done using another pass. constant source. Figure 2 shows the design which consists of a

To extract the critical path with a known end point, a path back constantsource (Const) which feeds anumber to the uniteach cycle,
from that point towards the previous latch for the gate with the latest a register (Reg) which holds the current value, a decrementer (Dec)
arrival point at the end point must be found. This path passed backWhich reduces the number by one, an OR gate which tests for the
through gates with the latest input arrival times until the output of a number being equal to zero and a multiplexer which picks either the
latch is reached. The path follows a theoretical sequence of New value or the external constant to be written to the register.
transitions which could happen and so require the clock to have a
period longer than the delay of the critical path.

In the dynamic timing analysis, the end point of a simulation run Const
is the benchmark completion signal. In fixed time simulations any
signal which transitioned towards the end of the simulation run can Reg Dec
be picked. This end point is the last point in the slowest path. The
previous point in that path can be determined by finding which was —
the last input to arrive to the transitioning gate. If this input would
have transitioned sooner the operation would have taken less time,
and so this input bears the ‘blame’ for the delay of the circuit. Blame Figure 2: Decrementer circuit
passes from gate input to gate input back through the path (hence The design was heavily pipelined to allow parts of the circuit to
“blame passing simulation”) until the initial signal is reached reset in parallel with others processing. The shaded blocks in the
(usually the release of the reset). figure show the placement of half latches which increase the

Unfortunately, if only a single time is recorded for each gate, the pipelining of the design. In addition to these, the decrementer was
cyclic nature of the slowest path will cause that value to be vertically pipelinedto a single bit level (a half-latch placed on the
overwritten on each cycle of the simulation. Instead, the proposed carry path between each bit slice). This may seem excessive but
technique generates the slowest path forward rather than in reversghese latches should be treated only as possible latch locations as
during the simulation. As the simulation executes, each transition of any latches which restrict the performance of the design can be
a gate is recorded, along with its cause, as the output of the gateremoved through one of the optimisations.
could become a part of the slowest path. Should its transition not ~ The circuit was simulated and its slowest path extracted. The
cause any subsequent gate outputs to change, the transition isimulation is set to run for a fixed time of 100 000 gate delays, after
counted as dead endThis can now be forgotten as it can not form which a random signal which transitioned in the last time-slice is
a part of the slowest path. The recorded transitions keep a referencdaken as the end point of the slowest path. The signal can be
counter in order to allow their removal should all transitions caused randomly picked as no matter which signal is chosen, the path,
by them have reached dead ends. Discarding dead ends prevents theithin a small number of gate delays, converges into the same route

simulation memory footprint from growing out of control. as with any other signal selected.
) One of the methods the designer can use to observe the slowest
3.3. Slowest Path Analy5|3 path (in order to find the bottleneck in the system) is to annotate that

The slowest path in any simulation represents the sequence ofpath onto the schematic used to design the circuit or a diagram
transitions which accumulated to the complete delay of the which represents the design. In figure 3 the slowest path is placed
simulation. This shows the exact points where the optimisations on top of a representation of the design. The arrows represent the
should be applied as applying optimisations in areas not passedtransitions in slowest path. As the simulation executes many
through by the slowest path would not effect the path and the operations of the unit, the paths often take the same route a number
operation will still take the same amount of time. There are of times. In the figure, the thickness of the arrow represents the
exceptions to this rule: optimisations could cause a unit, not on the number of times a particular gate crossing had occurred. Not visible

on the diagram is the distinction between the rising and falling latches on the falling data signal transitions (an example of which
transitions. is the carry chain reset in the decrementer example). The pattern to
be matched for the optimisation to be effective is the down-going
transition (dashed arrows) of a request out signal being dependant
on the request in signal. Replacing the latch with an early drop latch
would allow the release of the request out signal to be done
concurrently (before the request in signal is released).

An early drop latch does have an additional delay on the rising
transitions (solid arrows) of the data signal propagation and should
not be used in situations where this frequently occurs in the slowest

. . . 4.2. Latch Removal

Figure 3: Slowest path in the decrementer design

) . As mentioned before, the number of latches placed in the
The zoomed segment in the figure shows the a part of a sequenceexam le design is high and many of them will have a negative effect
of transitions which occupy the majority of the slowest path (77%). P 9 g y 9

These are falling transitions alona the carrv chain of the °" the performance of the design by adding latency to the slowest
decrementer g g y path. Removing a latch can reduce the cycle time by two gate delays

In this benchmark the constant which is loaded and (if the latch is on the slowest path in both the set and the reset
decremented, is large %%1) with lthe simulation time periods). The danger in doing this is the latch may have been adding

. ipelining crucial to make the system free flowing. There is little
comparatively small and so the decrementer never has a long carr ; . L o
. . way to determine which latches add pipelining which is useful to the
chain dependency. The use of early output logic allows a fast

. . system from the slowest path and this is why the table in figure 5
generation of a result as the carry signals can be generated Iocallyhas that entrv missin
rather than needing to propagate the full length of the unit. y 9

- \ Multiplexer

Decrementer

Register

The generation of the result is not the bottleneck in this Pos Neg Apply
benchmark. Instead, the circuit takes a very long period of time to R, [—
release the signals on the carry chain despite the fact the chainis [/ 1=
broken up into small one-bit segments. The root of the problem is Aof <
the construction of the half latches on the carry chain which prohibit
their outputs from dropping while their inputs remain high (after the Figure 5: Latch removal optimisation

release of the data signals through the entire unit. This problem can@ Positive effect.
be remedied using an early-drop latch[5]. This Ia_tch drops |t_s data 4.3. Latch Insertion
outputs upon receiving an acknowledge even if the data inputs

remain high. In situations where insufficient number of pipelining latches

were placed in the design the optimisation system can spot where a
4.1. Early Drop Latch latch is separating two regions which are unable to store two

The application of optimisations can be described by tables. A different tokens due to the latch not providing enough decoupling.
positive effect of applying an optimisation can be predicted through Only once the stage in front has completed its phase can it allow the
the observation of a frequently occurring sequence in the slowestStage behind to enter its next phase e.g. the stage in front must
path passing through the element to be optimised. This path is complete its reset phase and accept the data from the stage behind
shown in the “Pos” column in each optimisation table. As each before the stage behind can enter the reset phase and release the
optimisation has a possibility to cause a lengthening of the slowest data. Such situations can be avoided by inserting an additional
path, the “Neg” column depicts the path which, if observed in the Pipelining latch where the stage behind can commit its data (and
pre-optimised design, is likely to cause the optimisation to decrease €Nter the reset phase) before the stage in front is not ready to accept
the performance of the system. The “Apply” column in each it This can be seen in figure 6.
optimisation table presents the optimisation to be applied. Figure 4 ~ The danger of inserting latches is the addition of latency. Should

shows the table for the early-drop latch optimisation. the slowest path pass through the latch data signals, the path will

become one gate delay longer for every pass.
Pos Neg Apply 9 ylong yp

Pos Neg Apply

R 31R» >
s |j| Kev s - "
/_,_ e P
i e R Y 4A_ |:| |:|

Figure 4: Early drop latch optimisation

The early drop latch releases the request (data) signal as soon as

the acknowledge has been released rather than waiting for the
request on the input to fall. This optimisation is particularly
effective in circuits with the slowest path passing through many

Figure 6: Latch insertion optimisation
The combination of latch removal and latch insertion effectively
reproduces the effect of slack matching. The areas concentrated on
by the slack matching techniques [9] (unbalanced pipelines) show
up in the slowest path as recommendations to remove latches from

the over-pipelined path and to insert latches in the under-pipelined decrements from the maximum (32 bit) integer which causes it to

path. never load the number form the constant. The circuits were not only
. benchmarked for use with the differing constant values but also
4.4. Anti-Token Latch optimised with them. The results for the circuit are given in figure 8.

In early output circuits, it is often possible to generate the result The insertion and removal of latches optimisation in this circuit
of a function without the presence of all inputs. Unfortunately, the removes many of the latches in the carry path since they do not add
late unnecessary input must be synchronised with and to the pipelining of the circuit and instead add latency. This yields
acknowledged to correctly group inputs. The anti-token latch [5] a 50% improvement in performance in both circuits. In the ‘Full’
allows a stage to acknowledge an input which has not arrived yet. henchmark, another large increase in performance is gained through
The latch then effectively holds an anti-token which propagates the use of early-drop latches. The same effect was not seen in the
back through the pipeline and removes the undesired token. ‘Zero' benchmark as it does not suffer from the same problem.

The slowest path in situations where a stage waits for the token |nstead, a lot of additional performance was gained through the use
to arrive before acknowledging it passes through a latch from the of anti-token latches which were able to pass anti-tokens to the
data input arriving to the validity output rising, signalling the latch decrementer once the value was loaded from the constant. This

is ready to accept an acknowledge. The anti-token latch asserts thejecreased the reset time of the decrementer which was a bottleneck
validity signal before any data has arrived which exposes it to in the performance.

receive an acknowledge before it holds any data to remove. Here an 5000
anti-token is formed and the stage becomes free to process a new set
of inputs. Figure 7 shows the table for the anti-token optimisation. 4,000 B DS None
Pos Neg Apply] B B
8 3,000 O Early Drop
a B Sroronas
A AT :
2,000
i A &
Figure 7: Anti-token latch optimisation 1000
The anti-token latch is larger and slower in a number of
transition sequences than an ordinary half latch. The negative effect 0 Zaro Ful
box in the figure shows just one of the routes which if exist in the Figure 8: Decrementer benchmark results

slowest path would gain an additional gate delay.

5.2. GCD Benchmark
5. Results The GCD benchmark determines the greatest common
To demonstrate the effectiveness of these optimisations they denominator of two numbers. To keep the design simple, the
were applied to three circuits and the performance improvement duenumbers are restricted to 8 bits. The design comprises two dividers
to each one was recorded. The performance of the original early which only generate the remainder while discarding the result of the
output design is presented (labelled “Early None” in the graphs), division, two registers to record the current number pair being
along with the performance after the latch insertion and removal worked on, a comparator which determines either of the two
optimisations (Early Half), early drop latch optimisations (Early numbers have become zero and a pair of internal constants. The unit
Drop) and anti-token optimisations (Early Anti). To give a good loads a pair of numbers from the constants and then repeatedly
comparison of the performance of the resultant circuits they are divides them by each other each time recording the remainder.
compared with the synchronous equivalent (Synchronous) for Eventually one of the numbers reaches zero and the result is the
which the timing is determined by extracting the critical path. The other number. In this benchmark, the result is discarded and a new
delay of the latching element and margins for clock jitter are not pair of numbers is loaded from the constants. The two modes of
factored in. operation the design is worked on are: two numbers in the Fibonacci
Also presented is a DIMS implementation generated from the sequence, and two zeros. The Fibonacci sequence numbers (223 and
same design specification (DIMS None). The DIMS design cannot 144) require a large number of operations before the result is
take full advantage of the early-drop and anti-token latch generated and a new set of numbers is loaded. The zero test loads
optimisations but the latch removal and insertion rules apply new numbers on each cycle as the greatest common denominator of
equally to this design style and the result of these optimisations is two zeros cannot be determined.

also presented (DIMS Half). The results of the optimisations on this circuit are shown in
Each benchmark was run for 100 000 gate delays and the figure 9. The zero benchmark received a reasonable increase in
number of operations executed in that time was recorded. performance due to the use of anti-token latches. These were
effective at removing the results of the unnecessarily executed

5.1. Decrementer Benchmark divisions and allowing the circuit to progress to the next phase.

The decrementer circuit has already been shown, and forms oneBecause the placement of half latches was good, little performance

of the circuits upon which the optimisations will be demonstrated. gain is attributed to the removal and insertion of half latches.
Because the circuit has behaviour dependant on the data being

processed, it is benchmarked with two different internal constant 9.3. CPU Benchmark
values. The ‘Zero’ benchmark sets the constant to zero, which The CPU benchmark uses the datapath of an open source
causes it to continuously reload the constant. The ‘Full’ benchmark microprocessor [10]. The control signals are attached to pseudo

of possible optimisations. The decrementer circuit was very
inefficient due to its long reset time. Engineers tend to concentrate

B DIMS None on the processing periods rather than reset periods and so an

O pDIMSHaf
i inefficiency like this would be easily overlooked. On the CPU
B S v example circuit, the addition of a register locking scheme by the

W Syetvonous designer would require a lot of additional work. A simple version

of this was constructed by the optimisation system with no designer

input. The optimisation system, by replacing a small nhumber of

latches, managed to construct a conceptually complex scheme
which increases the system performance.

Fibonacci

Figure 9: GCD benchmark results 6.1. Future Work

random number generators which cause it to execute random The optimisation system is currently very specific. Only early
instructions. The memory stage is formed from a delay which is output and DIMS designs which have been specified in a custom
triggered once all address inputs are present. The result of all netlist format are allowed. Only a few optimisations have been
memory operations is always zero. The delay of the memory stagespecified and applied and the simulator can only execute in a fixed
is either zero for the ‘Zero’ benchmark or 50 gate delays for the gate delay level setup. Future extensions to the system will allow
‘Long’ benchmark. different design methodologies such as bundled data pipelines (such

The results are shown in figure 10. Because the circuit was as Micropipelines[6]) and non-pipelined approaches (such as
already relatively balanced and tuned, in the Zero benchmark nonehandshake circuits [12]) to be exploited.
of the optimisations had a great effect. The DIMS circuit gained a The simulator will be extended to read more accurate delay
reasonable performance increase due to the latch removal. In themodels of components and allow extraction of the slowest path from
Long benchmark, the anti-tokens were able to keep the designthe event logs of other simulators. Additional optimisations will be
executing during memory accesses, the results of which were notadded to the current set (stage retiming [11] and tree reshaping).
requested by the register forwarding multiplexers. Instead, the
circuit continued to execute while allowing the memory access to /- References
perform a delayed write to the register bank. The anti-token latches [1] J. Sparsg and S. Furber, “Principles of Asynchronous Circuit
placed in the register bank effectively generated a register locking Design”, Kluwer Academic Publishers, 2001, (ISBN 0-7923-

Operations Executed

Zero

system where the registers which were not being written to
generated anti-tokens on their inputs and continued with the next [2]
cycle of operation.

3000 [-7

(3]

2500 [-+ e I DIMSNone

O DIMSHalf
H Ealy None
@ Ealy Half
[0 Early Drop
W Ealy Anti
I Synchronous

2,000

(4]

1,500

Operations Executed

(5]

Zero

Long

Figure 10: CPU benchmark results

(6]

6. Conclusions

Blame passing dynamic timing analysis offers an insight into the
operation of a system which allows designer to make decisions
about the circuit based on actual system behaviour, rather than
making educated guesses about the effect of each alteration. Theg]
optimization system automates this process and allows poorly
designed circuits to be balanced and offers even good designs
additional performance with its use of advanced latch designs.

The blame passing extensions to the custom gate level simulator

[7]

9]

7613-7)

A. Bardsley, “Implementing Balsa Handshake Circuits”,
Ph.D. Thesis, University of Manchester, 2000.

S. B. Furber, J. D. Garside, S. Temple and J. Liu.
“AMULET2e: An Asynchronous Embedded Controller”, Pro-
ceedings of Async 97, pp. 290-299, IEEE Computer Society
Press, 1997.

R. B. Hitchcock, G. L. Smith, D. D. Cheng, "Timing Analysis
of Computer Hardware", IBM Journal of Research and Devel-
opment, Vol. 26, 1, pp. 100-105, 1982

C.F. Brej, “Early Output Logic using Anti-Tokens”, Twelfth
International Workshop on Logic and Synthesis (IWLS 2003),
May 2003.

I.E. Sutherland, “Micropipelines”, The 1988 Turing Award
Lecture, Communications of the ACM, Vol. 32, No 6, pp 720-
738, January, 1989.

W.J. Bainbridge, S. Furber, “Delay Insensitive System-on-
Chip Interconnect Using 1-of-4 Data Encoding”, Proceedings
Async 2001, pp. 118-126, IEEE Computer Society Press,
March 2001.

D.E. Muller, “Asynchronous logics and application to infor-
mation processing”, Switching Theory in Space Technology,
Stanford, University Press, Stanford, CA, 1963.

Andrew M. Lines. Pipelined Asynchronous Circuits. MS The-
sis, Caltech-CS-TR-95-21, 1995.

increased the simulation execution time by 30%. This is relatively [10] C.F. Brej, “Yellow Star: A MIPS R3000 microprocessor on an

small and allows the system to simulate, optimise and re-simulate

FPGA”, 2001

in short cycles (about 3 seconds per cycle for each of the example[11] S. Hassoun, C. Ebeling, "Architectural Retiming: An Over-

designs).

view", TAU95, November 1995.

The optimisations performed on the example designs showed [12]K. van Berkel, "Handshake Circuits - An Asynchronous

cases where designers would be unaware of the real bottlenecks or

Architecture for VLSI Programming", 1993.

Completion Detection Optimisation based on
Relative Timing

A. Mokhov, D. Sokolov, A. Yakovlev
School of Electrical, Electronic and Computer Engineering, University of Newcastle
{andrey.mokhov, danil.sokolov, alex.yakovlev}@ncl.ac.uk

Abstract— This paper presents an algorithm for efficient dis- the idea of relative timing to improve data path synthesis more
tribution of completion detection blocks in a dual-rail self-timed gradually from speed independent design were made in [7].
circuit to ensure correct computation of the completion signal. This has led to techniques such path-wiseand layer-wise

Layer-wise optimisation technique is used with the width of layers oo
selected so as to satisfy timing constraints and use the Ieastc’pt'm'S“”"['OnSWh'Ch are discussed in depth in Section IlI.

possible number of completion detection blocks. The presented ~ 1hiS paper presents an algorithmic development of these
algorithm is implemented in a tool for asynchronous design flow. techniques and their automation in combination with accurate

timing analysis, which gives excellent results. The presented

technique reduces the number of completion detection blocks

significantly that leads to decreasing area overheads. And

this naturally also decreases power consumption and increases
Asynchronous design is commonly accepted nowadays dpeed.

be better theoretically than synchronous design in terms of

speed, power consumption, electromagnetic noise etc [1]. Il. BACKGROUND

However, asynchronous design is hard to implement efficientlythere are two main approaches to asynchronous data path

in practice that stops industry to accept it as a standard. ign:bundled dataandcompletion detectiariThe difference

of the reasons for that is absence of a stable CAD-supporigdyeen them is the way they produce sigdahe which

design flow. Furthermore, most of today asynchronous imgjis the environment that combinational logic has finished

plementations suffer from large area and power OVerheaaﬁnputation and produced valid outputs.
caused by mechanisms ensuring correct functionality of the

circuits. The size of the mechanisms (such as completig\n Bundled data
detection logic) sometimes exceeds the size of the logic part

of the circuit that eliminates any possible benefit of using The bundled data approach uses a delay buffer to produce
asynchronous design. signaldone(see Figure 1).

Modern automated design flows often separate data and
control paths synthesis [2]. Data path synthesis based on the
NCL-D [3] architecture has quite a straightforward principle of
work: each gate in it has its own built-in completion detection
mechanism. This mechanism requires large area overheads. To
improve it a more recent NCL-X architecture was introduced
in [4]. Addition of signalsgo and done helped to decrease e — done
the area and power overhead but still each gate had to be
equipped with a completion detection block to guarantee speed — —
independence. Fig. 1. Bundled data

At the same time it has already been demonstrated that
control path in asynchronous circuits can be designed using
the idea of relative timing [5]. This helps to simplify the The environment produces signgd to confirm that it has
logic substantially (leading to speed and power consumptiset valid inputs for combinational logic. The buffer delay
improvement) without violating the circuit functionality. Whileshould be selected so that for any input transition the com-
the importance of relative timing in control logic synthesibinational logic has finished computation before sigdahe
has been addressed in [5], the question about its use in dataroduced. Such a delay is called tiwerst case delaypf a
path is still open. Of course the application of conventionaircuit. It should be emphasised that there are two main aspects
bundled data techniques can be considered as an exangblevorst case delay: one is based on data-dependency, the
of relative timing, but this is clearly an overkill in manyother on parametric variability. So the matched delay should
situations as worst case constraints prevent from exploitibg sufficient to exceed the circuit computational time for any
data-dependence in delays as well as put large safety marginmit data under any process and physical variations. The use
to compensate parametric variability [6]. Initial attempts to usef the worst case delay leads to an intrinsic disadvantage

I. INTRODUCTION

Combinational
logic

Environment
Environment

of the bundled data approach: circuit performance is fixddw gates just near the circuit outputs can be left without
to the worst case computational time regardless of actwampletion detection because multi-input C-element that is
input values and variations. This kills major benefits of asymsed to produce signdbneis very slow. If its switching delay
chronous design - average case performance and the abibtyarger than the delay of propagation of a codeword (and
of automatic adaptation to physical properties. However, tlipacer) through several gates of combinational logic which
bundled data approach is widely adopted because standamaduce circuit outputs, then the completion detectors for these
synchronous single-rail combinational logic can be used gates are redundant. Following the same idea, after a layer of
data path without any modifications such as conversion lmgic with completion detectors it is again possible to skip
hazard-free logic etc. It should also be mentioned that @aompletion detection in a layer of gates whose cumulative
spite of worst case performance the bundled data approaclléday is less than the delay of C-element.

better than fully synchronous design in terms of speed becaus@ straightforward way is to keep the width of layers con-
timing constraints are localised within a relatively smaller pastant throughout the circuit but in fact careful timing analysis

of the whole system. of a given circuit allows the width to be increased from layer to
layer and eventually obtain substantial reduction to the number
B. Completion detection of used completion detection blocks. This paper presents an

. . . . algorithm for refined layer-wise optimisation that uses layers
Completion detection methods use additional logic to det%ﬁose width can potentially grow in geometric progression.

that the circuit has actually finished computation and produce
signaldonewithout conservative overestimation of completion
time. Completion detection is better in terms of handling
variability because it does not make any assumptions onTo start the description of the algorithm two timing func-
process and/or physical variations. Some of the completibans should be introduced. Let(C') denote the maximum
detection methods are not fixed to worst-case performarigge for a circuit C' to stabilise on all possible input data
and thus can exploit full speed potential of asynchrono@éter all inputs ofC' become valid. Also ley(C') denote the
design. But the key disadvantage of the methods is that th@ynimum time for thecircuit C' outputsto stabilise on all
need acompletion detection networknd standard single-rail possible input data after all inputs ¢f become valid. Note
components cannot be directly used as they do not providhét f(C) is responsible for the stabilisation of all the internal
any completion information. This leads to area and powgates ofC' while g(C) is responsible for the outputs a@f

IV. LAYER-WISE OPTIMISATION REFINEMENT

overheads and various optimisations are needed. only. Both functions should takearly propagation effecinto
account. The minimum delay of the multi-input C-element will
I1l. COMPLETION DETECTION OPTIMISATIONS be denoted ag\¢. Functionsf and g as well as the value

¢ are calculated given the real delay intervals of gates in
8 circuit C and implementation of multi-input C-element.
As the number of inputs of C-element is not defined before
18 run of the algorithm (and therefore we cannot determine
¢) we first start the algorithm with number of C-element
inputs to be equal to the number of dual-rail gates in the circuit
which is the exact upper bound given by the NCL-X approach.

data path was indicated in [7]. This leads gath-wiseand fter having calculated the optimised number of completion
layer-wise approachesihey are investigated in depth in ou «atection blocks we rerun the algorithm with correctégd

present paper. The methods use relative timing information aql il this iterat o th timal
therefore the resultant circuit is no longer speed independé\qlfj SOI on untit this iterative process converges 1o the optima
and less tolerable to variations but timing constraints are value.

only on gates. This eliminates the data-dependent aspect o[?j;_)wt': IS pzss:ble to derive thte ((j:(;nstrzillqnt fprhtthe_ dW'dtfhtr?f
worst case and minimises the effect of parametric variabilit 1€ hirstiayerLo (_ayers are counted from the rignt side of the
ircuit). Its width is determined by the following inequality:

To reduce overheads of completion detection different of-
timisation techniques have been proposed. A method ba
on partial acknowledgemertas been developed in [8]. This
technique leaves a circuit to be speed independent and t
very robust under process and environmental variations.

An initial idea to use relative timing for optimisation of

A. Path-wise optimisation f(Lo) < Ac

This method assumes that the longest delay of circuit stadt is quite easy to understand the reasoning behind: the first
bilisation is determined by the circuit’s critical path. Therefortayer L, has no completion detection blocks attached to it and
it is enough to put completion detection blocks only on thiherefore it has to stabilise completely before the completion
outputs of the gates on the critical path. Unfortunately thsignal from the previous layer propagates through the C-
assumption of the method is incorrect in general case as &ement (see Figure 2 for clarification). Notice that the multi-
some input transitions shorter paths can have longer delayimfut C-element works in parallel with the last layks and

stabilisation. thus its delay is not added to the overall circuit stabilisation
delay.
B. Layer-wise optimisation Now we can derive a bit more complex constraint for the

This technique is another possible optimisation of NCLs_econd layer..:

X architecture and is based on the following observation. A f(L1) < Ac+g(Lh)

g [

algorithm complexity can be rewritten in a more compact way:
O(mlog(n)).

Layer 1

L

f(ly) <=A + gLy

Algorithm 1 Refined layer-wise optimisation

Given : G-set of dual-rail gates of the circuit
done Result: L-set of layers for completion detection

go

n=0; // current layer
Fig. 2. Refined layer-wise optimisation while (G # O)

Let Q= UZ:l Ly;

Here layer L; must stabilise not later than its outputs <select dual-rail gate z € G such that>
stabilise ¢(L;) term) and completion detection from them 1) all outputs of z are in - QU Lo;
passes through the C-elememi{ term). A naive way to 2) f(@ULn)—g(xUQ) is minimised.
compute the constraints for the next layes would result if f(zULn) <Ac+g(zUQ) then
in: {

<Add z to the current layer Ln>;
f(L2) < Ac +g(Lo), <Update functions f and g for gates in G
that belong to fanin of >;

which is similar to layerL;. But in fact the constraint for <Delete = from G>.
L, width can be relaxed in the following way: }

f(La) < Ac+g(Ly U L)

The reasoning behind this is that layes must stabilise
not later than all outputs ol stabilise (L, U L) term) 3
and the completion detection from them passes through C-
element (Ao term). It is hard to realise now why there should
be completion detection blocks after layks if they are not
mentioned inany constraint at all. The reason is that these
blocks are used not for correct computation of completion The presented algorithm was implemented in a tool to be
signal for layer L, but rather for correct computation ofused within the existing design flow for data path synthesis [7].
that for L, as they behave like signao for this layer and It has been tested on several real and artificially created dual-
guarantee correctness of either completion signal fignor rail circuits modelled using AMS-0.35 gate library. The

else

<Update functions f for all the gates in G>;
n++; /| Layer Ly, is finished.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

completion signal fromL,. experimental results are shown in Table I. The benchmarks

The general inequality for layef,, can be now easily Were selected to show the effect of the proposed technique
derived by induction: on circuit optimisation for different types of circuit structure.
n We used a collection of different AES S-box implementations,

f(Ly) < Ac +9(ULk) (1) several small circuits (aes_multiplier, ISCAS85 benchmark

circuits C-449, C-1908) and huge circuits generated specially
and having different repetitive structures (1024 bit ripple-carry
adder, inverter matrix and triangle) which were useful as a
gtress timing test for our tool.

"As can be seen from the table the algorithm returns
n n significantly fewer completion detection (CD) blocks than

n conventional NCL-X. Coupled with the fact that for a smaller
I/?ff{g(Lk)} < 9 U L) = };g(Lk) number of CD blocks a multi-input C-element occupies much

k=1
The above inequality implies that the width of layér,
is not less than the width of,,_; and can potentially be
proportional to the sum of the widths of the previous layer
The latter comes from the fact that:

k=1

. . . . l?ss area it yields an average of 80% in CD area savings. This
The exact growth factor is determined by particular circul : o .
save of CD area can result in the whole circuit area reduction

but it can be estimated to be greater than one. That can
- . ; of 40% on average. Note that these results are extremely
optimise the number of used completion detection blocks "~°" ~ .
L, . N pessimistidn sense that we used the intervals of gate delays
significantly especially for large circuits. ; .) -)
in a very conservative way: we took minimum and maximum
delays of a gate under all physical and fanout conditions. So,
V. ALGORITHM FOR LAYER-WISE OPTIMISATION for example, a maximum delay of an inverter was more than
Algorithm for the refined layer-wise optimisation is showrour times higher than the minimum one. But these margins
in Algorithm 1. Its complexity isO(nL + m(log(n) + n,)), can sometimes be reduced taking into account a real gate
wheren is number of dual-rail gates in the circuit, - number working mode.
of wires, L - number of obtained layers and, - number of The algorithm works better on circuits with repetitive struc-
outputs of layerl; . It can be assumed (and that was thture such as adders, comparators etc. However, the circuits
case for the circuits in our benchmarks) that in an averageat have more complicated structure, with paths of various

circuit L andn, are proportional tdog(n) and therefore the lengths, slow down the growth of layers thus leading to an

TABLE |
EXPERIMENTAL RESULTS

CL CL conventional NCL-X optimised NCL-X save CD | comp.
module gates | trans CD CD fotal CD CD total CD tofal | extra | time
count | trans trans | count | trans | trans | trans | trans | delay | (ms)
1024 _bit_adder 8188 63456 2048 20502] 83958 11 130 63586 99% | 24% [0.2% [1753
aes_multiplier 342 2258 171 1738 3996 63 654 | 2912 62% | 27% | 37% 21
sbox_computed 928 | 4628 425 4274 8902 86 886 | 5514 | 79% | 38% 9% 100
sbox_kasumi 688 | 3156 344 3466 6622 98 | 1002 | 4158 71% | 37% | 34% 54
sbox_no_pipeline 516 | 3084 257 2598 5682 50 518 3602 | 80% | 37% | 11% 54

sbox_oc_balanced 1166 | 6672 582 5846 | 12518 170 1722] 8394 71% | 33% | 26% 132
sbox_oc_unbalancefl 960 | 5776 480 4822 | 10598 153 | 1554 7330 68% | 31% | 26% 114
spinv_matrix_10000] 20000 | 40000 | 10000 | 100034 | 140034 190 | 1926 41926| 98% | 70% | 0.9% | 3045
spinv_triangle_100 | 10100 | 20200 | 5050 | 50530| 70730 647 | 6486 26686| 87% | 62% | 10% | 1162

circuit_1908 614 [3646 307 3098 6744 79 806 | 4452 74% | 34% | 22% 62
circuit_449 480 | 2896 232 2338 5234 65 670 3566 | 71% | 32% | 30% 34
[‘average [[[[[[[[[80% | 40% [19% |]
TABLE II
AREA COMPARISON OF LAYERWISE OPTIMISATION WITH OTHER TECHNIQUES

NCL-D | RDL PA | NCL-X optimised NCL-X
module pessimistic medium optimistic
count | save | count | save | count | save
sbox_computed 14180 6860 [5386 8902 55147 38% | 54421 39% | 5050 [57%
sbox_kasumi 11020 | 5800 | 4540 6622 4158 | 37% | 3898 | 41% | 3722 | 56%
sbox_no_pipeline 9804 | 4663 | 3500 5682 3602 | 37% | 3534 38% | 3270 | 58%

sbox_oc_balanced 36644 | 15804 | 9924 12518 8394 | 33% | 8122 | 35% | 7646 | 61%
sbox_oc_unbalancefi 35720 | 15071 9188 | 10598| 7330 | 31% | 6958 | 34% | 6682 | 63%

circuit_1908 11828 5737 | 4120 | 6744 4452 34% | 4240 37% | 3848 57%
circuit_449 8094 | 4171 3326 5234 3566 32% | 3310 37% | 3126 60%
[average [[[[[[35% | [37% | [59% |

almost constant width of layers. Nevertheless in the worst cbmputationally efficient algorithm.
the observed benchmarks the algorithm uses only about 36%
of completion detection blocks in comparison with NCL-X VIl. CONCLUSIONS

design - see aes_multiplier. It should be mentioned that thlsA new algorithm and tool for dual-rail data path optimisa-

circuit is the smallest amongst the benchmarks and this mi n)tn is presented. The key feature of the technique is that it
be the reason for the worst result: the width of layers d'ig based on relative timing characteristics of circuit paths and

not have a change to grow enough as .only 3 layers w kes use of delays in signal propagation through layers and
obtained. Another interesting observation is that the results o multi-input C-element. The presented algorithm for layer-

fise optimisation is quite fast that allows it to be used for

_ra|l |mpleme_ntat|on of the circuit. For example 5 dlf-ferenfarge circuits. It is very pessimistic however and here is the
implementations of the same AES S-box gave results thﬂﬁin direction of the future research

differ greatly in the number of used layers (4 vs. 11) and
the percentage of CD blocks reduction (68% vs. 82%). This
shows that to achieve better results it might be useful to tune

synthesis tools to work together with our tool. [1] J. Sparsg and S. Furbe?inciples of Asynchronous Circuit Design: A
. . . Systems Perspectiv&luwer Academic Publishers, 2001.
Table Il shows the comparison of the obtained results withy b. Sokolov and A. Yakovlev, “Clock-less circuits and system synthesis..”

NCL-D, RDL, partial acknowledgement (PA) and NCL-X in IEE Proceedings, Computers and Digital Techniqua@05.

. . . - s K. Fant and S. Brandt, “Null conventional logic: A complete and
designs in terms of area. Note that in addition to pessimis ?é consistent logic for asynchronous digital circuit synthesis,Pic. Int'l

results from table | we addemediumand optimisticcolumns Conf. Application-Specific Systems, Architectures, and Processors (ASAP
which are obtained by shrinking the gates delay margins 96) 1996.

: : g A. Kondratyev and K. Lwin, “Design of asynchronous circuits using
% (m m 0 m 41]
in 30% (ediu) and 70% (Optl IS“C)' One can see thél synchronous CAD tools,JEEE Transactions on Computer8002.

even pessimistic results are much better than NCL-X a] K. Stevens, S. Rotem, S. Burns, J. Cortadella, R. Ginosar, M. Kishinevsky,
comparable with PA method. and M. Roncken, “CAD directions for high performance asynchronous

. Circuits,” in Proceedings of Design Automation Conference (DAG'99
Careful observation of the structure of the obtained distri- p, 116-121, 1999. 9 9 ()

butions of CD blocks shows that the layer-wise technique hi@s “International technology roadmap for semiconductors (ITRS'05),” 2005.

intrinsic limitations and no further improvements are possibl€] D- Sokolov, Automated synthesis of asynchronous circits using direct
. . mapping for control and data path&hD thesis, University of Newcastle

The only way to get results of new quality would be, instead ypon Tyne, 2005.

of layering, to solve the problem in general, i.e. to select sd& Y. Zhou, D. Sokolov, and A. Yakovlev, “Cost-aware synthesis of asyn--

of acknowledged gates without strong geometrical bias. But chronous datapath based on partial acknowledgement,” tech. rep., Uni-

. . wep . versity of Newcastle upon Tyne, 2006.
this, at present, remains a difficult problem if one seeks for a Y pon 1y

REFERENCES

Comparative Analysis of Stuck-at Test Generation
for Asynchronous Speed Independent Circuits

D.P.Vasudevan
D.P.Vasudevan(@sms.ed.ac.uk
School of Informatics, University of Edinburgh,
Edinburgh,EHY 3JZ, UK

Abstract— Automatic Test Pattern Generation for asynchronous
circuits have been considered one of the primary areas to be probed
for advancing asynchronous design research. Absence of global
clock in these types of circuits makes testing difficult. This paper
analyzes the stuck at fault test generation of the asynchronous speed
independent circuits based on two different approaches namely scan
latch insertion and state tramsition graph based test generation.
Preliminary steps involved in each approach are briefed and their
effective test figures are compared.

L INTRODUCTION

Synchronous circuit design has been considered the
standard for industrial practice due to the availability of
advanced CAD tools and testing strategies available. At deep
submicron levels, global clock synchronization, power
consumption and noise factors are affecting the design
performance. Asynchronous circuit based design is gaining its
momentum currently over its synchronous counterpart. On the
other hand, asynchronous circuits need thorough research on
CAD tool development for the whole design flow with test
generation. Clock-less design paves certainly an alternative
and effective way for efficient design with less power, less
noise and without clock synchronization problem.
Asynchronous designs are further classified into speed
independent, delay insensitive, quasi delay insensitive circuits
[1], [2]etc. Thus it has different models and architectures to be
designed with and each of them has its own circuit models and
delay assumptions. Significant efforts have been taken to
develop CAD tools for synthesis of asynchronous circuits
which lead to several tools available for the same like
Petrify[9], Tangram [3] etc.,. Currently, very few tools are
available for test generation for asynchronous circuits. Testing
is essential for the designed systems, as the fabrication and
component aging will cause defects in the designs. This paper
deals with the analysis of two approaches for test pattern
generation of asynchronous circuits. The first approach is
using a symbolic method based on state traversal, while the
second one is based on an adaptation of the well-known scan
insertion technique.

Section 2 introduces the basic concepts of Petri nets.
Section 3 describes the State Transition Graph (STG) based
automatic test pattern generation. Section 4 describes the test
pattern generation based on the scan insertion technique.
Section 5 gives a comparison of test generated by two

A.Efthymiou
aefthymi@informatics.ed.ac.uk
School of Informatics, University of Edinburgh,
Edinburgh,EH9 3JZ, UK

approaches for a number of small benchmarks. The paper is
concluded at section 6.

II. PETRINETS

A Petri net [6] is a compact model to represent concurrent
systems. A Petri net is a quadruple N = {P, T, F, m,}, where P
is a finite set of places, T is a finite set of transitions,
Fc (PxT)uU(TxP) is the flow relation, and mO is the initial
marking. A transition t €T is enabled at marking m; if all its
input places are marked. An enabled transition t may fire,
producing a new marking m, with one less token in each input
place and one more token in each output place. A free choice
Petri net (FCPN) where the value changes on input, output or
internal signals of the specified circuit are the interpretation of
the transitions.

A. Signal Transition

STG is an interpreted FCPN introduced by Chu [4] for
representing asynchronous control circuits. It is a quadruple
{T, P, F, my}, where T is a set of transitions described by a x
{+, -}, where a+ represents a 0 to 1 transition on signal a and
a- represents a 1 to 0 transition, P is a set of places which can
be used to specify conflict or choice. F represents flow
transition relation between transitions and places:
F c(TxP)u(PxT). Myis the initial marking. An example
of STG is shown in Fig. 1.

PETRI NET ST

[o
%pﬁhﬁm N/
\

\ ¢

c- \ h /
S U\
Figure 2 Petri net, STG and State graph for C- element

B. State Graph

A state graph [6] (Fig. 2) is a finite automaton given by
G=<A,S, T30, s>, where A=A;UA, is the set of input
and non-input (output and internal) signals such that
AI NA~ =0, T is aset of signal transitions, each transition
can be represented as (+ay,j) or (-a;,j) for the j-th0 — 1 or 1 —
0 transition of signal a. 8 : SXT — S is a partial function
representing the transition function such that if d(s,t) =s', then

signal t is said to be enabled and it takes the system from state
stos'. s, € S is the initial state. Each state in the state graph
is labeled with a binary vector according to the signal values
of the system at that state.

III. SYNCHRONOUS TEST PATTERNS FOR ASYNCHRONOUS
CIRCUIT TEST GENERATION

This section briefs the approach of automatic test pattern
generation used in [7]. It proposed a testing strategy with
following features:

e The behavior of the asynchronous circuit is modeled as a
synchronous finite state machine.

e Test patterns are generated using symbolic technique from
the modeled FSM.

Test patterns can be synchronously applied to the
asynchronous circuits and faults are made available at the
output. An asynchronous circuit in this approach is modeled as
an interconnection of gates and delay elements. The delay
model used here is unbounded gate delay model [5].

A. Definitions

A state graph (SQG) is a pair <S,E>, where s is the set of
states and E < SxS is the set of edges (transitions).

A circuit state graph (CSQ) is a 7-tuple <S,E,P,G,S,,Ap,AG>
where <S,E> is a State Graph, P = {p;....pm} is the set of
primary inputs, G={g;....g,} is the set of gates and S, < Sis
the set of initial states. The labeling functions Ap. S— {0,1}"
and Ag. S —{0,1}" map each state s with binary vector
consisting of the values s of primary inputs and gates
respectively. The next state of a circuit under unbounded gate
delay model depends on its present state. A gate is said to be
excited if its output differs from the function it implements
and stable other wise. A next state function d: SxG— S can be
defined for each gate. Function (s, gj returns either the state
reached by switching the output of g; if it is excited or s if g; is
stable. A transition relation, R relates pairs of predecessor/
successor states. If state s' is an immediate successor of state s,
it will be assumed that both states are in relation R, denoted
sRs'or(s,s') e R.

Fig. 3 Majority gate based
C-element

Fig. 4 State graph for the
circuit model of Fig. 3

By using the next state function of each gate, the transition
relation associated with circuit gates were defined as:

RS :{(s,s')eS><S|(sisstable/\s=s')v(EIgi Q)

such that s'= (s, g;)¢ s)} For each pair (s,8') € R; if s is
stable, its successor is the same s, otherwise the successor is
obtained by switching an excited gate. The transition relation
associated to input signals were defined as follows:

_{(SS)ESXS|SISStable/\}\, (s)i?u (s) A
A6 (8)=hg(s);

Thus the transition relation of the circuit in test mode is
defined as R =R; UR;,

B. Synchronous Abstraction of the Circuit State Graph:

To calculate the synchronous abstraction of the testable
Circuit State graph, the pairs of states (s,s") such that s' is
reached from s at the end of the test cycle is defined. Each pair
has an associated input pattern based on the different values of
inputs in s and s'. Set of all these pairs were called Test Cycle
Relation (TCR). For practical reasons it was assumed that the
circuit must settle 1n at most k transitions. The k-step test
cycle relation (TCR) represents the pairs(s,s') distant atmost k
transitions. TCR* for a given CSG in test mode
<S,E,P,G,S,,Ap,Ag> is defined as:

TCR*= {(s,s") €SxS|3 sy......,scsuch that s Rys' A (kAizz Si.
]R(;Si) N S= S'}.

The next step involved removing invalid pairs of states.
Vectors causing non- conﬂuence are detected if pairs (s, s') and
(s, sV) such that s' and s" have the same input values exist.
Patterns producing oscillation or unacceptably long test cycles
are found if s' is unstable. The k-Confluent Stable Stable State
Graph, denoted as CSSG* is formed by those pairs in TCR*
that present neither non-confluence nor cause the circuit to be
unstable after k transitions. Formally it was defined as, CSSG*
= {(s,s") € TCR"|s'is stable A3(s,s') e TCR"such that [s' #

sV A M) = M(M)]Y. Thus each one of the CSSG* ® nodes
represents a stable state. An arc between two nodes s and s'
exists if s' stable and the only state reachable from s in at most
k transitions by applying some input pattern.

An example to show the approach of the above theory is
given below using the C-element, implemented by a majority
gate, shown in Fig. 3. The C-element shown is a model with
two input signals rl and r2 and four gates. The circuit state
graph modeled for this circuit is a 7 tuple <S,E.P,G,S,,Ap,AG>,
where <S,E> is a State Graph, P = {rl,r2,reset} is the set of
primary inputs (the reset signal is added by the testify tool
which initializes any memory element in circuit),
G={l,m,n,al} is the set of gates and S, € Sis the set of initial
states. The labeling functions Ap. S — {0, 1} and Ag S
—{0,1}* map each state s with a binary vector consisting of
the values s of primary inputs and gates respectively. Thus the
elements of set, S (set of reachable states) has a binary vector
of length 7. Totally 128 states forms the set S. The reachable
states can be calculated by using a symbolic traversal
algorithm like the one used in [10]. The set E < SxS for this
circuit is obtained by enumerating over the 128X128 states.
The next state function for each gate defined for this circuit
are (§;: Sx 1 = 8S), (Bm: S x m— S), (8,: S x n— S), (8y: S x
y— S) which are operated over the gates I, m, n and y
respectively. From this circuit state graph model and next
state functions, the transition relation R = R; U R; which
forms a set of stable state pairs are obtained. Then
synchronous abstraction involving computation of TCR* and

CSSG* is made. The state graph evaluated for this circuit
model is as shown in the Fig. 4. Testify generated 34 edges
which form the transition relation between the states. For
clarity, only part of the state graph is shown. After several
iterations, the set of stable state pairs are ready for the test
generation. With above obtained set of stable states, test
pattern generation was performed using three phases: fault
activation, state justification and state differentiation. Detailed
briefing on these three phases can be obtained from [7]. The
test generation is carried out using Random TPG and Ternary
simulation [7]. The stable state pairs picked for test
generation for this circuit are (sl, s127), (s127, sl), (s2, s3),
(s127, s89), (s64, s65), and (s127, s22). The encoded binary
codes on these state pairs correspond to the test patterns
covering 24 fault sites were generated. The test patterns
obtained for this circuit are (0000001, 1111111), (1111111,
0000001), (0000010, 0000011), (1111111, 1011001),
(1000000, 1000001), (1111111, 0010111). The size of the test
pattern was 7, which is equal to the size of the binary encoded
state variables in the state pairs. 12 patterns were generated for
24 faults. To wvalidate the approach several benchmarks
synthesized by petrify were tested and the results are analyzed
in section V.

IV. SCAN INSERTION BASED TEST PATTERN GENERATION

This section briefs the test pattern generation based on scan
latch insertion [8]. Asynchronous circuits can be represented
as combinational blocks with feedback loops as shown in Fig.
5.a. Effective test pattern generation involves breaking these
feedback loops and insert scan latches at these loops, thus
making it completely combinational. Level sensitive latches
are used as it restores the asynchronous operation during the
normal mode of operation by keeping them transparent. The
loops may be global or local feedback loop. In test mode, the
asynchronous circuit operates synchronously with the scan
latches are fed in with test patterns and the outputs are
scanned out as shown in Fig. 5.b.

d qd q
si
f ‘ 1

clk, ik,

Fig. 7 C-element with the
LSSD Latch

Fig. 6 LSSD Latch [8]

The LSSD scan design [8] is shown in Fig 6. It was
designed with a 2:1 multiplexer and two latches and operates
using 2 phase level sensitive clocks. The signals ‘x’ and ‘y’
provide the path for normal operation of the circuit. The
signals si and y form the test mode path. This design is fully
stuck-at testable. Several optimized circuits [8] are possible
for the scan latch design inserted at the feedback loop of the
C-element. The simplest and robust scan design is shown here.
The scan mode is used for several cycles to apply the test
patterns to the scan latches. The scanned output reveals the
potential faults in the design. To illustrate this approach, again

a majority gate based C-element is considered. The circuit
consists of 2 input signals r1 and r2 with the output signal al.
Thus the LSSD Latch is inserted at the node 10 to break the
feedback [8]. The modified circuit is shown in Fig. 7 The test
generation for the modified circuit can easily be carried out by
using standard test pattern generation tools. This is an
important aspect of this method since such tools are fast,
reliable and produce high-quality test patterns.

The above approach can be automated on the whole and is
summarized as follows:

1) Read in the design net-list

2) Remove local loops by adding scan latches for each C-
element (if present).

3) Break the global feedback loops
4) Insert the proposed scan latch at the feedback loop points

5) Generate the modified net-list of the original design file
with local and global loop scan insertion.

6) Apply the net-list to the ATPG tool to generate the test
patterns.

The fault coverage obtained over different benchmarks by
using this method in comparison with that obtained using the
symbolic technique is discussed in the next section.

V. COMPARISON OF RESULTS

This sections compares the results of the two approaches
described earlier obtained by applying them to few
benchmarks synthesized from petrify which is widely used in
the asynchronous community [9]. The fault coverage and test
patterns based on first approach was generated using the tool
testify [7] which is developed from the same approach.

11

12(xk)

13(1/0)

]
(W) y 4y

m
§(1/0)

3(110)

1| qum
rl() L9
1 0 s

Fig. 8 Fault sites for the C- Fig. 9 Faults covered by
testify for half

element covered by testify

For the C-element, the faults covered by testify are 24 out of
28 faults as shown in Fig. 8. As it is evident from the figure,
testify generated tests based on the primary input and the
gates. So it could not detect the faults at the nodes 11 and 12
which are represented by (x/x). Even though, the test at 10
covers the fault 11, it does not cover fault at 12. The output of
the gate al, node 10 was taken into account as a single node
which comprises of nodes 10, 11 and 12. But the fan-out
nodes (13 and 14) from 12 are considered test nodes as they
form the input for the gates n and m respectively.

Testify generated 12 test patterns of length 7 covering 24
fault sites in the circuit. The test patterns should be applied
synchronously to stabilize the circuit at each pattern interval.
Similarly for the benchmark half (Fig. 9), the faults covered
by testify are only the inputs and outputs signals of all the
gates. For this benchmark, even 5 more faults at input/output
fault sites namely 10(0/x), 12(0/1), 15(x/1), 21(x/1) were not

detected by testify. Other intermediate node fault sites include
6(x/x), 13(x/x) 16(x/x), 22(x/x). Testify generated 24 patterns
of length 11. From the above discussed results, it is evident
that any new test generation algorithm to be developed should
focus on testing the intermediate nodes which will be overseen
by the circuit models which are modeled with only the input
and output signals of each gate. Table 1 gives the fault
coverage obtained for several benchmarks using testify.

Table 1: Fault coverage using symbolic technique

Testify No of No of Fault No of faults
patterns Vectors Coverage
Total Detected
C-element 10 7 85.71% 28 24
half 11 5 67.39% 46 31
chul72 6 8 100.00% 26 26
hazard 5 8 100.00% 28 28

Table2: Fault coverage using scan insertion technique

Scan No of No of Fault No of faults
insertion patterns Vectors Coverage
Total Detected
C-element 6 7 92.86% 28 26
half 6 7 100.00% 46 46
chul72 7 10 100.00% 36 36
hazard 12 7 100.00% 46 46

The fault coverage and test patterns based on the second
approach was generated by cutting the global loops manually
and by inserting the scan latch at the feedback paths. After
inserting the latches, the netlist was fed to the Synopsys
Tetramax ATPG tool to generate the test patterns and
calculate the fault coverage. Table 2 gives the fault coverage
for the same benchmarks and summarizes the test patterns
generated using the scan insertion method. The difference in
the total number of faults compared to the previous approach
is due to the addition of scan latches, which increases the
number of primary inputs and fault sites. Test pattern
generated using the first method seems to be expensive in
terms of number of test patterns and provides lower fault
coverage than the second method. Also it generates longer test
vectors compared to that of scan insertion approach. With the
increase in test vector and number of pins the test patterns can
be further reduced by using partial scan design instead of full
scan. It also reduces the area overhead due to these scan
latches. Another advantage of the second approach is that
currently available synchronous test pattern generation tools

can be used to generate test patterns, thereby makes this
approach for testing asynchronous circuits industrially
feasible.

VI. CONCLUSIONS

The test pattern generation for the asynchronous circuits
using two different approaches, was discussed in this paper.
The basic steps involved in each method were discussed. The
scan latch overhead used in the scan insertion method
provides a better fault coverage compared to the symbolic
technique. But for area sensitive designs symbolic technique
based test pattern generation seems to be promising with
compact design. To balance the area overhead introduced by
the scan insertion approach, partial scan based design can be
introduced, which reduces the number of memory elements
inserted and also the area overhead. As the continuation of this
analysis, future work will be focused on developing
algorithms for a partial scan insertion based test pattern
generation. To improve the test generation based on STG, the
fault model used should be improved from stuck-at fault
model to transition fault model which improves the total
number of faults detected. Several global feedback breaking
algorithms and synchronous sequential testing based
algorithms have to be adopted to develop algorithm for
asynchronous sequential test generation.

REFERENCES

[1] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger.
Synthesis of delay-insensitive modules. In Henry Fuchs, -editor,
Proceedings of the Chapel Hill Conference on VLSI, pages 67--86, 1985

[2] Alain J. Martin. Programming in VLSI: From communicating processes
to delay- insensitive circuits. In C. A. R. Hoare, editor, Developments in
Concurrency and Communication, UT Year of Programming Series,
pages 1--64. Addison-Wesley, 1990.

[3] K.van Berkel, J. Kessels, M. Roncken, R.Saeijs, and F.Schalij. The
VLSI-programming language Tangram and its translation into
handshake circuits. In Proc. European Conference on Design
Automation, pages 384-389, 1991.

[4] T.-A. Chu. Synthesis of self-timed control circuits from graphs: An
example. In Proc. of the IEEE International Conference on Computer
Design, pages 565--571, October 1986.

[5] J. A. Brzozowski and C.-J. H. Seger. Asynchronous Circuits.
Monographs in Computer Science. Springer-Verlag, 1995.

[6] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified
signal transition graph model for asynchronous control circuit
synthesis.In Proc. of the IEEE/ACM International Conference on
Computer Aided Design, pages 104-111. IEEE Computer Society Press,
Nov. 1992.

[7]1 O. Roig, J. Cortadella, M. Pena, and E. Pastor. Automatic generation of
synchronous test patterns for asynchronous circuits. In Proceedings of
the 34th Design Automation Conference, pages 620—-625, Anaheim, CA,
June 1997.

[8] F. te Beest, A.Pecters, A multiplexer based test method for self-timed
circuits, Asynchronous Circuits and Systems, 2005. ASYNC 2005.
Proceedings. 11th IEEE International Symposium on
Volume , Issue , 14-16 March 2005 Page(s): 166 — 175

[9] PetrifyTool: http://www.ac.upc.es/~vlsi/petrify/petrify.html

[10] [10] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.

Dill. Symbolic model checking for sequential circuit verification. IEEE
Trans. on CAD, 13(4):401-424, 1994.

On-FPGA Communication: An Opportunity for GALS?

Terrence S.T. Mak, Peter Y.K. Cheung, Pete Sedcole

Department of Electrical and Electronic Engineering
Imperial College London
{t.mak, p.cheung, pete.sedcole@imperial.ac.uk}

On-FPGA communication is important to provide high bandwidth and reliable data
transfer between coarse-grained modules, and is therefore fundamental to overall FPGA-
based system performance. Recently, pre-fabricated coarse-grained modules including
microprocessors, DSP units and memory modules are immersed into the fine-grain
programmable fabric to provide significant improvements in computation speed,
hardware area as well as hardware configuration time. However, as the number of the
coarse-grained modules increases, the available communication bandwidth between these
modules becomes a critical concern in system design. Furthermore, capacity of FPGA is
increasing rapidly and it is becoming more difficult to distribute a global clock signal
across entire chip in a single clock cycle. It is essential to partition FPGA into multiple
clock tiles and provide reliable asynchronous channels for communication across
multiple clock domains.

Currently, bit-level interconnect-fabrics are the only available resources to create
point-to-point communication between both Look-Up-Tables (LUTSs) and coarse-gained
modules. As a result, on-FPGA communication architectures can only be implemented by
joining the short wire segments together using programmable switches. These
programmable switches will significantly contribute to overall circuit delay, power
consumption, hardware area and will introduce extra performance overhead. There were
several attempts to improve the interconnect efficiency by modifying the bit-level
interconnect architecture, such as by removing some of the switches and introducing
hardwired junctions, introducing extra interconnects to decrease the number of hubs
between neighborhood logics and implementing other conventional hardware layout
techniques, such as buffer insertion and transistor sizing. Nonetheless, bit-level
interconnect-fabric is still the sole resources for implementing on-FPGA communication
architectures.

Alternatively, to improve the on-FPGA communication efficiency, we can embed a
dedicated communication infrastructure with multiple-bit or even packet-based
communication channels into the FPGA fabrics. The embedded communication network
would provide high performance and asynchronous communication between coarse-
grained modules. FPGA and the communication network will be properly interfaced with
pre-fabricated network switches, which will also provide efficient data arbitration and
routing for the communication network (See Figure 1). The embedded communication
network would also provide reliable asynchronous communication between different
FPGA synchronous tiles with different clocking frequency to form a FPGA-based
Globally Asynchronous Locally Synchronous (GALS) system.

FPGA-embedded
communication network

Network swit%\

y
FPGA programmable /
interconenction network/

Figure 1. On-FPGA communication architecture consists of the FPGA-embedded communication network and the
FPGA programmable interconnection network

An important aspect of the FPGA-embedded communication network design is to
determine its topological structure, which is fundamental to the computational
performance and hardware resources utilization. The topological structure design is
complicated by large potential applications of FPGA. Data traffics are difficult to predict
with the configurable hardware fabrics and software contents. A proper formulation and
systematic evaluation methodology for the embedded communication network design is
crucial. Furthermore, the design of the asynchronous/synchronous interface at network
switches and the FPGA-based GALS implementation will be challenging issues. In this
talk, we will first present our recent work on the FPGA-embedded communication
network topology design based on a tile-based FPGA communication model. Then we
will discuss some open questions regarding to the FPGA-based GALS architectures.

Metastability in FPGA Devices

N.Minas, D.J Kinniment, G.Russell, A.Yakovlev
Newecastle University, UK
{Nikolaos.Minas,David.Kinniment,G.Russell,Alex.Yakovlev}@ncl.ac.uk

Abstract

Many papers have been published in the area of
metastability and synchronization in digital systems,
mainly describing techniques for minimising the effects of
metastability in synchronisation and arbitration. With the
recent use of FPGA devices and their extensive use in a
wide range of applications, some of the synchronization
techniques used do not apply. The area around these
devices have been left mainly unexplored as to what
happens when an FPGA is in metastability or what
information about the device can be extracted by
measuring metastability. This paper is a work in progress,
which presents findings so far from our measurements in
two FPGA from different vendors. It mainly demonstrates
the phenomenon of metastability in FPGA devices and
how metastability affects bistable elements, which are
critical components of Asynchronous Circuits.

1. Introduction:

FPGAs have been used for many years. Although, the
advantages of using such a device are well known, they
were mainly used as prototyping platforms. In recent
years, FPGA complexity has progressed to a point where
System-on-Chip (SoC) designs can be built on a single
device. The number of equivalent gates and features has
increased dramatically to compete with capabilities once
offered only through ASIC devices. With designs
becoming more complex, a single clock will be very
difficult to accurately distribute across the entire system.
To avoid the problem of clock distribution, multi clock
domain systems have been designed. Although this
solves the problem of clock distribution, they create the
problem of synchronisation of data between blocks of
different clock frequencies.

In the case of data transfer between two blocks of
different clock frequencies, the data crossing the new
clock domain will be considered as asynchronous; this
can cause a violation of the set-up and hold time
requirements of the storage element, which can then lead
into metastability. A simple way of decreasing the
probability of failure is to use a synchronous circuit
shown in Figure 1, consisting of two flip-flops in series;
the idea behind this is that even if one of the two flip flops
goes into metastability, the next one will catch the correct
logic output in the next clock cycle.

o | | oa DBz

—L’*'

Figure 1. Two Flip-Flop Synchroniser

Although the synchroniser above has a good MTBF (Mean
Time Between Failure) if the clock period is long, this is not
always the case, and often more robust circuits are needed,
in order to improve latency and thus the performance of the
overall circuit. Designing synchronisers for FPGA based
circuits can be difficult due to the limited choice of
components that can be implemented in this technology.
Semiat and Ginosar [1] successfully designed a series of
synchronisers for FPGAs. However, our work will not
concentrate on synchroniser designs, but on extracting
metastability characteristics from different FPGA families
and vendors, and designing on-chip timing circuits to
measure accurately the changes in the propagation delays of
the storage elements.

Section 2 describes the experimental set-up used for taking
measurements in the two FPGAs used. In section 3 the
measurements taken and the results obtained are analysed,
also a bistable element is constructed using NAND gates in
the Xilinx device to demonstrate the effects of metastability
in circuits with feedback loops passing through LUTs (Look
Up Tables). Finally in section 4 we present our conclusions.

2. Experimental set-up:

In order to extract the metastability characteristics of the test
devices, the circuit configuration [1,2] used as shown in
Figure 2. The FPGA devices used were the FLEX10K20
and the Virtex-II from Altera and Xilinx respectively.

10.01MHz Output

Agilent
Scope

FPGA BOARD

10 MHz Clock

Figure 2. Experimental set-up

Two asynchronous oscillators are used to drive the D and
clock inputs of a D-type edge triggered flip-flop under
test. With a slight difference in the frequency of the two
oscillators, 10.01MHz for data and 10MHz for the clock,
the rising edge of the clock may, or may not produce a
change in the output Q of the Flip-Flop. According to
Kinniment et al [3], metastability can only be observed if
the D input is different in successive clock edges.

Since the two oscillators are not locked together, all
overlap times between 0 and 100ns cycle time for data
and clock are generated with equal probability. In order to
observe the delay due to metastability, the change of the
Q output from low to high is used to trigger the recording
of each clock rising edge for a potential metastable event.
The only events that can be observed are those events
where clock and data overlap by less than the difference
of the two oscillators periods (<100ps), since they are the
only events to produce a change in the Q output. These
events are then presented as a histogram of the number of
events collected against the time from the Q output to the
clock. The events that result in deep metastability, and
thus in long propagation delays are very rare. These kinds
of events require less than a 100ps overlap, which occur
every 1000 clock cycles. However, not all of the
metastable events will be collected; this is because the
oscilloscope used to capture the events, a 54850 series
Agilent Infinium oscilloscope, has a significant dead time
between successive measurements.

3. Measurements:

This section presents the measurements taken from two
FPGAs, first the Altera FLEX10K FPGA is tested,
followed by the Virtex 2. All the measurements were
obtained using an Agilent technologies 54855A Infinium
oscilloscope. It is useful to note the importance of these
measurements, since FPGA vendors rely mostly on
metastability detectors such as those described in [4, 5, 6],
which can be inaccurate and in most cases produce results
which are misleading. Measurements of metastability
characteristics were also taken from a bistable element
constructed from gates in the Xilinx Virtex 2 FPGA.

3.1 Metastability in FLEX10K:

Using the circuit configuration outlined in section 2 the
metastability behaviour was collected over a period of 4
hours. Our results are shown in Figure 3, where the
oscilloscope is in colour grade mode, so that the density
of traces at a particular point is represented by the colour
of the pixel at that point on the display. A histogram of
the trace density along the horizontal line is also shown in
this figure, which represents the number of events passing
through the pixels concerned. The change of the Q output
is used to trigger the recording of each clock rising edge
for a potential metastable event.

Metastable behaviour in Altera

Figure 3.
Devices

However, to observe more details of the characteristics of
the device and to extract the values of 1 (resolution time
constant) for the different regions, the histogram of the
waveform depicted earlier need to be plotted in a semi-log
scale, as shown in Figure 4,

1000000 T— Seriest]

/
— !

. \
L u“wqumwv '

-2.00E- 0.00E+0 2.00E-10 4.00E-10 6.00E-10 8.00E-10 1.00E-09 1.20E-09 1.40E-09 1.60E-09
10

Time

Figure 4. Histogram of Altera FPGA

In Figure 4 the X-axis represents time from a triggering Q
output back to the clock edge and therefore increasing
metastability time is shown from right to left. From the
histogram the value of t for the metastable region can be
measured. The slope of the metastable region starts at about
350ps and ends at 950ps. In this instance t is about 120ps
and is obtained from the reciprocal of the slope of the
histogram. This particular device is quite slow and
metastable events can be observed better than in faster
devices as we will see in the next section.

3.2 Metastability in Virtex 2:

The Virtex 2 is a faster device than the Altera. Thus it was
expected to observe similar results to that shown in Figure
3, however with less frequent occurrence of metastable
events, the experiment ran for a bit longer, in an attempt to
capture more events.

Figure 5. Metastable behaviour in Xilinx Devices

When the histogram was plotted the graph of Figure 6
was observed, which is completely different from the
Altera device histogram. One explanation is that the two
oscillators have become locked together. By reducing the
period difference of the two oscillators, we subsequently
reduce the number of normal transition events until they
disappear completely at the point where the difference of
the two periods is smaller than the setup/hold time
window. Consequently what is observed is quite deep
metastability where the two edges only differ by a small
amount of jitter.

10000

1000

NI wl

-1.20E-09 -1.10E-09 -1.00E-09 -9.00E-10 -8.00E-10 -7.00E-10 -6.00E-10

Time

Figure 6. Histogram of Xilinx FPGA

In this instance we can observe from the histogram that
the Xilinx device has a faster resolution than the one
tested before. In this case, T is in the range of 30 to 40ps.
However in order to directly compare the two devices, the
two oscillators need to be unlocked.

The experiment was subsequently rerun, however in this
instance the difference in the period of the two oscillators
was increased from 100ps to about 500ps. The sensitivity
level of the trigger was high. The metastability behaviour
captured in Figure 7 was observed. As it can be seen, the
output this time looks more like the one expected earlier,
where although metastable events are rare, the spread of
the metastable behaviour is still obvious.

Figure 7. Effects of frequency change in metastable
behaviour

From the histogram the value of 1 is about 50ps, which
verifies that the Xilinx device is faster than the Altera
device tested, as shown in Figure 8. The anomaly in the
histogram between 250ps and 270ps is similar to the
results of the Miller effect, described by Dike and Burton
[2], which is a coupling effect occurring across the gate-
drain junction of one of the device transistors, which
mainly occurs in jamb latches.

Miller

10000000 4

1000000 - N

100000 -

10000 -

Events

1000 -

//‘/1;
/J\/\ 1]

-3.00E-10 -2.00E-10 -1.00E-10 0.00E+00 1.00E-10 2.00E-10 3.00E-10 4.00E-10 5.00E-10

Time

Figure 8. Histogram of Xilinx Devices with
increased frequency

3.3 Metastability in a Bistable Element:

A master-slave D type edge triggered Flip-Flop was
constructed using NAND gates in a Xilinx FPGA, as shown
on Figure 9, to observe the phenomenon of metastability in
a bistable element. The master and the slave were placed in
two different sectors within the same Logic Block, but very
close to each other.

D Q'

H >

|
C bl

Q1

Figure 9. D type Flip-Flop with NAND gates

The Experimental setup was similar to that used in previous
sections, with the data and clock oscillator having a period
difference of 100ps. The routing delays play a significant
role in this experiment, since the routing of the design is up
to the software, hence the feedback loop can have large
delays, thus allowing us to observe the effects of oscillation
due to metastability. It is expected that the values of t will
be much larger than those in the Flip-Flop modules of a
Xilinx FPGA. The metastability behaviour captured for the
D type Flip-Flop can be shown in Figure 10.

Figure 10. Metastable behaviour in a NAND gate
based D type Flip-Flop

From the histogram shown in Figure 11, it seems that
there is a damped oscillation in the deterministic region,
suggesting that the feedback loop is unstable. Also the
metastable region is presented much longer than
previously thought. To calculate the value of t, the
histogram was plotted in the same manner as before. As it
can be seen from the histogram, the value of T is in the
order of nanoseconds, which is much larger than the
values calculated earlier for both the Altera and the Xilinx
FPGAs. This demonstrates that circuits with feedback
loops that pass between LUTs can exhibit oscillation.
Bistable elements are generally used in asynchronous
circuits to design mutexes and arbiters, because there are
no standard mutex or arbiter cells in FPGAs, the method
of cross-coupled gates is used to design such circuits.

100000 -

10000 o

b ”J\

2.40E-08 2.50E-08 2.60E-08 2.70E-08 2.80E-08 2.90E-08 3.00E-08 3.10E-08 3.20E-08

Time

Figure 11. Histogram of a NAND gate based D type
Flip- Flop

Normally a metastability filter would be used on the
output to eliminate the metastable event. However, these
filters cannot be easily designed in FPGAs, since
Programmable logic devices lack the elements needed. An
earlier attempt has been made to design a mutex by
Semiat and Ginosar [1], but because of the likehood of
oscillation taken into account this may not work, since it
relies on an exclusive OR arrangement to filter the
oscillation, but such circuits are prone to short high
outputs when both inputs go from high to low, or the
reverse. Another way of designing a mutex is to use the
well behaved latches of the Xilinx devices, where as it
was shown previously have a faster resolution times. This
area is currently under research and it will be investigated
thoroughly.

4. Conclusions and future work:

This paper demonstrated the effects of metastable
behaviour in two FPGAs from two vendors. The results
for the Altera FPGA, taking into account the process
technology and the Logic Block design were as expected.
However, the Xilinx FPGA was more resilient to
metastability. The first experiment showed that the two
oscillators were locked together, as a result true
metastability was observed. However, for directly
comparing the two FPGAs, the two oscillators needed to
be unlocked, and for this reason the period difference of
the two oscillators was increased.

By directly comparing the values of 1 for both devices, it was
verified that process technology plays a significant role in the
resolution time of the Flip-flops. To demonstrate the effects
of metastable behaviour in a bistable element a master-slave
D type Flip-Flop was constructed from NAND gates in the
Xilinx FPGA. The results observed from the histogram
showed significant oscillation times before the signal
becomes stable and also the value of t was much larger.
Bistable elements are mainly used in asynchronous circuits,
to design arbiters and mutexes. By observing the metastable
behaviour in the bistable elements, it has been demonstrated
that when a bistable element is made out of gates it is more
prone to metastability. Consequently a solution is been
investigated to design mutexes and arbiters using bistable
elements found in the FPGA rather than gates.

Currently architectures for the on-chip measurement and
observation of metastability behaviour are been investigated,
due to limitations of off-chip measurements using a digital
oscilloscope.

5. References:

[17 Y. Semiat, R. Ginosar, “Timing Measurements of
Synchronisation Circuits,” Proceedings of the Ninth
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 2003, pp. 68-77.

[2] C.Dike, E. Burton, “Miller and Noise Effects in a
Synchronizing Flip-Flop,” IEEE Journal of Solid State
Circuits, Vol. 34, No. 6. pp. 849-855, June 1999.

[3] D.J.Kinniment, K.Heron, G.Russell, “Measuring Deep
Metastability,” IEEE International Symposium on
Asynchronous Circuits and Systems, 2006.

[4] P. Alfke, B. Philofsky, “Metastable Recovery,”
Application Note, Xilinx Corporation, August 10, 1996.

[5] Altera Corporation, “Metastability in Altera Devices,”
Application Note, May 1999.

[6] Lattice Corporation, “Metastability in Lattice Devices,”
Technical Note, March 2004.

a Viterbi Decoder

Wei Shao and Linda Brackenbury

Email. {shaow,lbrackenbury @manchester.ac.uk}

APT Group, School of Computer Science, University of Manchester, Oxford Road, M13 9PL

Asynchronous Timing in the Survivor Memory Unit of

Abstract— The Viterbi algorithm is a frequently used convolutional
error correcting code particularly used in digital transmission systems.
In the decoder, the Survivor Memory Unit (SMU) determines the most
likely output to have been sent by the encoder at each timeslot. To
obtain this decode data, the SMU keeps a history over many timeslots
of the most likely paths through the decode trellis denoting the
possible state transitions. While the SMU enters data synchronously,
the tracing back through the history to find the best output at the
earliest timeslot is best performed asynchronously. Furthermore, while
most asynchronous timing requires handshakes or timing included in
the data, the asynchronous approach described here for the parallel
backtrace operation has no handshake overhead and hence offers
better power and performance characteristics. This is confirmed for
post-layout simulation on a 0.18um process which uses only 70% of
the power of a previous handshaking asynchronousdesign.

Index Terms—low power Viterbi decoder, trace back, survivor
memory unit.

I. INTRODUCTION

Digital communication systems are now pervasive in and an
integral part of everyday living for an ever widening set of
functions. As a result, the market for such digital equipment has
become huge in recent years and is continuing to grow rapidly.
Central to the successful use of such systems is the requirement to
receive and correctly decode transmitted information. For portable
devices there is a further requirement that the decoding be energy
efficient and optimised; this is a result of the relatively small battery
capacity.

Error correct codes improve the reliability of communication
channels by detecting and correcting errors. Convolutional codes
are often used here because the encoder output depends on both
the input data and previous input bits, unlike the block codes where
there is no dependence on the previous input history. This interlock-
ing of the data over k bits provides convolutional codes with better
error correcting properties than possible with block codes [1], [2].
For this reason, convolutional codes are widely used and the Viterbi
algorithm is particularly adopted because it efficiently implements
the maximume-likelihood decoding of a continuous data stream [3].
The constraint length, k, is a fundamental property of convolutional
codes and relates both to the obtainable bit error rate and the
complexity of the decoder logic. Unfortunately as the constraint
length increases, the complexity of the decoding circuitry increases
exponentially since the number of possible encoder states is 2k — 1.
This limits the constraint length in most domestic applications to
seven or less.

Internally, the Viterbi decoder comprises three blocks as shown in
Figure 1. The Branch Metric Unit (BMU) computes the Hamming
distance between the received input symbols and the data to be ex-
pected by a particular encoder state. The Path Metric Unit (PMU),

Viterbi decoder

input!| Branch Metric Path Metric Survivor Memory |[output
| Unit Unit Unit |
|
' |
' |
[
R B ___
Clock

Fig. 1. Viterbi decoder block architecture

adds the branch metric to the existing state metric, compares pairs
of metrics, and selects the smaller metric which becomes the next
metric for a state; this is depicted in the trellis diagram in Figure 2
which assumes that the encoder generates two output symbols for
each input bit. The Survivor Memory Unit (SMU) keeps a history

’T"“““"’\fx L pte
XZ 3
ﬂ o ’ ’ é b ﬂ @

R} 10 oo 00 00
v} 00 00 11 00 00

Fig. 2.
code.

The trellis structure shows the Viterbi decoding process of a R=1/2, k=3

of the winner for each metric-pair comparison in the local winner
memory over many timeslots and determines the decoded output
from the earliest timeslot. Depending on the design, the SMU may
also receive information about state(s) having a minimum weight
from the PMU, e.g. the state “00” at the end of the trellis shown
in Figure 2, indicating optimum point(s) from which to commence
a search through the history information; starting from a known
point reduces the number of timeslots needed to be stored by the
SMU and hence reduces the power required.

II. TIMING IN THE SMU

Tracing back is fundamentally a recursive updating process
where the traceback recursion estimates the previous encoder state
Sn—1 according to the current state S;,, where

Sn—l = Sn[m —2: O]di (1)

for the common radix-2 trellis. d> is the one-bit decision winner
from the comparison in the PMU and is read from the local winner
memory located by state index .S,, and time index n; the previous
state S,,_1 is obtained by simply removing the most significant
bit of S,, and appending d> as the least significant bit. Due to
recursion, a trace back process can not be pipelined and this
restricts the throughput. Furthermore, since a minimum length of
five times the constraint length is required for a trace back to
achieve high decoding accuracy, significant memory is required for
the local winner memory; this incurs a considerable area and power
overhead.

The input to and the output from the decoder is generally
synchronised to an external clock. Thus data is input and removed
at regular intervals and hence the operation of the BMU, PMU, the
placing of data into and the removal of data from the SMU are all
essentially synchronised to the clock. However, the tracing back
through the timeslot history can be either synchronous [4], [5], [6]
or asynchronous [7].

III. HANDSHAKING ASYNCHRONOUS TRACE BACK

With asynchronous handshaking timing a trace back, implement-
ing multiple back trace pointers is relatively simple and has far
less control and memory overhead compared to a synchronous
implementation. For these reasons, tracing back asynchronously is
preferred. Figure 3 shows a schematic of the circular handshaking
trace back mechanism used in the self-timed design in [7]. Each

Local winners decisions

Local Local
winner winner
memory memory
[(]
=| © =| ©
Bl =€ 3 £ 8
c| B 3 | o| &
. evaluate .
addr
- — control oken control — -

Global winner

Fig. 3. The SMU architecture of the asynchronous design from [7].

timeslot comprises a local winner register plus control logic. A
rotating token indicates the logic to receive the next PMU output
and having loaded the winner memory, the token moves to the
adjacent slot logic. At this point, the loaded timeslot issues an
evaluate signal to initiate the trace back. A significant feature
of the system is the use of a global winner indicating that the
PMU has located a single minimum path metric. This is used
as the starting point for a trace back. The path can now be
reconstructed at each successive stage with the output address from
a slot generated from its local winner information and incoming
address, according to equation 1. Handshakes between adjacent
slots control the transfer of data during back trace. Back trace(s)
can therefore run asynchronously, as fast as the handshakes will
allow. Furthermore, a variable and unknown number of back traces,
determined by the number of paths requiring correction, can be

running concurrently. This ability of the asynchronous design to
automatically adapt to the error conditions gives it a flexibility that
is absent in a synchronous design. Transition activity is minimised
by storing the global winners generated by the PMU and retiring
the back trace as soon as the stored global winner agrees with the
generated address. Starting the back trace from a known point also
enables the number of timeslots to be significantly reduced to close
to the theoretical minimum of five times the constraint length. This
small amount of memory is impossible to realise in synchronous
designs.

IV. NEW NO-HANDSHAKING ASYNCHRONOUS TRACE BACK

Although the asynchronous design described in the last section
has considerable advantages over a synchronous approach, it too
has drawbacks. The modest control logic for the handshake logic
consumes power and also affects performance. Moreover, a trace
back has to be forcibly stopped if it is in danger of running into
the slot where data is about to be placed; this is resolved with an
arbiter which introduces uncertainty and potential metastability to
the design [7].

Handshakes are required to transfer data safely between se-
quential elements. If the sequential logic is removed and the
trace back mechanism only comprises combinatorial logic then an
asynchronous trace back can be performed without handshakes. In
this case, the system needs to guarantee that the decoded bit to be
output can be resolved correctly before the slot is loaded with new
PMU data. The combinatorial trace back block is shown in Figure 4.
The local winner data is held on flip flops and all its output bits are

Local
Winner

Local
Winner

Local
Winner

Local
‘Winner

Local

TO T1 T2 T62 T63

Global Winner J
T_even
Global Winner 64 64 64 64

T_odd

gwing gwin, gwing, gwing, gwings

Fig. 4. Trace back path of the new SMU design.

fed to its associated trace back block and as shown it is a 64-slot
system. Each trace back unit, T'B; is a direct implementation of
one stage of the radix-2 trellis so that the global winner at time slot
T; is constructed from the local winner decisions and the global
winner at time slot 7;; note that the global winner comprises a
single bit per state. Each trace back stage consists of a trace back
unit and a multiplexer; the multiplexer selects the global winner
from either the PMU or the preceding trace back unit.

A trace back on all 64 paths is started at each time slot
by selecting the new global winner from the PMU. Although
trace backs are initiated synchronously, they run asynchronously
thereafter. A major feature of this trace back path structure is
that it needs no pointers or handshakes to control the progress of

trace backs. They run naturally on the trace back path through the
combinatorial logic until they merge with a previous trace back or
reach a time slot being updated by new global winners.

A. Timing considerations in new trace back

There are four potential timing problems arising from operating
without sequential logic:

1) Switching of the multiplexers in the trace back stages: The
multiplexer selection signal and the global winner from the PMU
are synchronised to the updating of the local winner memory.
However, the global winner from the predecessor trace back unit
is asynchronous to this. If the multiplexer selection were to be
switched just as a new output were generated then spurious tran-
sitions would be propagated down the trace back chain. To avoid
this, global winners from the PMU update even trace back units
on even timeslots, and odd trace back units on odd timeslots. This
overlapping enables trace backs to be started when the adjacent
global winner has become established and so avoids unnecessary
switching transition propagation and avoids additional uncertainty
in determining the bit to output. The timing of the multiplexer
switching is shown in Figure 5. As can be seen, the selection of Sel;

Global winner

T even gWi 8Wir2 8Wira
Output from
Prnm /X:X Tf""tl“fl
|
|
Global winner N N N ¥
T odd 8Wi1 $W|+1 8Wis3 8Wits
Output from -
Thy 2N ‘TBO"’I .
| |
Sel, \ |
Seli

Seli.y /

Sel, controls the multiplexer selection between the Global winner from PMU and output from the predecessor TB unit, i.e.
Sely is high, selecting the global winners from PMU; Sely is low, selecting the output from the predecessor TB unit.

Fig. 5. The timing of the trace back path multiplexer.
changes only when the input T'Bout;y; from the the predecessor
trace back unit to the multiplexer is steady.

2) Output synchronization: The global winner signals propagate
asynchronously with respect to the synchronous clocking of the
decoded bit from the oldest timeslot into the output flip flop.
Therefore, changes of data at or near the clock may cause incorrect
data to be clocked or the flip flop to enter the metastable ‘half’
state. In both cases, changes at this time indicate that the traceback
has not converged on to the correct path. The data output under
these circumstances from any Viterbi decoder is usually random
depending on the internal logic. It therefore does not matter whether
a ‘0’ or ‘1’ is output as there is a 50% chance that it will be correct;
this is confirmed by simulations which show that the error rate using
the new SMU is no different from those of conventional Viterbi
decoders. However, a metastable state still needs to be avoided in
the output flip flop. This is achieved by using two flip flops in series
having the same clock but with the output of the first connected
to the input of the second. This allows one clock period for any
metastable output from the first to settle. The mean time between
failure (MTBF) is given by [8], [9], [10], [11]

et/'r

MTBF = m)

where f; and f. are the data and clock frequencies, T, is the
time between the clock and data giving non-zero resolving time,
t is the clock period and 7 is the time constant for leaving the
metastable state. For the 0.18m 1.8V standard cell CMOS library
used, measurements of 7 and T, yielded maximum values of 43ps
and 21ps respectively giving a MTBF of over 1000 years for a
100MHz clock with far larger MTBF for smaller clock frequencies.
With this MTBE, the output data can be considered to be sufficiently
reliable.

3) Positive timing skew: All paths trace back simultaneously
and because of element tolerance and differences in wire length,
there will be a variation in time between the arrival of traceback
decisions at the oldest timeslot. If large enough, this could cause
incorrect data to be determined for clocking into the output flip
flop. There are two cases to be considered. In this section, the
case of a succeeding global winner sent at time ¢, indicated by a
propagating ‘1°, moves through the trace back logic faster than the
previous global winner on another path sent at time ¢ — 1; this is
referred to as positive timing skew.

Both global winners will eventually merge on the same traceback
path so if the winner sent at ¢ catches up with the one sent at ¢t — 1
then the trace back logic is still selecting the correct trace back
path and the output will be accurately decoded. Hence, it can be
concluded that positive timing skew causes no problem and can
therefore be ignored.

4) Negative timing skew: However, negative timing skew where
the global winner at time ¢ travels slower than the winner at time
t—1, may cause problems. This is illustrated in Figure 6. The solid

S0=0

\ s2-0

0 Propagation \
(Non-Global / 1 Propagation
Winner) \/ (Global Winner) S3=0

Convergence Phase Trace Back Phase

Fig. 6. Trace back gap caused by timing skew.

line from state S; represents the global winner propagation with
time and the dotted line represents all the other ‘loser’ states. The
slower propagation of the winner means that the loser ‘0’ states can
combine with a zero on the winner path from the previous timeslot
to indicate a period where no winner is indicated; this is indicated
by the shaded region in Figure 6. Were this to happen at the time
the decoded data is clocked into the output flip flop then incorrect
data would be decoded and output. After loading a timeslot, the
load pointer moves on forward and the trace back moves in the
reverse direction. The data will be read out just before the trace
back reaches the load pointer. If there is a total of L stages, when
the load and trace back meet, the back trace has travelled n stages
and the load pointer has passed (L — 2 — n) stages; L — 2 arises
from the timing of the switching of the multiplexers in the trace
back stages. If the trace back delay per stage is d and the clock

time is T’
nxd=(L—-2—-n)xT 3)

It is the range of delay in a trace back unit that gives rise to
the ‘zero’ gap that may arise. Post layout measurements for the
0.18um 1.8V process targeted reveal a variation between d,;, and
dimaz Of 0.55ns to 0.615ns. Taking a SMU path length L as 64 and
using equation 3, the variation in n at different frequencies can be
computed and are as shown in Table 1. It can be seen that despite the
delay variations to be expected in the trace back units, the output
data is always within the same stage and so will be correctly output
over the range of frequencies shown. This has been confirmed from

TABLE I
MINIMUM AND MAXIMUM TRACE BACK STAGES AT A 0.184m GEOMETRY.

MINIMUM AND MAXIMUM TRACE BACK STAGES AT SOMHZ AND L=64.

TABLE III

Geometry (nm) | Min Stages (n,,;») | Max Stages (nmax)
130 60.59 60.78
90 60.96 61.16
60 61.24 61.44

Frequency (MHz) | Min Stages (n,,;»,) | Max Stages (nmaz)
10 61.62 61.66
50 60.15 60.34
100 58.41 58.77
200 55.21 55.86

45MHz to 100Mhz by post layout simulation of a Viterbi decoder
using the new SMU. The bit error rate obtained over a wide range
of additive Gaussian white noise levels indicates no discernible
difference between the conventional decoder and the decoder using
the new SMU. Furthermore, comparing the SMU power dissipation
at 50 MHz with the previous self-timed design scaled to 0.18um
and 1.8V shows that the new design consumes only 7mW against
10mW of the other. While the throughput of the previous design
was limited by the speed of the handshakes and arbitration, making
this a bottleneck to the decoder throughput, the current SMU has no
such limitations making operation at far higher frequencies viable.
The only possible drawback of this design appears to be the large
number of wires required which will probably limit the constraint
length to a maximum of seven.

B. Scaling the new trace back design

As geometries scale down, the stage delay d will alter and
the negative timing skew may cause the trace back unit to fail.
According to the first-order ‘constant field” MOS scaling theory
[12], scaling a process down by a factor o reduces the gate delay
by the same factor o while the wire delay remains the same. Based
on this, the variation for d,,;, and d,;, 4, is shown in Table II. Using

TABLE II
MINIMUM AND MAXIMUM DELAYS OF EACH TRACE BACK STAGE FOR
DIFFERENT GEOMETRIES.

Geometry (nm) | Min Delay (ns) | Max Delay (ns)
180 0.550 0.615
130 0.400 0.465
90 0.275 0.340
60 0.183 0.248

edge or by altering the number of trace back stages. It does indicate
that a design without handshakes is not without problems and that
careful timing analysis and simulation is required at the working
frequencies and on the targeted process.

V. CONCLUSION

A new asynchronous SMU which does not require handshakes
or timing within the data to operate correctly has been described.
The timing problems arising from its use have been discussed and
it can be concluded that the only significant difficulty arises from
negative timing skew. The amount of skew observed is a function
of the maximum variation in time through a trace back stage, the
number of stages and the clock period. These enable the timing
skew to be computed and any potential problem in decoding data
to be identified. Examination of reducing the geometry shows that
the design is scalable although the output clock edge or number of
stages may require adjustment. Simulations of the new SMU reveal
that it has the same bit error rate as the conventional decoder so it
can be concluded that outputs are not being erroneously decoded.
Since the use of only combinatorial logic has led to very low power
levels and high potential throughput, this may be a useful approach
in other suitable asynchronous applications.

REFERENCES

[1] G. C. Clark and J. B. Cain, Error-Corection Coding for Digital Communica-
tions. New York: Plenum Press, 1981.

[2] L. C. Lee, Convolutional Coding: Fundamentals and Applications. Norwood:
Artech House,Inc., 1997.

[3] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp. 260—
269, Apr. 1967.

[4] C. M. Radar, “Memory management in a Viterbi decoder,” IEEE Trans.
Commun., vol. 29, pp. 1399-1401, Sept. 1981.

[5] P.J. Black and T. H. Y. Meng, “Hybrid survivor path architectures for Viterbi
decoders,” in Proc. ICASSP, Minneapolis, MN, USA, Apr. 1993, pp. 433-436.

[6] R. Cypher and C. B. Shung, “Generalized trace back techniques for survivor
memory management in the Viterbi algorithm,” in Proc. ICASSP, Minneapolis,
MN, USA, Apr. 1993, pp. 1318-1322.

[7]1 P. Riocreux, L. Brackenbury, M. Cumpstey, and S. Furber, “A low-power self-
timed Viterbi decoder,” in Proc. Async, Salt Lake City, Utah, USA, Mar. 2001,
pp. 15-24.

[8] J. Sparsg and S. Furber, Principles of Asynchronous Circuit Design: A Systems
Perspective. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001.

[9] C. L. Portmann and T. H. Y. Meng, “Metastability in CMOS library elements
in reduced supply and technology scaled applications,” IEEE J. Solid-State
Circuits, vol. 30, pp. 942-951, Jan. 1995.

[10] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev, “Synchronization circuit
performance,” IEEE J. Solid-State Circuits, vol. 37, pp. 202-209, Feb. 2002.

[11] C. Dike and E. Burton, “Miller and noise effects in a synchronizing flip-flop,”
IEEE J. Solid-State Circuits, vol. 34, pp. 849-855, June 1999.

these figures, equation 3 can be used to find the variation in n at
these geometries and this is shown for a 50MHz clock and 64
stages (= L) in Table III. Although negative timing skew results
in a potential gap equivalent to up to 0.2 of the time through a trace
back stage at this frequency, the results for 90nm indicate that the
output could fall in different stages and could therefore cause an
output error. This can be avoided by either shifting the output clock

[12]

N. Weste and K. Eshraghian, Principles of CMOS VLSI design: a Systems
perspective. Reading: Addison-Wesley, 1993.

	title.pdf
	prelim-programme.pdf
	AsyncForumMullins.pdf
	DasguptaAsyncForum2006.pdf
	JianWuAsyncForum.pdf
	JoyBoseasync_forum.pdf
	Yebin_Forum_paper.pdf
	Enzo_CDA_async_forum_06[1].pdf
	Halak-AsynchForum 2006.pdf
	kgardiner_asyncforum06.pdf
	Marshall_async.pdf
	Khomenko_async_forum-1h.pdf
	Shaefer_UK-async-forum.pdf
	NitinGuptaForumValidationAsynchronous.pdf
	Validation of an Asynchronous Synthesis Back-End
	Nitin Gupta, Doug Edwards
	School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
	{nitin.gupta,doug.edwards}@cs.man.ac.uk

	Abstract
	1.� Introduction
	2.� Handshake Circuits
	3.� Validation of Handshake Components
	3.1.� Handshake Protocol Violation
	Figure 1: Illustration of handshake protocol violation

	3.2.� Bad Data
	3.3.� Data Validity Violation
	Figure 2: Common data validity protocols for four-phase single-rail handshake circuits
	Figure 3: Illustration of bad data errors and data validity violations

	4.� Simulation-Based Validation
	4.1.� Arbitration

	5.� Results
	Figure 4: Hazardous handshake circuit compositions

	6.� Conclusions
	7.� References
	[1] A. Bardsley. Implementing Balsa Handshake Circuits. Ph.D. Thesis, Department of Computer Scie...
	[2] R. M. Davies, J. V. Woods. Timing Verification for Asynchronous Design. In Proceedings of EUR...
	[3] D. A. Edwards, A. Bardsley. Balsa: An Asynchronous Hardware Synthesis Language. In The Comput...
	[4] C. Farnsworth, D. A. Edwards, J. Liu, S. S. Sikand. A Hybrid Asynchronous System Design Envir...
	[5] S. Furber. Validating the AMULET Microprocessors. In The Computer Journal, Vol. 45, No. 1, Br...
	[6] N. Gupta. Synthesis of Asynchronous Circuits Using Early Data Validity. In Proceedings of VLS...
	[7] Handshake Solutions. TiDE - Timeless Design Environment. URL: http://www.handshakesolutions.com.
	[8] P. A. Karlsen, P. T. Roine. A Timing Verifier and Profiler for Asynchronous Circuits. In Proc...
	[9] A. M. G. Peeters. Single-Rail Handshake Circuits. Ph.D. Thesis, Technische Universiteit Eindh...
	[10] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, S. Temple, J. D. Garside, Z .C. ...
	[11] J. Sparso, S. Furber. Principles of Asynchronous Circuit Design. Kluwer Academics Publishers...
	[12] P. Vanbekbergen, A. Wang, K. Keutzer. A design and validation system for asynchronous circui...

	Brej-async-forum.pdf
	Blame Passing for Analysis and Optimisation
	Charlie Brej
	Dept. of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
	cbrej@cs.man.ac.uk

	Abstract
	1.� Introduction
	1.1.� Early Output Logic
	Figure 1: Example early output circuit segment

	1.2.� Asynchronous Circuit Construction
	1.3.� Asynchronous Circuit Properties

	2.� Static Timing Analysis
	2.1.� Slack matching
	2.2.� Critical path extraction

	3.� Blame Passing
	3.1.� Simulation
	3.2.� Slowest Path Extraction
	3.3.� Slowest Path Analysis

	4.� Optimisations
	Figure 2: Decrementer circuit
	Figure 3: Slowest path in the decrementer design
	4.1.� Early Drop Latch
	Figure 4: Early drop latch optimisation

	4.2.� Latch Removal
	Figure 5: Latch removal optimisation

	4.3.� Latch Insertion
	Figure 6: Latch insertion optimisation

	4.4.� Anti-Token Latch
	Figure 7: Anti-token latch optimisation

	5.� Results
	5.1.� Decrementer Benchmark
	Figure 8: Decrementer benchmark results

	5.2.� GCD Benchmark
	Figure 9: GCD benchmark results

	5.3.� CPU Benchmark
	Figure 10: CPU benchmark results

	6.� Conclusions
	6.1.� Future Work

	7.� References
	[1] J. Sparsø and S. Furber, “Principles of Asynchronous Circuit Design”, Kluwer Academic Publish...
	[2] A. Bardsley, “Implementing Balsa Handshake Circuits”, Ph.D. Thesis, University of Manchester,...
	[3] S. B. Furber, J. D. Garside, S. Temple and J. Liu. “AMULET2e: An Asynchronous Embedded Contro...
	[4] R. B. Hitchcock, G. L. Smith, D. D. Cheng, "Timing Analysis of Computer Hardware", IBM Journa...
	[5] C.F. Brej, “Early Output Logic using Anti-Tokens”, Twelfth International Workshop on Logic an...
	[6] I.E. Sutherland, “Micropipelines”, The 1988 Turing Award Lecture, Communications of the ACM, ...
	[7] W.J. Bainbridge, S. Furber, “Delay Insensitive System-on- Chip Interconnect Using 1-of-4 Data...
	[8] D.E. Muller, “Asynchronous logics and application to information processing”, Switching Theor...
	[9] Andrew M. Lines. Pipelined Asynchronous Circuits. MS Thesis, Caltech-CS-TR-95-21, 1995.
	[10] C.F. Brej, “Yellow Star: A MIPS R3000 microprocessor on an FPGA”, 2001
	[11] S. Hassoun, C. Ebeling, "Architectural Retiming: An Overview", TAU95, November 1995.
	[12] K. van Berkel, "Handshake Circuits - An Asynchronous Architecture for VLSI Programming", 1993.

	Mokhov_ukaf.pdf
	Dilip_Async_Forum_Abstract.pdf
	Mak_FPGA_Comm_UKASYNCFORUM.pdf
	On-FPGA Communication: An Opportunity for GALS?

	Minas_Async_forum.new.pdf
	WeiShao_asynch_forum.pdf

